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Summary

This chapter covers dynamic models, an important kind of multi-level model. It
shows how to simulate dynamic models, discusses process and observation error,
and illustrates methods for fitting models that assume only one or the other.
For problems where we want to estimate process error when the magnitude
of observation error is known, it introduces the SIMEX approach. Finally, it
presents a brief introduction to fitting state-space models, which can estimate
both process and observation error, via the Kalman filter or Markov chain Monte
Carlo.

1 Introduction

This chapter covers concepts and techniques for fitting dynamic models — mod-
els that describe how ecological processes drive populations to change over time.
Dynamic models are a special case of the multi-level models we introduced in
Chapter ??. Dynamic models contain both process error, which feeds back on
future states of the population, and observation error, which affects only the
current observation.

We introduce dynamic models by describing how to simulate them. Knowing
how to simulate dynamic models is important because fitting dynamic models
to data is so tricky that it’s essential to fit models to simulated data to confirm
that the methods work. (Most of the examples in this chapter use simulated
“data”.)

The easiest way by far of dealing with observation and process error is to
ignore one or the other (Section 4). If your data have little noise you may
be able to get away with this approach. When you can independently esti-
mate the variance of the observation error, the more recently developed SIMEX
(simulation-extrapolation) algorithm provides a way to get unbiased parameter
estimates (Section 5).

State space models (Section 6) can in principle estimate both process and
observation error from a single data set, subject to the very strong constraint
that the data actually provide enough information to separate them reliably.
The Kalman filter (Section 6.1) is a relatively simple algorithm for estimating
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the parameters of state-space models with normally distributed error. More
generally, computationally intensive Bayesian (Millar and Meyer, 2000) and fre-
quentist (de Valpine and Hastings, 2002; Thomas et al., 2005; Lele et al., 2007)
methods can simultaneously estimate deterministic parameters, observation er-
ror, and process error in nonlinear, non-normal ecological models (Section 6.2).
The use of such methods has recently begun to explode in ecology (Solow, 1998;
Ellner et al., 2002; de Valpine and Hastings, 2002; de Valpine, 2003; Jonsen
et al., 2003; Buckland et al., 2004; Clark and Bjørnstad, 2004; Thompson et al.,
2005). This chapter attempts to provide a basic and relatively painless intro-
duction. If you want to explore this area further you will have to dig into the
literature (e.g. Calder et al., 2003).

2 Simulating dynamic models

Dynamic models describe the changes in the size and characteristics of a popu-
lation over time. At each time step except the first, the size and characteristics
of the population depend on the size and characteristics at the previous time
step (or one or more times farther in the past). It is often much harder to
write down the mathematical formula that describes the population size at time
t than it is to describe how N(t) depends on N(t − 1). In dynamic models
the difference between observation and process error becomes vitally important
in dynamic models, because they act differently. Process error affects future
population dynamics, while observation error does not.

To simulate a dynamic model:

� Set aside space (a vector or matrix) to record the state of the population
(numbers of organisms, possibly categorized by species/size/age).

� Set the starting conditions for all state variables.

� For each time step, apply R commands to simulate population dynamics
over the course of one time step. Then apply R commands to simulate the
observation process and record the current observed state of the popula-
tion.

� Plot and analyze the results.

2.1 Examples

We can construct dynamic models corresponding to the two simple static models
(linear/normal and hyperbolic/Poisson) introduced in Chapter ??.

Figure 1a shows a dynamic model analogous to the static model shown
in Figure ??a (p. ??). The closest analogue of the static linear model, Y ∼
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Figure 1: Dynamic models with process and observation error. a: Linear, con-
tinuous (Normal) model. b. Nonlinear, discrete (hyperbolic/Poisson) model.
In each case the envelopes (dotted and dashed lines) show the 95% confidence
limits for equivalent models with pure process or pure observation error; the re-
alizations shown are generated with a mixture of process and observation error.

