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Exercise 1 :

> n = 100

> x = runif(n, min = 0, max = 10)

> a = 1

> b = 0.5

> s = 3

> y_det = a * x * exp(-b * x)

> y = rgamma(n, shape = s, scale = y_det/s)

> plot(x, y)

> curve(a * x * exp(-b * x), add = TRUE)
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Exercise 2 :
Redo spatial distribution simulation:

> set.seed(1001)

> nparents = 50

> noffspr = 10

> L = 30

> parent_x = runif(nparents, min = 0, max = L)

> parent_y = runif(nparents, min = 0, max = L)

> angle = runif(nparents * noffspr, min = 0, max = 2 * pi)

> dist = rexp(nparents * noffspr, 0.5)

> offspr_x = rep(parent_x, each = noffspr) + cos(angle) * dist

> offspr_y = rep(parent_y, each = noffspr) + sin(angle) * dist

> dist = sqrt((outer(offspr_x, offspr_x, "-"))^2 + (outer(offspr_y,

+ offspr_y, "-"))^2)

> nbrcrowd = apply(dist < 2, 1, sum) - 1

Calculate mean and standard deviation of neighborhood crowding:

> m = mean(nbrcrowd)

> s2 = var(nbrcrowd)

Method of moments: µ = m; variance σ2 = µ(1+µ/k) or k = µ/(σ2/µ− 1).

> k.est = m/(s2/m - 1)

Plot distribution of neighborhood crowding:

> b1 = barplot(table(factor(nbrcrowd, levels = 0:max(nbrcrowd)))/length(nbrcrowd),

+ xlab = "Number of neighbors", ylab = "Proportion")

> points(b1, dnbinom(0:max(nbrcrowd), mu = m, size = k.est), pch = 16)
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Exercise 3 :
Continue with pigweed simulation:

> ci = nbrcrowd * 3

> M = 2.3

> alpha = 0.49

> mass_det = M/(1 + ci)

> mass = rgamma(length(mass_det), scale = mass_det, shape = alpha)

> b = 271.6

> k = 0.569

> seed_det = b * mass

> seed = rnbinom(length(seed_det), mu = seed_det, size = k)

Calculate the median: the median is identical to the 50% quantile of the
distribution, or qnbinom(0.5).

> logxvec = seq(-7, 1, length = 100)

> xvec = 10^logxvec

> med = qnbinom(0.5, mu = b * xvec, size = k)

> plot(mass, 1 + seed, log = "xy", xlab = "Mass", ylab = "1+Seed set")

> curve(b * x + 1, add = TRUE)

> lower = qnbinom(0.025, mu = b * xvec, size = k)

> upper = qnbinom(0.975, mu = b * xvec, size = k)
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> lines(xvec, lower + 1, lty = 2, type = "s")

> lines(xvec, upper + 1, lty = 2, type = "s")

> lines(xvec, med + 1, lwd = 2, type = "s")
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The median is lower than the mean because the distribution is right-skewed;
like the upper and lower quantiles, the median of the (discrete) negative binomial
distribution changes by discrete steps rather than smoothly like the mean.

Exercise 4 :
Set up simulation:

> rzinbinom = function(n, mu, size, zprob) {

+ ifelse(runif(n) < zprob, 0, rnbinom(n, mu = mu, size = size))

+ }

> a = 0.696

> b = 9.79

> recrprob = function(x, a = 0.696, b = 9.79) {

+ a/(1 + (a/b) * x)

+ }

> scoefs = c(mu = 25.32, k = 0.932, zprob = 0.123)

> settlers = rzinbinom(603, mu = scoefs["mu"], size = scoefs["k"],

+ zprob = scoefs["zprob"])

> recr = rbinom(603, prob = recrprob(settlers), size = settlers)

Draw the figure:
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> op = par(mfrow = c(1, 2), mar = c(5, 4, 2, 0.2))

> hist(settlers, breaks = 40, col = "gray", ylab = "Frequency",

+ xlab = "Settlers", main = "")

> plot(settlers, recr, xlab = "Settlers", ylab = "Recruits")

> curve(a * x/(1 + (a/b) * x), add = TRUE)

> par(op)
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Exercise 5 :
Using the relationships shape1=a = Pθ and shape2=b = (1− P )θ relating

the Morris (P , θ) to the standard statistical parameterization:

> rmbbinom = function(n, size, p, theta) {

+ rbinom(n, size = size, prob = rbeta(n, shape1 = p * theta,

+ shape2 = (1 - p) * theta))

+ }

> a = 0.696

> b = 9.79

> recrprob = function(x, a = 0.696, b = 9.79) a/(1 + (a/b) * x)

> scoefs = c(mu = 25.32, k = 0.932, zprob = 0.123)

> settlers = rzinbinom(603, mu = scoefs["mu"], size = scoefs["k"],

+ zprob = scoefs["zprob"])

> recr = rmbbinom(603, p = recrprob(settlers), theta = 10, size = settlers)
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> plot(settlers, recr, xlab = "Settlers", ylab = "Recruits")

> curve(a * x/(1 + (a/b) * x), add = TRUE)

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

● ●
● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

● ●●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●

● ●

●
●

●

●

●●
●

● ●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

● ●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●●●

●

●

●● ●
●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

● ●

●
●

●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

●

●

0 50 100 150

0
10

20
30

40
50

Settlers

R
ec

ru
its

Exercise 6 : Redefine linear simulation function:

