Model theory of operator algebras: the next generation

Joint work with I. Farah, D. Sherman, I. Goldbring, T. Sinclair and a Fields-MITACS undergraduate research team

Bradd Hart McMaster University

Sept. 13, 2012

Outline

- Continuous model theory and metric structures
- Model theory and the CEP
- Quantifier elimination and model completeness
- Stability and ultrapowers
- Classes of operator algebras and omitting types
- On beyond continuous model theory: von Neumann algebras

Continuous model theory

- Until further notice, the only structures we will talk about are tracial von Neumann algebras or C*-algebras.
- Basic formulas in these two cases will be of the form $Re(tr(p(\bar{x})))$ and $||p(\bar{x})||$ respectively where p is a *-polynomial with complex coefficients in several variables.
- Quantifier-free formulas will be of the form $f(\varphi_1(\bar{x}), \dots, \varphi_k(\bar{x}))$ where $f: R^k \to R$ is a continuous function and $\varphi_1, \dots, \varphi_k$ are basic formulas.
- Arbitrary formulas are obtained by "quantifying" over the variables using either sup or inf over an operator norm ball of radius N.
- So a formula has the form wlog:

$$Q^1_{x_1\in B_{N_1}}Q^2_{x_2\in B_{N_2}}\dots Q^k_{x_k\in B_{N_k}}\varphi(x_1,\dots,x_n)$$

where each Q^i is either sup or inf and φ is a quantifier-free formula.

Continuous model theory, cont'd

- Notice that if we consider any formula $\varphi(\bar{x})$ and substitute elements from some algebra A then the value of $\varphi(\bar{a})$ is some number.
- If a formula has no free variables we call it a sentence and when we evaluate it in an algebra, a sentence is assigned a number.
- The theory of an algebra A in continuous logic is the function from sentences φ to numbers φ^A which assigns their value in A; we write Th(A) for this function.
- It is equivalent to determine the set of sentences in a given algebra which evaluate to 0. In fact, we can determine Th(A) from knowing the zero set on positive sentences.
- Formulas which have only sup (inf) quantifiers are called universal (existential). We write $Th_{\forall}(A)$ ($Th_{\exists}(A)$) for the universal (existential) theory of A. Again, we can determine these by just looking at positive sentences.

Continuous model theory, cont'd

• There are two uses of the adjective elementary which will be relevant: if $A \subseteq B$ are two algebras then we say this embedding is elementary if for all formulas $\varphi(\bar{x})$ and $\bar{a} \in A$, $\varphi^A(\bar{a}) = \varphi^B(\bar{a})$.

Theorem (Łoś Theorem)

Suppose A_i are algebras for all $i \in I$, U is an ultrafilter on I, $\varphi(\bar{x})$ is a formula and $\bar{a} \in \prod_{i \in I} A_i/U$ then

$$\varphi(\bar{\mathbf{a}}) = \lim_{i \to U} \varphi^{\mathbf{A}_i}(\bar{\mathbf{a}}_i)$$

• It follows that the diagonal embedding of A into A^U is always elementary; in particular, $Th(A) = Th(A^U)$.

Continuous model theory, cont'd

- The other use of elementary is: we say that a property of a class of algebras is elementary if it can be expressed by a set of sentences - it can be axiomatized.
- The class of tracial von Neumann algebras is elementary; in fact, it can be axiomatized by universal sentences.
- The class of II₁ factors is elementary.
- Maybe more interestingly, property Gamma and being McDuff are both elementary properties.
- The class of C*-algebras is elementary; in fact, it is universally axiomatized as well.
- ullet Properties like being \mathcal{Z} -stable are also elementary.

Open questions about theories of operator algebras

- There are continuum many different theories of tracial von Neumann algebras and C*-algebras.
- There are three (to my knowledge) distinct theories of II₁ factors: not Gamma, Gamma but not McDuff and McDuff.
- This cannot be all there is! Conjecture: There are continuum many different theories of II₁ factors.
- Specific questions: are the theories of $L(F_n)$ and $\prod_{n\in N} M_n(C)/U$ distinct?
- Are the theories of $L(F_n)$ and $L(F_m)$ distinct?
- Are the theories of $\prod_{n \in N} M_n(C)/U$ and $\prod_{n \in N} M_n(C)/V$ for different U and V?

