Math 1B03/1ZC3 - Tutorial 2

Jan. 21st/24th, 2014

Tutorial Info:

- Website: http://ms.mcmaster.ca/~dedieula.
- Math Help Centre: Wednesdays 2:30-5:30pm.
- Email: dedieula@math.mcmaster.ca .

Well, we know that that if A and B are not the same size, then BA may not even be defined.

- Well, we know that that if A and B are not the same size, then BA may not even be defined.
- **e.g.** If

$$A = \begin{pmatrix} 3 & 1 \\ 2 & 1 \\ 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 & -1 & -1 \\ 1 & 2 & 3 & -1 \end{pmatrix}$$

then

$$AB = \left(\begin{array}{cccc} 10 & 2 & 0 & -4 \\ 7 & 2 & 1 & -3 \\ 9 & 6 & 7 & -5 \end{array}\right),$$

but BA is not defined.

- Well, we know that that if A and B are not the same size, then BA may not even be defined.
- **e.g.** If

$$A = \begin{pmatrix} 3 & 1 \\ 2 & 1 \\ 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 & -1 & -1 \\ 1 & 2 & 3 & -1 \end{pmatrix}$$

then

$$AB = \left(\begin{array}{cccc} 10 & 2 & 0 & -4 \\ 7 & 2 & 1 & -3 \\ 9 & 6 & 7 & -5 \end{array}\right),$$

but BA is not defined.

• So no, it is not true in general that AB = BA.

• What if A and B are both square (i.e. A and B are both $n \times n$ matrices)?

- What if A and B are both square (i.e. A and B are both $n \times n$ matrices)?
- Does AB = BA for any possible A and B?

- What if A and B are both square (i.e. A and B are both $n \times n$ matrices)?
- Does AB = BA for any possible A and B?
- Can you think of a counterexample?

• Is it ever possible to find an A and B such that AB = BA?

Zero Divisors?

• For real numbers, we know that $ab = 0 \Rightarrow a = 0$ or b = 0.

Zero Divisors?

- For real numbers, we know that $ab = 0 \Rightarrow a = 0$ or b = 0.
- Is this true for matrices? (i.e. if we have two matrices A and B such that AB = 0, is it true that we must have A = 0 or B = 0?)

Cancellation Law?

• For real numbers, we know that $ab = ac \Rightarrow b = c$.

Cancellation Law?

- For real numbers, we know that $ab = ac \Rightarrow b = c$.
- Does this hold true in general for matrices? (i.e. $AB = AC \Rightarrow B = C$?

Recap: In general, it is not true that:

• AB = BA (i.e. multiplicative commutativity fails)

Recap: In general, it is not true that:

- AB = BA (i.e. multiplicative commutativity fails)
- $AB = 0 \Rightarrow A = 0$ or B = 0 (i.e. \exists non-zero zero divisors)

Recap: In general, it is not true that:

- AB = BA (i.e. multiplicative commutativity fails)
- $AB = 0 \Rightarrow A = 0$ or B = 0 (i.e. \exists non-zero zero divisors)
- $AB = AC \Rightarrow B = C$ (i.e. cancellation law fails)

Multiplicative Identity

■ In \mathbb{R} we have the number 1, and we know $a \times 1 = 1 \times a = a$.

Multiplicative Identity

- In \mathbb{R} we have the number 1, and we know $a \times 1 = 1 \times a = a$.
- For matrices, this "1" is known as the *identity matrix*, e.g. if A is $m \times n$, then $A \times I_{n \times n} = A$.

Multiplicative Identity

- In \mathbb{R} we have the number 1, and we know $a \times 1 = 1 \times a = a$.
- For matrices, this "1" is known as the *identity matrix*, e.g. if A is $m \times n$, then $A \times I_{n \times n} = A$.
- e.g.

■ In \mathbb{R} we know that for every a such that $a \neq 0$ there exists a^{-1} such that $aa^{-1} = a^{-1}a = 1$.

■ In \mathbb{R} we know that for every a such that $a \neq 0$ there exists a^{-1} such that $aa^{-1} = a^{-1}a = 1$. **e.g** $2 \times \frac{1}{2} = 1 = \frac{1}{2} \times 2$.

