Math 1B03/1ZC3 - Tutorial 4

Jan. 31st/ Feb. 4th, 2014

Tutorial Info:

- Website: http://ms.mcmaster.ca/~dedieula.
- Math Help Centre: Wednesdays 2:30-5:30pm.
- Email: dedieula@math.mcmaster.ca .

$$A = \left(\begin{array}{rrrr} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 1 & 5 & 3 \end{array}\right).$$

• 1. Consider

$$A = \left(\begin{array}{rrrr} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 1 & 5 & 3 \end{array}\right).$$

• **Recall:** For a 2×2 matrix

$$B = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right),$$

 $\det(B) = ad - bc.$

1. Consider

$$A = \left(\begin{array}{rrrr} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 1 & 5 & 3 \end{array}\right).$$

• **Recall:** For a 2 × 2 matrix

$$B = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right),$$

 $\det(B) = ad - bc$.

Recall: If *D* is a square, then the minor of entry a_{ij}, M_{ij} is the determinant of the submatrix that remains after the *i*th row and *j*th column are deleted from *D*.

1. Consider

$$A = \left(\begin{array}{rrrr} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 1 & 5 & 3 \end{array}\right).$$

• **Recall:** For a 2 × 2 matrix

$$B = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right),$$

 $\det(B) = ad - bc.$

- **Recall:** If *D* is a square, then the **minor of entry a**_{ij}, **M**_{ij} is the determinant of the submatrix that remains after the *i*th row and *j*th column are deleted from *D*.
- Cofactor of entry a_{ij} , C_{ij} : is kM_{ij} , where k = 1 or -1 in accordance with the pattern in the checkerboard array:

$$B = \begin{pmatrix} + & - & + & - & + & \dots \\ - & + & - & + & - & \dots \\ + & - & + & - & + & \dots \\ - & + & - & + & - & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix},$$

• **a**) Find M_{11} , M_{12} , M_{13} , C_{11} , C_{12} , and C_{13}

- **a**) Find M_{11} , M_{12} , M_{13} , C_{11} , C_{12} , and C_{13}
- **b**) Find det(*A*).

- **a**) Find M_{11} , M_{12} , M_{13} , C_{11} , C_{12} , and C_{13}
- **b**) Find det(*A*).
- **Recall:** You can find det(*A*) by multiplying the entries in any row or column by their corresponding cofactor and adding the resulting products.

- **a**) Find M_{11} , M_{12} , M_{13} , C_{11} , C_{12} , and C_{13}
- **b**) Find det(*A*).
- **Recall:** You can find det(*A*) by multiplying the entries in any row or column by their corresponding cofactor and adding the resulting products.
- Note: We could have chosen a different row or column.

2. Consider

$$A = \left(\begin{array}{rrrr} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{array}\right).$$

Find det(A).

• 2. Consider

$$A = \left(\begin{array}{rrrr} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{array}\right).$$

Find det(A).

• Note: Choosing a row or column with lots of zeros makes things easier!

2. Consider

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{array}\right).$$

2. Consider

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{array}\right).$$

• **a** Find det(A).

• 2. Consider

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{array}\right).$$

• **a** Find det(A).

• Recall: How do elementary row operations affect matrices?

2. Consider

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{array}\right).$$

- **a** Find det(A).
- Recall: How do elementary row operations affect matrices?
- Let *B* be a square matrix, and let *C* denote what *B* becomes after each row operation.

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{array}\right).$$

- **a** Find det(A).
- Recall: How do elementary row operations affect matrices?
- Let *B* be a square matrix, and let *C* denote what *B* becomes after each row operation.
 - 1. Multiply row by nonzero scalar k: det $(C) = k \det(B)$.

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{array}\right).$$

- **a** Find det(A).
- Recall: How do elementary row operations affect matrices?
- Let *B* be a square matrix, and let *C* denote what *B* becomes after each row operation.
 - 1. Multiply row by nonzero scalar k: det(C) = k det(B).
 - 2. Switch any 2 rows: det(C) = -det(B).

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{array}\right).$$

- **a** Find det(A).
- Recall: How do elementary row operations affect matrices?
- Let *B* be a square matrix, and let *C* denote what *B* becomes after each row operation.
 - 1. Multiply row by nonzero scalar k: det $(C) = k \det(B)$.
 - 2. Switch any 2 rows: det(C) = -det(B).
 - 3. Add a multiple of a row to an existing row: det(C) = det(B).

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{array}\right).$$

- **a** Find det(A).
- Recall: How do elementary row operations affect matrices?
- Let *B* be a square matrix, and let *C* denote what *B* becomes after each row operation.
 - 1. Multiply row by nonzero scalar k: det $(C) = k \det(B)$.
 - 2. Switch any 2 rows: det(C) = -det(B).
 - 3. Add a multiple of a row to an existing row: det(C) = det(B).
- Doing the same operations on *B*'s columns yield the same results.

b) Consider

$$B = \left(\begin{array}{rrrr} t & 2t & 3t \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{array}\right),$$

for $t \in \mathbb{R}$. Find det(*B*).

• 4. Suppose det(A) = 3, det(B) = 9, det(C) = 2. What is det(X), if $BX = 6C^{T}A$.