Connes' embedding problem

- Does every separable II₁ factor embed into R^ω?
- General fact: If $A \subseteq B$ then $Th_{\forall}(B) \subseteq Th_{\forall}(A)$.
- $\mathcal{R} \hookrightarrow A$ for any II_1 factor so $Th_{\forall}(A) \subseteq Th_{\forall}(\mathcal{R})$.
- $\mathcal{R} \prec \mathcal{R}^{\omega}$ so $Th_{\forall}(\mathcal{R}) = Th_{\forall}(\mathcal{R}^{\omega})$. It follows then that CEP holds iff $Th_{\forall}(A) = Th_{\forall}(\mathcal{R})$ for all II₁ factors A.
- Fact: $Th_{\forall}(A) = Th_{\forall}(B)$ iff $Th_{\exists}(A) = Th_{\exists}(B)$.
- It is immediate that CEP holds iff the microstate conjecture is true i.e. For any II₁ factor A, $\epsilon > 0$, *-polynomials $p_1(\bar{x}), \ldots, p_n(\bar{x})$ and $\bar{a} \in A$ there is $\bar{b} \in \mathcal{R}$ (alternatively, there is N and $\bar{b} \in M_N$) such that for all $i = 1, \ldots, n$,

$$|tr(p_i(\bar{a})) - tr(p_i(\bar{b}))| \le \epsilon$$

Even without CEP

- $Th_{\forall}(\mathcal{R})$ is maximal among universal theories of II_1 factors; it follows by Łoś' theorem that there is a minimal universal theory i.e. there is a separable II_1 factor \mathcal{S} such that for all II_1 factors A, $Th_{\forall}(\mathcal{S}) \subseteq Th_{\forall}(A)$.
- Again, it is immediate that for any separable II₁ factor A,
 A → S^ω (a poor man's resolution to CEP).
- Note: $Th_{\forall}(S) = Th_{\forall}(R)$ iff CEP holds.
- Good question: what could S look like?

Quantifier complexity

- Any two embeddings of \mathcal{R} into \mathcal{R}^{ω} are unitarily equivalent.
- The diagonal embedding of \mathcal{R} into \mathcal{R}^{ω} is elementary so any embedding of \mathcal{R} into any model of $\mathit{Th}(\mathcal{R})$ is elementary (\mathcal{R} is a prime model of its theory).
- One typical reason model theoretically for this behaviour is that the given theory has quantifier elimination i.e. for any formula $\varphi(\bar{x})$ and $\epsilon>0$ there is a quantifier-free formula $\psi(\bar{x})$ such that

$$\sup_{\bar{\mathbf{x}}\in\mathcal{B}_1}|\varphi(\bar{\mathbf{x}})-\psi(\bar{\mathbf{x}})|\leq\epsilon$$

is part of the theory.

• So, does $Th(\mathcal{R})$ have quantifier elimination?

Quantifier complexity, cont'd

- No! A paper of Nate Brown's contains the following calculation:
- In fact, with a little more work we show that the theory of tracial von Neumann algebras does not have a model companion it had been conjectured that $Th(\mathcal{R})$ was such.
- Last straw: maybe Th(R) is model complete this would show that every formula is approximated by sup formulas.

Theorem (Goldbring, H., Sinclair)

If $Th(\mathcal{R})$ is model complete then CEP fails!

Some extra remarks

- The property being exploited here is: for a separable A, any embedding of A into A^{ω} is elementary. If Th(A) is model complete then A has this property.
- Any UHF algebra has this property as does any strongly self-absorbing algebra (for instance \mathcal{Z} , O_2 , O_∞).
- Is the theory of any of these algebras model complete?

Stability

We say that the theory of a separable algebra A is stable if for any two ultrafilters U and V on N, A^U and A^V are necessarily isomorphic (independent of the size of the continuum).

Theorem (Farah, H., Sherman)

- No infinite dimensional C*-algebra is stable.
- A separable tracial von Neumann algebra is stable iff it is type 1.

Theorem (FHS, assume - CH)

- For an infinite dimensional C^* -algebra A, there ultrafilters U and V such that $A' \cap A^U \ncong A' \cap A^V$.
- For a II_1 factor A, A is McDuff iff there ultrafilters U and V such that $A' \cap A^U \ncong A' \cap A^V$.

Omitting types

- Certain properties are <u>not</u> elementary: UHF, AF, nuclear how does one recognize these classes of algebras model theoretically?
- Suppose \mathcal{F} is a set of formulas in the variables \bar{x} . A type p is a function from \mathcal{F} to R.
- We say that $\bar{a} \in A$ realizes p if $p(\varphi) = \varphi(\bar{a})$ for every $\varphi \in \mathcal{F}$. If there is no such $\bar{a} \in A$, we say A omits p.

Omitting types, cont'd

Claim

There is a countable collection Γ of types such that a C^* -algebra A is UHF iff A omits all types in Γ .

Claim

There is a countable collection Γ of types such that a C^* -algebra A is AF iff A omits all types in Γ .

We (Ilijas and BH) believe that nuclear and finite nuclear dimension is also a matter of omitting types.

On beyond continuous model theory

- "What do you need the trace for?" (D. Shlyakhtenko)
- Good question!
- On the face of it, we wanted the class we were dealing with to be a class of metric structures - for C*-algebras, that gave us everything but for von Neumann algebras, we only got those with finite trace.
- There exists a natural definition of ultraproduct on von Neumann algebras (due to Yves-Raynaud) and the class is closed under a reasonable notion of subalgebra so ...
- The class of von Neumann algebras should be a CAT (compact abstract theory) - this is a very general framework due to Ben Ya'acov in which much general model theory can be carried out.