- In \mathbb{R} we know that for every a such that $a \neq 0$ there exists a^{-1} such that $aa^{-1} = a^{-1}a = 1$. **e.g** $2 \times \frac{1}{2} = 1 = \frac{1}{2} \times 2$.
- If *A* is a square $(n \times n)$ matrix such that \exists a *B* such that $AB = I_{n \times n} = BA$, then *A* is said to be **invertible**, (a.k.a **nonsingular**), and *B* is called the inverse of *A*, $(B = A^{-1})$.

- In \mathbb{R} we know that for every a such that $a \neq 0$ there exists a^{-1} such that $aa^{-1} = a^{-1}a = 1$. **e.g** $2 \times \frac{1}{2} = 1 = \frac{1}{2} \times 2$.
- If *A* is a square $(n \times n)$ matrix such that \exists a *B* such that $AB = I_{n \times n} = BA$, then *A* is said to be **invertible**, (a.k.a **nonsingular**), and *B* is called the inverse of *A*, $(B = A^{-1})$.
- If A is a 2×2 matrix, then

$$A^{-1} = \frac{1}{ad - bc} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix},$$

b/c:

For 2x2 Matrices:

 $\bullet \det(A) = ad - bc.$

For 2x2 Matrices:

- $\bullet \det(A) = ad bc.$
- *A* is nonsingular $\Leftrightarrow \det(A) \neq 0$.

For 2x2 Matrices:

- $\bullet \det(A) = ad bc.$
- *A* is nonsingular $\Leftrightarrow \det(A) \neq 0$.
- So, $det(A) = 0 \Leftrightarrow A$ is singular (i.e. A is not invertible).

$$A = \left(\begin{array}{cc} 1 & 3 \\ 2 & 5 \end{array}\right), B = \left(\begin{array}{cc} 2 & 5 \\ 3 & 8 \end{array}\right).$$

■ 1. Let

$$A = \left(\begin{array}{cc} 1 & 3 \\ 2 & 5 \end{array}\right), B = \left(\begin{array}{cc} 2 & 5 \\ 3 & 8 \end{array}\right).$$

a) Is A invertible?.

$$A = \left(\begin{array}{cc} 1 & 3 \\ 2 & 5 \end{array}\right), B = \left(\begin{array}{cc} 2 & 5 \\ 3 & 8 \end{array}\right).$$

- **a**) Is *A* invertible?.
- **b**) Find A^{-1} .

$$A = \left(\begin{array}{cc} 1 & 3 \\ 2 & 5 \end{array}\right), B = \left(\begin{array}{cc} 2 & 5 \\ 3 & 8 \end{array}\right).$$

- **a**) Is A invertible?.
- **b**) Find A^{-1} .
- **c**) Is *B* invertible?.

$$A = \left(\begin{array}{cc} 1 & 3 \\ 2 & 5 \end{array}\right), B = \left(\begin{array}{cc} 2 & 5 \\ 3 & 8 \end{array}\right).$$

- **a**) Is A invertible?.
- **b**) Find A^{-1} .
- **c**) Is *B* invertible?.
- **d**) Find B^{-1} .

$$A = \left(\begin{array}{cc} 1 & 3 \\ 2 & 5 \end{array}\right), B = \left(\begin{array}{cc} 2 & 5 \\ 3 & 8 \end{array}\right).$$

- **a**) Is *A* invertible?.
- **b**) Find A^{-1} .
- **c**) Is *B* invertible?.
- **d**) Find B^{-1} .
- **e)** Find $(AB)^{-1}$.

2. Let

$$A = \left(\begin{array}{cc} 4 & x \\ x & 1 \end{array} \right).$$

For what values of *x* is *A* singular?

■ 3. Solve for X: A(X+B) = CA (where A is invertible).

4. Solve for *X*: $(2E+F)^T = G^{-1}X^T + F^T$.

■ **5.** Find the inverse of

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 6 & 7 & 5 \\ 3 & 2 & 3 \end{array}\right)$$

using row operations.

6. a) Solve for *W*: $2EWF^2 = (E^TF)^2$.

- **6.** a) Solve for $W: 2EWF^2 = (E^TF)^2$.
- **b)** What sizes must F and W be in order for W to have a unique solution if E is $3 \times n$?

