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Exercise 0.1 *:

• Quadratic: easiest to construct in the form (y = −(x−a)2 + b), where a is
the location of the maximum and b is the height. (Negative sign in front
of the quadratic term to make it curve downward.) Thus a = 5, b = 1.

• Ricker: if y = axe−bx, then (as discussed in the chapter) the location of
the maximum is at x = 1/b and the height is at a/(be). Thus b = 0.2,
a = 0.2 ∗ e.

• Triangle: let’s say for example that the first segment is a line with intercept
zero and slope 1/5, and the second segment has equation −1 ∗ (x− 5) + 1.

> curve(-(x - 5)^2 + 1, from = 0, to = 10, ylim = c(0, 1.1), ylab = "")

> curve(0.2 * exp(1) * x * exp(-0.2 * x), add = TRUE, lty = 2)

> curve(ifelse(x < 5, x/5, -(x - 5) + 1), add = TRUE, lty = 3)
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What else did you try? (Sinusoid, Gaussian (exp(−x2)), ?)
Exercise 0.2 *:

n(t) =
K

1 +
(

K
n(0) − 1

)
exp(−rt)

Since n(0) � 1 (close to zero, or much less than 1), K/n(0) − 1 ≈ K/n(0).
So:

n(t) ≈ K

1 + K
n(0) exp(−rt)

Provided t isn’t too big, K/n(0) exp(−rt) is also a lot larger than 1, so

n(t) ≈ K
K

n(0) exp(−rt)

Now multiply top and bottom by n(0)/K exp(rt) to get the answer.
Exercise 0.3 *: When b = 1, the Shepherd function reduces to RN/(1 +

aN), which is a form of the M-M. You should try not to be confused by the
fact that earlier in class we used the form ax/(b + x) (asymptote=a, half-
maximum=b); this is just a different parameterization of the function. To be for-
mal about it, we could multiply the numerator and denominator of RN/(1+aN)
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by 1/a to get our equation in the form (R/a)N/((1/a)+N), which matches what
we had before with a = R/a, b = 1/a.

Near 0: we can do this either by evaluating the derivative S′(N) at N = 0
(which gives R — see below) or by taking the limit of the whole function S(N)
as N → 0, which gives RN (because the aN term in the denominator becomes
small relative to 1), which is a line through the origin with slope R.

For large N : if b = 1, we know already that this is Michaelis-Menten,
and in this parameterization the asymptote is R/a (in the limit, the 1 in the
denominator becomes irrelevant and the function becomes approximately RN

aN =
R
a ). If b is not 1 (we’ll assume it’s greater than 0) we can start the same way
(1+aN ≈ aN), but now we have RN/(aN)b. Write this as R

ab N (1−b). If b > 1,
N is raised to a negative power and the function goes to zero as N → ∞. If
b < 1, N is raised to a positive power and R(N) approaches infinity as N →∞
(it never levels off).

If b = 0 then the function is just a straight line (no asymptote), with slope
R/2.

We don’t really need to calculate the slope (we can figure out logically that
it must be negative but decreasing in magnitude for large N and b > 1; positive
and decreasing to 0 when b = 1; and positive and decreasing, but never reaching
0, when b > 1. Nevertheless, for thoroughness (writing this as a product and
using the product, power, and chain rules):(

RN(1 + aN)−b
)′

= R(1 + aN)−b + RN · −b(1 + aN)(−b−1)a (1)

= R(1 + aN)−b − abRN(1 + aN)(−b−1) (2)
= R(1 + aN)−b−1((1 + aN)− abN) (3)
= R(1 + aN)−b−1(1 + aN(1− b)) (4)

You could also do this by the quotient rule. The derivative of the numerator
is R (easy); the derivative of the denominator is b·(1+aN)b−1 ·a = ab(1+aN)b−1

(power rule/chain rule).

S(N)′ =
g(N)f ′(N)− f(N)g′(N)

(g(N))2
(5)

=
R(1 + aN)b −RN

(
ab(1 + aN)b−1

)
(1 + aN)2b

(6)

=
R(1 + aN)b−1 (1 + aN − abN)

(1 + aN)2b
(7)

You can also do this with R (using D()), but it won’t simplify the expression
for you:

> dS = D(expression(R * N/(1 + a * N)^b), "N")

> dS
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R/(1 + a * N)^b - R * N * ((1 + a * N)^(b - 1) * (b * a))/((1 +
a * N)^b)^2

If you want to know the value for a particular N , and parameter values, use
eval() to evaluate the expression:

> eval(dS, list(a = 1, b = 2, R = 2, N = 2.5))

[1] -0.06997085

A function to evaluate the Shepherd (with default values R = 1, a = 1,
b = 1):