Normal(a + bx), is a dynamic model with observation error only:

N(1) = a

N(t + 1) = N(t) + b

Nobs(t) ∼ Normal(N(t), σ2
obs)

(1)

The first line in (1) specifies the initial or starting condition (the value of N at
time t = 1). The second line is the updating rule that determines the population
size one time step in the future, which in this case is purely deterministic. The
third line specifies the observation process, in this case that the observed value
of the population size at time t, Nobs(t), is normally distributed around the
true value N(t) with variance σ2

obs.
The R code for this model would first specify nt, the number of time steps,

and assign values for the parameters a, b and sd.obs. Then:

> N = numeric(nt)

> Nobs = numeric(nt)

> N[1] = a

> for (t in 1:(nt - 1)) {

+ N[t + 1] = b + N[t]

+ Nobs[t] = rnorm(1, mean = N[t], sd = sd.obs)

+ }

> Nobs[nt] = rnorm(1, mean = N[nt])

Since the for loop only runs from 1 to nt-1, we have to set the observed value
for t =nt at the end. If we ran the loop to nt we would be predicting the state
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of the population at time nt+1, beyond the end of the vector we have set aside
for the results. R would cooperate by extending the length of the vector, but
the too-long vector might lead to confusion or errors in subsequent steps.

By contrast, a model with pure process error is defined as:

N(1) = a

N(t + 1) ∼ Normal(N(t) + b, σ2
proc)

Nobs(t) = N(t)

(2)

The R code:

> N = numeric(nt)

> Nobs = numeric(nt)

> N[1] = a

> for (t in 1:(nt - 1)) {

+ N[t + 1] = rnorm(1, mean = b + N[t], sd = sd.proc)

+ Nobs[t] = N[t]

+ }

> Nobs[nt] = N[nt]

In this case, we assume that our observations are perfect (Nobs(t) = N(t)),
but that the change in the population is noisy rather than deterministic.

The expected behavior of this dynamic model is exactly the same whether
the variability in the model is caused by observation error or process error,
and in fact is identical to the deterministic part of a standard linear model
N = a + b(t − 1). Furthermore, there is no way to separate process from
observation error by simply looking at a single time series; the variation in
the observed data will appear the same. (Figure 1 actually shows a single
realization of a model with equal amounts of process and observation error; it
falls outside the theoretical bounds of a observation-error-only model with slope
a = 1, but only because we know the true slope. We couldn’t tell the difference
in a real data set.) The difference only becomes apparent when we simulate
many realizations of the same process and look at how the variation among
realizations changes over time (Figure 1a). With observation error only, the
variance among realizations is constant over time; with process error only, there
is initially no variance (we always start at the same density), but the variance
among realizations increases over time.

Figure 1b shows a discrete-population model with process and observation
error. In this case, the model is a rational function with the same form as
the Beverton-Holt or Michaelis-Menten function. Suppose that per capita plant
fecundity declines with population density according to the hyperbolic function
F (N) = a/(b+N). Then let the the next year’s expected population size N(t+1)
equal (population size) × (per capita fecundity) = N(t)(a/(b + N(t))). The
population grows asymptotically to a stable population size of a− b. (Convince
yourself that when N(t) = (a−b), N(t+1) = N(t), and the simulated dynamics
in Figure 1b are indeed nearly constant.)
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For the observation error model, we assume that we only have a probability
p of counting each individual that is present in the population, which leads to
a binomial distribution of observations:

N(1) = N0

N(t + 1) = aN(t)/(b + N(t))
Nobs(t) ∼ Binomial(N(t), p)

(3)

The R code:

> N = numeric(nt)

> Nobs = numeric(nt)

> N[1] = N0

> for (t in 1:(nt - 1)) {

+ N[t + 1] = a * N[t]/(b + N[t])

+ Nobs[t] = rbinom(1, size = round(N[t + 1]), prop = p)

+ }

> Nobs[nt] = rbinom(1, size = round(N[nt]), prop = p)

The only problem in this model is that N(t + 1) is usually not an integer, in
which case the binomial doesn’t make sense. I rounded the value in this case,
although normally it would be more sensible to incorporate a more realistic
process model with (discrete) process error∗. Like the linear observation error
model, the distribution of error stays constant over time — with a few random
bumps on the upper confidence limit caused by sampling error (Figure 1b).

