
Math 1B03/1ZC3 - Tutorial 3

Jan. 24th/28th, 2014



Tutorial Info:

� Website: http://ms.mcmaster.ca/∼dedieula.
� Math Help Centre: Wednesdays 2:30-5:30pm.
� Email: dedieula@math.mcmaster.ca .



Elementary Matrices

� An elementary matrix is a n×n matrix that can be obtained from the identity In by
performing a single elementary row operation.

� e.g.

E1 =

(
1 0
1 1

)
is an elementary matrix that corresponds to the row operation r2← r2 + r1.

� So, when we do a row operation to a n×n matrix A, this is equivalent to multiplying
A by an elementary matrix. e.g.

A =

(
1 2
3 4

)
r2←r2+r1

=

(
1 2
4 6

)
=

(
1 0
1 1

)(
1 2
3 4

)
.
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Examples:

� 1.a) Consider

A =

(
2 −4
−2 3

)
.

Write A as a product of elementary matrices.

� Recall: To do this we should:
1. Reduce A to the identity I.
2. Keep track of row operations.
3. Write each row operation as an elementary matrix.
4. Express the row reduction as matrix multiplication.
5. Solve for A.
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Examples:

� b) Is this decomposition of A into elementary matrices unique?



Examples:

� c) Find A−1 without using the formula

1
ad−bc

(
d −b
−c a

)
.



Examples:

� Note: Our work in Question 1 demonstrates why the inverse algorithm works.

� Inverse Algorithm: To find the inverse of an invertible matrix A:
1. Find a sequence of elementary row operations that reduce A to In.
2. Perform those same row operations on In to obtain A−1.

� i.e. These row operations can be written as elementary matrices: Ek . . .E2E1A = I
⇒ A−1 = Ek . . .E2E1.

� So, to do this quickly, we perform the row operations represented by Ek . . .E1
simultaneously to A and In by adjoining A with In: [A|In]→ [In|A−1].
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Examples:

� 2. Consider

A =

 1 1 1
6 7 5
3 2 3

 .

� Using row operations we could find

A−1 =

 −11 1 2
3 0 1
9 −1 −1

 .
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Examples:

� a) Does

Ax =

 1
2
3


have a unique solution?

� Recall: We know several equivalent statements, where A is a n×n matrix:
(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c) The reduced row echelon form of A is In.
(d) A is expressible as the product of elementary matrices.
(e) Ax = b is consistent for every n×1 matrix b.
(f) Ax = b has exactly one solution for every n×1 matrix b.
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� b) Solve for x.
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� 3. Consider

A =

 1 2 3
2 4 6
1 7 1

 .

� a) Is A invertible?
� b) Does Ax = 0 have nontrivial solutions?



Examples:

� 3. Consider

A =

 1 2 3
2 4 6
1 7 1

 .

� a) Is A invertible?

� b) Does Ax = 0 have nontrivial solutions?



Examples:

� 3. Consider

A =

 1 2 3
2 4 6
1 7 1

 .

� a) Is A invertible?
� b) Does Ax = 0 have nontrivial solutions?