> shep = function(x, R = 1, a = 1, b = 1) {

+ R * x/(1 + a * x)^b

+ }

Plotting:

> curve(shep(x, b = 0), xlim = c(0, 10), bty = "l")

> curve(shep(x, b = 0.5), add = TRUE, col = 2)

> curve(shep(x, b = 1), add = TRUE, col = 3)

> curve(shep(x, b = 1.5), add = TRUE, col = 4)

> abline(a = 0, b = 1, lty = 3, col = 5)

> abline(h = 1, col = 6, lty = 3)

> legend(0, 10, c("b=0", "b=0.5", "b=1", "b=1.5", "initial slope",

+ "asymptote"), lty = rep(c(1, 3), c(4, 2)), col = 1:6)
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extra credit: use the expression above for the derivative, and look just at
the numerator. When does (1+ aN − abN) = (1+ a(1− b)N) = 0? If b ≤ 1 the
whole expression must always be positive (a ≥ 0, N ≥ 0). If b > 1 then we can
solve for N :

1 + a(1− b)N = 0 (8)
a(b− 1)N = 1 (9)

N = 1/(a(b− 1)) (10)

When N = 1/(a(b−1)), the value of the function is R/(a·(b−1)·(1+1/(b−1))b)
(for b = 2 this simplifies to R/(4a)).

> a = 1

> b = 2

> R = 1

> curve(shep(x, R, a, b), bty = "l", ylim = c(0, 0.3), from = 0,

+ to = 5)

> abline(v = 1/(a * (b - 1)), lty = 2)

> abline(h = R/(a * (b - 1) * (1 + 1/(b - 1))^b), lty = 2)
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There’s actually another answer that we’ve missed by focusing on the nu-
merator. As N →∞, the limit of the derivative is

R(aN)b−1(a(1− b)N)
(aN)2b

=
R(1− b)
(aN)b

;

R > 0, (1 − b) < 0 for b > 1, aN > 0, so the whole thing is negative and
decreasing in magnitude toward zero.

Exercise 0.4 *: Holling type III functional response, standard parameter-
ization: f(x) = ax2/(1 + bx2).

Asymptote: as x →∞, bx2 + 1 ≈ bx2 and the function approaches a/b.
Half-maximum:

ax2/(1 + bx2) = (a/b)/2
ax2 = (a/b)/2(1 + bx2)
ax2 = (a/b)/2(1 + bx2)

(a− a/2)x2 = (a/b)/2
x2 = (2/a)(a/b)/2 = 1/b

x =
√

1/b

So, if we have asymptote A = a/b and half-max H =
√

1/b, then b = 1/H2

and a = Ab = A/H2.
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So

f(x) =
(A/H2)x2

1 + x2/H2

which might be more simply written as A(x/H)2/(1 + (x/H)2).
Check with a plot:

> holling3 = function(x, A = 1, H = 1) {

+ A * (x/H)^2/(1 + (x/H)^2)

+ }

> curve(holling3(x, A = 2, H = 3), from = 0, to = 20, ylim = c(0,

+ 2.1))

> abline(h = c(1, 2), lty = 2)

> abline(v = 3, lty = 2)

Exercise 0.5 *:
Population-dynamic:

n(t) =
K

1 +
(

K
n(0) − 1

)
exp(−rt)

Asymptote K, initial exponential slope r, value at t = 0 n(0), derivative at t = 0
rn(0)(1− n(0)/K).
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Statistical:

f(x) =
ea+bx

1 + ea+bx

Asymptote 1, value at x = 0 exp(a)/(1 + exp(a)).
The easiest way to figure this out is first to set K = 1 and multiply the

population-dynamic version by exp(rt)/ exp(rt):

n(t) =
exp(rt)

exp(rt) +
(

1
n(0) − 1

)
and multiply the statistical version by exp(−a)/ exp(−a):

f(x) =
exp(bx)

exp(−a) + exp(bx)

This manipulation makes it clear (I hope) that b = r, x = t, and (1/n(0)−
1) = exp(−a), or a = − log(1/n(0)− 1), or n(0) = 1/(1 + exp(−a)).

Set up parameters and equivalents:

> a = -5

> b = 2

> n0 = 1/(1 + exp(-a))

> n0

[1] 0.006692851

> K = 1

> r = b

Draw the curves:

> curve(exp(a + b * x)/(1 + exp(a + b * x)), from = 0, to = 5,

+ ylab = "")

> curve(K/(1 + (K/n0 - 1) * exp(-r * x)), add = TRUE, type = "p")

> legend(0, 1, c("statistical", "pop-dyn"), pch = c(NA, 1), lty = c(1,

+ NA), merge = TRUE)
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The merge=TRUE
statement in the legend() command makes R plot the point and line types in
a single column.
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