The process error model for the discrete population case is simpler:

N(1) = N0

N(t + 1) ∼ Poisson(aN(t)/(b + N(t)))
Nobs(t) = N(t).

(4)

The R code:

> N = numeric(nt)

> Nobs = numeric(nt)

> N[1] = N0

> for (t in 1:(nt - 1)) {

+ N[t + 1] = rpois(1, lambda = a * N[t]/(b + N[t]))

+ Nobs[t] = N[t]

+ }

> Nobs[nt] = N[nt]

The population size still converges to a − b over time, but the distribution
spreads out over the first few time steps. In fact, many of the simulated popula-
tions quickly go extinct. However, since this model has a stable equilibrium, the
distribution of process error reaches its own equilibrium, rather than spreading
out continuously like the linear model in Figure 1a.

∗But Henson et al. (2001) describe some possible dynamic consequences of this kind of
rounding, which they call “lattice effects”, in ecological systems.
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2.1.1 Continuous-time models

Many dynamic models in ecology are defined in continuous rather than dis-
crete time. Typically these models are framed as ordinary differential equation
(ODE) models. The rule N(t + 1) = f(N(t)) is replaced by dN/dt = f(N(t)),
which specifies the instantaneous population growth rate. Probably the best-
known ODE model is the logistic, dN/dt = rN(1 − N/K). Researchers use
continuous-time models for a variety of reasons including realism (for popula-
tions with overlapping generations that can reproduce in any season), mathe-
matical convenience (the dynamics of continuous-time models are often more
stable than those of their discrete analogues), and consistency with theoretical
models. Most dynamic models have no closed-form solution (we can’t write
down a simple equation for N(t)), so we often end up simulating them.

The simplest algorithm for simulating continuous-time models is Euler’s
method, which uses small time steps to approximate the continuous passage of
time. Specifically, if we know the instantaneous growth rate dN/dt = f(N(t)),
we can approximate the change in the population over a short time interval
∆t by saying that the population grows linearly at rate dN/dt, and thus that
∆N ≈ dN/dt ·∆t:

N(t + ∆t) = N(t) + ∆N

≈ N(t) +
dN

dt
∆t

= N(t) + f(N(t))∆t.

(5)

In order to find the population size at some arbitrary time t we make ∆t “small
enough” and work our way from the starting time to t, adding ∆N to the
population at each time step ∆t.

Euler’s method is fine for small problems, but it tends to be both slow and
unstable relative to more sophisticated approaches. If you are going to do serious
work with continuous-time problems you will need to solve them for thousands
of different parameter values (which may in turn require experimenting with
different values of ∆t). The lsoda function in R’s odesolve library, which
implements an adaptive step size algorithm, will be much more efficient.

The central problem with comparing ODE models to data is that incorporat-
ing stochasticity in any other way than simply imposing normally distributed ob-
servation error is difficult. The mathematical framework that underlies stochas-
tic differential equations is subtle (Roughgarden, 1997) and hard to apply to
practical problems. For this reason, studies that attempt to estimate parame-
ters of continuous-time models from data tend either to use simple least-squares
criteria that correspond to Normal observation error (Gani and Leach, 2001) or
revert to discrete-time models (Finkenstädt and Grenfell, 2000).

One can build dynamical models that are stochastic, discrete-valued (and
hence more sensible for populations) and run in continuous time, picking random
numbers for the waiting times until the next event (birth, death, immigration,
infection, etc.). The basic algorithm for simulating these models is called the
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Figure 2: Time-series data: process or observation error?

Gillespie algorithm (Gillespie, 1977), but it, and the advanced methods required
to estimate parameters based on such models, are beyond the scope of this
chapter (Gibson and Renshaw, 1998, 2001).

3 Observation and process error

In general, we describe dynamic data by setting up

� A deterministic function for the expected population dynamics — the re-
lationship between the current density and the expected density at time
t + 1, N̄(t + 1) = f(N(t)): for example, the discrete logistic equation,
N̄(t + 1) = N(t) + rN(t)(1−N(t)/K), with parameters r and K.