- 4. Suppose det(A) = 3, det(B) = 9, det(C) = 2. What is det(X), if $BX = 6C^T A$.
- **Recall:** We know the following properties concerning determinants:

- 4. Suppose det(A) = 3, det(B) = 9, det(C) = 2. What is det(X), if $BX = 6C^{T}A$.
- Recall: We know the following properties concerning determinants:
 (a) det(A) = det(A^T)

- 4. Suppose det(A) = 3, det(B) = 9, det(C) = 2. What is det(X), if $BX = 6C^{T}A$.
- **Recall:** We know the following properties concerning determinants:

(a)
$$\det(A) = \det(A^T)$$

(b) det(AB) = det(A) det(B)

- 4. Suppose det(A) = 3, det(B) = 9, det(C) = 2. What is det(X), if $BX = 6C^{T}A$.
- **Recall:** We know the following properties concerning determinants:
 - (a) $\det(A) = \det(A^T)$
 - (b) det(AB) = det(A) det(B)
 - (c) $det(kA) = k^n det(A)$, where $k \in \mathbb{R}$, and A is a $n \times n$ matrix.

- 4. Suppose det(A) = 3, det(B) = 9, det(C) = 2. What is det(X), if $BX = 6C^{T}A$.
- **Recall:** We know the following properties concerning determinants:
 - (a) $\det(A) = \det(A^T)$
 - (b) det(AB) = det(A) det(B)
 - (c) $det(kA) = k^n det(A)$, where $k \in \mathbb{R}$, and A is a $n \times n$ matrix.
 - (d) $det(A) \neq 0 \Leftrightarrow A$ is invertible.

- 4. Suppose det(A) = 3, det(B) = 9, det(C) = 2. What is det(X), if $BX = 6C^{T}A$.
- **Recall:** We know the following properties concerning determinants:
 - (a) $\det(A) = \det(A^T)$
 - (b) det(AB) = det(A) det(B)
 - (c) $det(kA) = k^n det(A)$, where $k \in \mathbb{R}$, and A is a $n \times n$ matrix.
 - (d) $det(A) \neq 0 \Leftrightarrow A$ is invertible.

(e)
$$\det(A^{-1}) = \frac{1}{\det(A)}$$
.

5.a) Consider

$$A = \begin{pmatrix} 1 & x & 2 \\ 3 & 1 & -1 \\ -1 & 2 & 2 \end{pmatrix}.$$

When is A singular?

5.a) Consider

$$A = \begin{pmatrix} 1 & x & 2 \\ 3 & 1 & -1 \\ -1 & 2 & 2 \end{pmatrix}.$$

When is A singular?

• **Recall:** A matrix *A* is called **singular** if *A* is *not* invertible.

5.a) Consider

$$A = \left(\begin{array}{rrrr} 1 & x & 2 \\ 3 & 1 & -1 \\ -1 & 2 & 2 \end{array}\right).$$

When is A singular?

- **Recall:** A matrix *A* is called **singular** if *A* is *not* invertible.
- Also, we know that A invertible $\Leftrightarrow \det(A) \neq 0$, so A singular $\Leftrightarrow \det(A) = 0$.

5.a) Consider

$$A = \left(\begin{array}{rrrr} 1 & x & 2 \\ 3 & 1 & -1 \\ -1 & 2 & 2 \end{array}\right).$$

When is A singular?

- **Recall:** A matrix *A* is called **singular** if *A* is *not* invertible.
- Also, we know that A invertible $\Leftrightarrow \det(A) \neq 0$, so A singular $\Leftrightarrow \det(A) = 0$.

• So, we're looking for the values of x such that det(A) = 0.

5.a) Consider

$$A = \left(\begin{array}{rrrr} 1 & x & 2 \\ 3 & 1 & -1 \\ -1 & 2 & 2 \end{array}\right).$$

When is A singular?

- **Recall:** A matrix *A* is called **singular** if *A* is *not* invertible.
- Also, we know that A invertible $\Leftrightarrow \det(A) \neq 0$, so A singular $\Leftrightarrow \det(A) = 0$.
- So, we're looking for the values of x such that det(A) = 0.
- **b**) When is *A* invertible?

6. Consider

$$A = \left(\begin{array}{rrrr} 0 & 2 & 1 \\ -1 & -3 & 1 \\ -2 & -1 & -2 \end{array}\right).$$

• 6. Consider

$$A = \left(\begin{array}{rrrr} 0 & 2 & 1 \\ -1 & -3 & 1 \\ -2 & -1 & -2 \end{array}\right)$$

• Find A^{-1} using the adjoint method.

$$A = \left(\begin{array}{rrrr} 0 & 2 & 1 \\ -1 & -3 & 1 \\ -2 & -1 & -2 \end{array}\right)$$

- Find A^{-1} using the adjoint method.
- **Recall:** If A is invertible, then $A^{-1} = \frac{1}{\det(A)} adj(A)$, where

$$adj(A) = \begin{pmatrix} C_{11} & C_{12} & \dots & C_{1n} \\ C_{21} & C_{22} & \dots & C_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ C_{n1} & C_{n2} & \dots & C_{nn} \end{pmatrix}^{T}$$

• 7. Solve the following linear system using Cramer's Rule: 3x + 2y = 1, 5x + 4y = -1.

- 7. Solve the following linear system using Cramer's Rule: 3x + 2y = 1, 5x + 4y = -1.
- **Cramer's Rule:** If Ax = b is a system of *n* linear equations in *n* unknowns such that $det(A) \neq 0$, then Ax = b has a unique solution. This solutions is: $x_1 = \frac{det(A_1)}{det(A)}, x_2 = \frac{det(A_2)}{det(A)}, \dots, x_n = \frac{det(A_n)}{det(A)}$, where A_j is the matrix

obtained by replacing the entries in the jth column of A by the entries in the matrix b.