> linsim = function(nt = 20, N0 = 2, dN = 1, sd_process = sqrt(2),

+ sd_obs = sqrt(2)) {

+ cur_N = N0

+ Nobs = numeric(nt)

+ Nobs[1] = cur_N + rnorm(1, sd = sd_obs)

+ for (i in 2:nt) {

+ cur_N = cur_N + rnorm(1, mean = dN, sd = sd_process)

+ Nobs[i] = cur_N + rnorm(1, sd = sd_obs)

+ }

+ return(Nobs)

+ }

Run it 1000 times:

> nsim = 1000

> Nmat = matrix(nrow = 20, ncol = nsim)

> for (i in 1:nsim) {

+ Nmat[, i] = linsim(sd_process = 2, sd_obs = 2)

+ }
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Draw the figure:

> matplot(1:20, Nmat, col = "gray", type = "l", lty = 1)

> lines(1:20, rowMeans(Nmat), lwd = 2)

> matlines(1:20, t(apply(Nmat, 1, quantile, c(0.025, 0.975))),

+ lty = 2, col = 1)
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Exercise 7 :
Redefine immigsim with negative binomial instead of Poisson growth:

> immignbsim = function(nt = 20, N0 = 2, immig, surv, k) {

+ N = numeric(nt)

+ N[1] = N0

+ for (i in 2:nt) {

+ Nsurv = rbinom(1, size = N[i - 1], prob = surv)

+ N[i] = Nsurv + rnbinom(1, mu = immig, size = k)

+ }

+ return(N)

+ }

Define parameters:

> nsim = 1000

> nt = 30
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> p = 0.95

> N0 = 2

> immig = 10

> k = 0.5

> nvec = c(3, 5, 7, 10, 15, 20)

> kvec = c(5, 1, 0.5)

> nsim = 500

> powsimresults = matrix(nrow = length(nvec) * length(kvec) * nsim,

+ ncol = 6)

> colnames(powsimresults) = c("n", "k", "sim", "slope", "slope.lo",

+ "slope.hi")

> ctr = 1

> for (j in 1:length(kvec)) {

+ k = kvec[j]

+ for (i in 1:length(nvec)) {

+ nt = nvec[i]

+ tvec = 1:nt

+ for (sim in 1:nsim) {

+ current.sim = immignbsim(nt = nt, N0 = N0, surv = p,

+ immig = immig, k = k)

+ lm1 = lm(current.sim ~ tvec)

+ slope = coef(lm1)["tvec"]

+ ci.slope = confint(lm1)["tvec", ]

+ powsimresults[ctr, ] = c(nt, k, sim, slope, ci.slope)

+ ctr = ctr + 1

+ }

+ }

+ }

Construct a list of factors for cross-tabulating:

> faclist = list(factor(powsimresults[, "n"]), factor(powsimresults[,

+ "k"]))

Calculate all the cross-tabulated summary statistics:

> slope.mean = tapply(powsimresults[, "slope"], faclist, mean)

> slope.sd = tapply(powsimresults[, "slope"], faclist, sd)

> ci.good = (powsimresults[, "slope.hi"] > immig) & (powsimresults[,

+ "slope.lo"] < immig)

> nsim = 500

> slope.cov = tapply(ci.good, faclist, sum)/nsim

> null.value = 0

> reject.null = (powsimresults[, "slope.hi"] < null.value) | (powsimresults[,

+ "slope.lo"] > null.value)

> slope.pow = tapply(reject.null, faclist, sum)/nsim

Some plots:
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> par(mfrow = c(2, 2))

> matplot(nvec, slope.mean, type = "b")

> matplot(nvec, slope.sd, type = "b")

> matplot(nvec, slope.cov, type = "b")

> matplot(nvec, slope.pow, type = "b")
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Exercise 8 :
Redo code with quadratic function, testing against a null value of zero:

> nvec = c(3, 5, 7, 10, 15, 20)

> nsim = 500

> powsimresults = matrix(nrow = length(nvec) * nsim, ncol = 5)

> colnames(powsimresults) = c("n", "sim", "quad", "quad.lo", "quad.hi")

> ctr = 1

> for (i in 1:length(nvec)) {

+ nt = nvec[i]

+ tvec = 1:nt

+ for (sim in 1:nsim) {

+ current.sim = immigsim(nt = nt, N0 = N0, surv = p, immig = immig)

+ lm1 = lm(current.sim ~ tvec + I(tvec^2))

+ quad = coef(lm1)[3]

+ ci.quad = confint(lm1)[3, ]

+ powsimresults[ctr, ] = c(nt, sim, quad, ci.quad)

9



+ ctr = ctr + 1

+ }

+ }

Calculate all the tabulated summary statistics (skipping coverage):

> quad.mean = tapply(powsimresults[, "quad"], nfac, mean)

> quad.sd = tapply(powsimresults[, "quad"], nfac, sd)

> nsim = 500

> null.value = 0

> reject.null = (powsimresults[, "quad.hi"] < null.value) | (powsimresults[,

+ "quad.lo"] > null.value)

> quad.pow = tapply(reject.null, nfac, sum)/nsim

Some plots:

> op = par(mfrow = c(2, 2))

> plot(nvec, quad.mean, type = "b")

> plot(nvec, quad.sd, type = "b")

> plot(nvec, quad.pow, type = "b")

> par(op)
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