� A model of process error: for example, N(t) is negative binomially dis-
tributed with overdispersion parameter k, or N(t) ∼ NegBin(µ = N̄(t), k).

� A model of observation error: for example, a binomial sample with capture
probability p from N(t), orNobs(t) ∼ Binom(p, N(t)).

To understand some of the basic issues of dynamic data, let’s look at the
simplest deterministic model for population growth — a constant increase in the
population density per time step, f(N(t)) = N(t)+b, with Normally distributed
process and observation error. Formally:

N(t + 1) ∼ Normal(N(t) + b, σ2
proc) (6)

Nobs(t) ∼ Normal(N(t), σ2
obs) (7)

where σ2
proc and σ2

obs are the process and observation variances.
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Suppose we recorded the data in Figure 2, and wanted to try to understand
what was going on in the population. Depending on the combination of observa-
tion and process error that we assumed, we could draw very different conclusions
about these data.

If we assumed there was only observation error, with no process error, then
the simplest approach would be to solve the deterministic equation (N̄(t + 1) =
N̄(t) + b) as a function of time to get N̄(t) = N̄(0) + bt and estimate b as the
slope of an ordinary linear regression (lm(N~time)). We would interpret the
population dynamics as a linear trend with time.

What if we instead wanted to use the plot of N(t + 1) against N(t) (Fig-
ure 2b) to fit f(N) (f(N) = N + b) directly? We would have to recognize
that both Nobs(t) and Nobs(t + 1) contain observation error, which doesn’t fit
the assumptions of ordinary linear regression. Instead we would minimize the
diagonal deviations of points from a line y = a + bx, a procedure sometimes
called model II regression ∗. Our model of the points {N(t), N(t+1)} would be
that they were bivariate normal, with the mean of N(t + 1) equal to N(t) + b;
the ellipse in (Figure 2b) represents the confidence limits for the points in this
model.

On the other hand, if we assumed process error only (with no observation
error), then we should fit an ordinary linear regression to the plot of N(t) vs.
N(t + 1), because we assume that we know the x variable (N(t)) perfectly
and the only uncertainty comes in the population growth from t to t + 1. If
we allow the full linear model N(t + 1) = aN(t) + b, then we are fitting an
autoregressive model : while the overall trend would be the same as the ordinary
linear model (provided a < 1), the variance structure is different†. Figure 2b also
shows that this assumption gives different answers from the model II regression,
with a larger intercept (which corresponds to a larger population growth rate—
remember this is the graph of N(t) vs. N(t + 1), not the graph of N(t) vs. t)
and a flatter slope.

What if we can’t reasonably assume either pure process error or pure obser-
vation error? Intermediate assumptions can lead to any answer between the two
slopes shown in the figure, which might lead to a wide range of different biolog-
ical conclusions! Unfortunately the data don’t easily show us what assumption
to make. The noisier our data, the more the results of the linear-trend and
autoregressive models will diverge. In the extreme where we have almost no in-
formation, the linear-trend model will say that N(t) = N(t+1) (a 45°regression
line), while the autoregressive model will say that N(t + 1) is independent of
N(t) (a flat line). Since we have no information, our conclusions are entirely
driven by the structure of our assumptions. This example is the first indication

∗Model II regression is a big topic (Warton et al., 2006); in special cases like this one
(dynamic data with only observation error) where we can assume that the variances in x and
y are the same, we can use reduced major axis regression, which gives the slope as σy/σx, or

equivalently as
p

byx/bxy , where byx is the slope of the ordinary regression of y on x and bxy

is the slope of the ordinary regression of x on y.
†We can fit the restricted model f(N) = b + N , assuming the slope of N(t + 1) vs. N(t)

is exactly 1, with lm(y~offset(x)).
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that in analyzing dynamic models we may sometimes be attempting to separate
processes (process and observation variability) for which we have very little dis-
tinguishing information. We will return to this sobering theme at various points
during the chapter.

