Math 1B03/1ZC3 - Tutorial 4

Feb. 7th/ Feb. 11th, 2014

Tutorial Info:

- Website: http://ms.mcmaster.ca/~dedieula.
- Math Help Centre: Wednesdays 2:30-5:30pm.
- Email: dedieula@math.mcmaster.ca .

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
8 & 9 \\
-6 & -7
\end{array}\right)
$$

- a) What are the eigenvalues of A ?

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
8 & 9 \\
-6 & -7
\end{array}\right)
$$

- a) What are the eigenvalues of A ?.
- Recall: If A is square, then $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{x} \neq 0$ is called an eigenvector of A if $A \boldsymbol{x}=\lambda \boldsymbol{x}$ for some $\lambda \in \mathbb{R}$. (i.e. $A \boldsymbol{x}$ is a scalar multiple of \boldsymbol{x}).

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
8 & 9 \\
-6 & -7
\end{array}\right)
$$

- a) What are the eigenvalues of A ?.
- Recall: If A is square, then $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{x} \neq 0$ is called an eigenvector of A if $A \boldsymbol{x}=\lambda \boldsymbol{x}$ for some $\lambda \in \mathbb{R}$. (i.e. $A \boldsymbol{x}$ is a scalar multiple of \boldsymbol{x}).
- The scalar λ is called an eigenvalue of A, and \boldsymbol{x} is λ 's corresponding eigenvector.

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
8 & 9 \\
-6 & -7
\end{array}\right)
$$

- a) What are the eigenvalues of A ?.
- Recall: If A is square, then $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{x} \neq 0$ is called an eigenvector of A if $A \boldsymbol{x}=\lambda \boldsymbol{x}$ for some $\lambda \in \mathbb{R}$. (i.e. $A \boldsymbol{x}$ is a scalar multiple of \boldsymbol{x}).
- The scalar λ is called an eigenvalue of A, and \boldsymbol{x} is λ 's corresponding eigenvector.
- $A x=\lambda x$

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
8 & 9 \\
-6 & -7
\end{array}\right)
$$

- a) What are the eigenvalues of A ?.
- Recall: If A is square, then $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{x} \neq 0$ is called an eigenvector of A if $A \boldsymbol{x}=\lambda \boldsymbol{x}$ for some $\lambda \in \mathbb{R}$. (i.e. $A \boldsymbol{x}$ is a scalar multiple of \boldsymbol{x}).
- The scalar λ is called an eigenvalue of A, and \boldsymbol{x} is λ 's corresponding eigenvector.
- $A x=\lambda x \Leftrightarrow A x-\lambda x=0$

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
8 & 9 \\
-6 & -7
\end{array}\right)
$$

- a) What are the eigenvalues of A ?.
- Recall: If A is square, then $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{x} \neq 0$ is called an eigenvector of A if $A \boldsymbol{x}=\lambda \boldsymbol{x}$ for some $\lambda \in \mathbb{R}$. (i.e. $A \boldsymbol{x}$ is a scalar multiple of \boldsymbol{x}).
- The scalar λ is called an eigenvalue of A, and \boldsymbol{x} is λ 's corresponding eigenvector.
- $A \boldsymbol{x}=\lambda \boldsymbol{x} \Leftrightarrow A \boldsymbol{x}-\lambda \boldsymbol{x}=0 \Leftrightarrow(A-\lambda I) \boldsymbol{x}=0$.

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
8 & 9 \\
-6 & -7
\end{array}\right)
$$

- a) What are the eigenvalues of A ?.
- Recall: If A is square, then $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{x} \neq 0$ is called an eigenvector of A if $A \boldsymbol{x}=\lambda \boldsymbol{x}$ for some $\lambda \in \mathbb{R}$. (i.e. $A \boldsymbol{x}$ is a scalar multiple of \boldsymbol{x}).
- The scalar λ is called an eigenvalue of A, and \boldsymbol{x} is λ 's corresponding eigenvector.
- $A \boldsymbol{x}=\lambda \boldsymbol{x} \Leftrightarrow A \boldsymbol{x}-\lambda \boldsymbol{x}=0 \Leftrightarrow(A-\lambda I) \boldsymbol{x}=0$.
- We know $\operatorname{det}(A)=0 \Leftrightarrow A$ not invertible

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
8 & 9 \\
-6 & -7
\end{array}\right)
$$

- a) What are the eigenvalues of A ?.
- Recall: If A is square, then $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{x} \neq 0$ is called an eigenvector of A if $A \boldsymbol{x}=\lambda \boldsymbol{x}$ for some $\lambda \in \mathbb{R}$. (i.e. $A \boldsymbol{x}$ is a scalar multiple of \boldsymbol{x}).
- The scalar λ is called an eigenvalue of A, and \boldsymbol{x} is λ 's corresponding eigenvector.
- $A \boldsymbol{x}=\lambda \boldsymbol{x} \Leftrightarrow A \boldsymbol{x}-\lambda \boldsymbol{x}=0 \Leftrightarrow(A-\lambda I) \boldsymbol{x}=0$.
- We know $\operatorname{det}(A)=0 \Leftrightarrow A$ not invertible $\Leftrightarrow A \boldsymbol{x}=0$ has non-trivial solutions.