4 Process and observation error

Now we will see how the extreme assumptions of only process error or only
observation error play out if we want to fit a model with more interesting dy-
namics than simple linear increase or decrease with time. For problems with
small amounts of error, or if you want to keep things simple, use on of these
approaches as suggested by Hilborn and Mangel (1997). For example, pure pro-
cess error would be a reasonable model for small discrete populations that could
be counted exactly or for experimental populations observed in the lab (Drury
and Dwyer, 2005). Pure observation error seems less plausible, but you would
still be in good company picking one or the other: many well-respected analyses
of dynamic data have used these crude but simple methods (Ives et al., 1999;
Gani and Leach, 2001; van Veen et al., 2005).

4.1 Observation error only: shooting or trajectory match-
ing

If we assume observation error only we can start with the initial conditions
of the system (e.g. the starting population sizes: we either assume we know
these or take the starting values as additional parameters of the model) and
“shoot” through the whole period, without correcting the model as we go along:
this procedure is also called trajectory matching. If the deterministic dynamics
are particularly simple (e.g. linear, exponential, or logistic) we may be able to
derive a formula for N(t) as a function of the starting conditions and calculate
the predicted values in a single step (N=a+b*time or N=a*exp(b*time)), but
much more often we will only be able to compute the expected values using a
loop to go from the value at each time step to the value at the next time step.
(If you have a continuous-time model, you can use the odesolve package to
solve it numerically for each set of parameter values.) One way or the other, we
compute the predicted values at all observation times, ignoring the variability
in the actual data, and then compare the overall fit of the predicted curve to
the data.

Since we assume there is no uncertainty in the predicted values for each
time step given the starting conditions and the parameters, the only error is
between the predicted values and the observed values. We can then do what
we’ve been doing all along, assume independent observations and add up the
log-likelihoods of observation error for every data point based on our model of
observation error.

Trajectory matching is widely used because it is simple and requires no
consideration of process variability. If one assumes normally distributed ob-
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Figure 3: Logistic fit: shooting/trajectory matching (observation error only).
True parameters r = 1, K = 10, N(0) = 1, σ2

obs = σ2
proc = 1. Estimated

parameters r = 0.48, K = 12.14, N(0) = 2.53, σ2
obs = 1.41. a: time dynam-

ics, showing vertical residuals of observations from the fitted line. b: next vs.
current observation, showing diagonal residuals from the fitted line.
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K = 9.88, σ2
obs = 2.66. a: Time dynamics and predictions. b: Current vs. next

observations, showing vertical residuals from the fitted line.

servation error with constant variance, it simplifies still further to least-squares
fitting of the deterministic trajectory (e.g. Gani and Leach, 2001; van Veen et al.,
2005). Trajectory matching also works with missing data or unobserved vari-
ables (Wood, 2001), although Ellner et al. (2002) warn that trajectory match-
ing can be seriously misleading in cases where process variability qualitatively
changes the dynamics of the population (e.g. Ellner et al., 1998).

4.2 Process error only: one-step-ahead fitting

Alternatively, we can assume there is no observation error. Then the only un-
certainty is in the relationship between Nt and Nt+1. If we plot the expected
value of each Nt+1 as a function of the (perfectly known) Nt, we have errors only
in the Y variable (Figure 3). Instead of starting with the initial conditions and
“shooting” (forecasting) through the whole observation time period, we take the
observation from each time step and predict just the next time step. This way
we need not worry about how process errors compound from step to step. (This
procedure is more difficult with missing time points, because we then have to
somehow figure out the expected relationship, including the process error, be-
tween (e.g.) N(t) and N(t+2) (Clark and Bjørnstad, 2004).) This procedure is
called one-step-ahead prediction (Figure 4). For population dynamics modeled
in continuous rather than discrete time, a slightly more sophisticated analogue
is called gradient matching (Ellner et al., 2002).
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Shooting and one-step-ahead prediction are approximations, but they are
simple and usually worth trying before you do anything more sophisticated. If
the answers are not (biologically) significantly different, the fancier techniques
may not be worth the effort. Furthermore, if you find in the end that the
distinction between process and observation variability is unidentifiable, stating
the results of process-error-only and observation-error-only analyses and saying
that the true value is likely to be somewhere between those answers may be the
best you can do.