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
8 & 9 \\
-6 & -7
\end{array}\right)
$$

- a) What are the eigenvalues of A ?.
- Recall: If A is square, then $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{x} \neq 0$ is called an eigenvector of A if $A \boldsymbol{x}=\lambda \boldsymbol{x}$ for some $\lambda \in \mathbb{R}$. (i.e. $A \boldsymbol{x}$ is a scalar multiple of \boldsymbol{x}).
- The scalar λ is called an eigenvalue of A, and \boldsymbol{x} is λ 's corresponding eigenvector.
- $A \boldsymbol{x}=\lambda \boldsymbol{x} \Leftrightarrow A \boldsymbol{x}-\lambda \boldsymbol{x}=0 \Leftrightarrow(A-\lambda I) \boldsymbol{x}=0$.
- We know $\operatorname{det}(A)=0 \Leftrightarrow A$ not invertible $\Leftrightarrow A \boldsymbol{x}=0$ has non-trivial solutions.
- So, since we're looking for vectors \boldsymbol{x} such that $(A-\lambda I) \boldsymbol{x}=0$ and we know that $\boldsymbol{x} \neq 0$ by definition, then by our equivalent statements about inverses that must mean that $\operatorname{det}(A-\lambda I)=0$.

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
8 & 9 \\
-6 & -7
\end{array}\right)
$$

- a) What are the eigenvalues of A ?.
- Recall: If A is square, then $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{x} \neq 0$ is called an eigenvector of A if $A \boldsymbol{x}=\lambda \boldsymbol{x}$ for some $\lambda \in \mathbb{R}$. (i.e. $A \boldsymbol{x}$ is a scalar multiple of \boldsymbol{x}).
- The scalar λ is called an eigenvalue of A, and \boldsymbol{x} is λ 's corresponding eigenvector.
- $A \boldsymbol{x}=\lambda \boldsymbol{x} \Leftrightarrow A \boldsymbol{x}-\lambda \boldsymbol{x}=0 \Leftrightarrow(A-\lambda I) \boldsymbol{x}=0$.
- We know $\operatorname{det}(A)=0 \Leftrightarrow A$ not invertible $\Leftrightarrow A \boldsymbol{x}=0$ has non-trivial solutions.
- So, since we're looking for vectors \boldsymbol{x} such that $(A-\lambda I) \boldsymbol{x}=0$ and we know that $\boldsymbol{x} \neq 0$ by definition, then by our equivalent statements about inverses that must mean that $\operatorname{det}(A-\lambda I)=0$.
- So, λ is an eigenvalue of $A \Leftrightarrow$ it satisfies the equation $\operatorname{det}(A-\lambda I)=0$.

Examples:

- b) Find all eigenvectors of A.

Examples:

- 2.a) Find all eigenvalues of

$$
A=\left(\begin{array}{rrr}
3 & 6 & -6 \\
-1 & -4 & 5 \\
2 & 2 & -1
\end{array}\right)
$$

Examples:

- 2.a) Find all eigenvalues of

$$
A=\left(\begin{array}{rrr}
3 & 6 & -6 \\
-1 & -4 & 5 \\
2 & 2 & -1
\end{array}\right)
$$

- b) Find all eigenvectors corresponding to $\lambda=-3$.

Examples:

- 2.a) Find all eigenvalues of

$$
A=\left(\begin{array}{rrr}
3 & 6 & -6 \\
-1 & -4 & 5 \\
2 & 2 & -1
\end{array}\right)
$$

- b) Find all eigenvectors corresponding to $\lambda=-3$.
- c) Is A invertible?

Examples:

- 3.a) Find the eigenvalues of

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

Examples:

- 3.a) Find the eigenvalues of

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

- b) Find all eigenvectors corresponding to $\lambda=2$.

Examples:

- 4.) Consider

$$
A=\left(\begin{array}{cc}
5 & -3 \\
a & b
\end{array}\right)
$$

and suppose

$$
\boldsymbol{x}=\binom{1}{1}
$$

is an eigenvector of A. What must the eigenvalue λ corresponding to \boldsymbol{x} be?

Examples:

- 5.) Find all eigenvalues and eigenvectors of A^{10}, if

$$
A=\left(\begin{array}{rr}
8 & 9 \\
-6 & -7
\end{array}\right) .
$$