5 SIMEX

In our one-step-ahead example, ignoring observation error led to a high estimate
of r (1.22 vs. true value 1) and a low estimate of K (9.88 vs. true value 10).
It’s impossible to infer from a single example, but in fact ignoring observation
error will generally give upward biased answers for r because observation error
suggests that the population is changing faster than it really is. In this example
K is biased downward as well. It’s hard to figure out in general what direction
of bias to expect — it depends in detail on the nonlinearities in the model —
but estimates of nonlinear model parameters that ignore observation error are
very likely to be biased one way or the other.

However, if you do have an estimate of the magnitude of the observation
error, you can use the SIMEX (simulation-extrapolation) algorithm to correct
for the bias caused by neglecting observation error. SIMEX works by inflating
the observation error — adding additional noise to the data set — and re-
estimating the parameters (Cook and Stefanski, 1994; Stefanski and Cook, 1995;
Carroll et al., 1995, 1999). After estimating how increasing levels of observation
error change the parameter estimates, you can then extrapolate to estimate the
parameter values you would get with zero observation error. (Yes, this seems
like black magic, but it works.)

More specifically, the procedure for SIMEX is as follows:

� based on your estimate of observation error, pick a range of increased error
values: tripling the existing observation variance in 4–8 steps is a reason-
able rule of thumb. (For example, if the estimate of observation error is
σ2
obs, pick observation variances of {1.5σ2

obs, 2σ2
obs, 2.5σ2

obs, 3σ2
obs}.

� for each error magnitude in your range, generate a data set with that
increased error. The procedure is more stable if you pick a single set of
normally distributed random values and then multiply them by increasing
factors for each simulation. (If yi are your values and εi is a set of normal
deviates with variance σ2

obs, the first simulated data set with the inflation
factors above would be yi +

√
0.5εi; the variance of this data set is σ2

obs +
0.5σ2

obs = 1.5σ2
obs. The second data set with yi + εi would have variance

2σ2
obs.)
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Figure 5: SIMEX extrapolation for the logistic model. Horizontal lines show
true values: black/circles show estimates for r and gray/triangles show estimates
for K, both extrapolated quadratically back to σ2 = 0.

� For each simulated data set, estimate and save the values of the parame-
ters, using one-step-ahead prediction.

� Estimate a relationship between the total variance and the values of the
parameters (a separate regression for each parameter, typically a linear or
quadratic regression: lm1 = lm(param~measerr+I(measerr^2))).

� Find the SIMEX bias-corrected estimates of the parameters by extrapo-
lating the regressions to zero variance (for a linear or quadratic regression,
the first coefficient is the intercept: coef(lm1)[1]).

6 State space models

The final, most sophisticated and most general but most challenging category
of statistical estimation procedures for dynamic data are so-called state-space
models. In principle state-space models can allow you to estimate parameters
of the deterministic process, observation error, and process error from a single
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observed time series — always subject to the constraints of identifiability. Try-
ing to fit state-space models to time series that are too short, vary too little, or
otherwise contain insufficient information to identify the parameters will lead to
numerical problems and wide confidence intervals if you’re lucky (and skilled),
and misleading answers if you’re unlucky. Schnute’s warning about identifiabil-
ity (p. ??) refers specifically to state-space models. With that warning in mind,
here we go . . .

In general, we know that observation error will be the same for each observa-
tion (or at least depend only on the true value, and not on when it is measured),
while the process error will tend to increase over time. The longer we wait be-
tween observations, the more random variation will decrease our certainty about
the state of the system.

The key insight of state-space models is that every observation we make does
several things:

� It provides information that shrinks the cloud of uncertainty around the
true but unknown current state of the system.

� It provides indirect information about the likelihood of the next state. For
example, a higher-than-expected population count in 2000 increases the
expectation for the 2001 count.

� It also provides indirect information about the previous state of the sys-
tem. For example, a higher-than-expected population count in 2000 also
makes us think that the true population size in 1999 might have been
higher than we previously thought.

If this discussion sounds Bayesian to you (updating our expectations of the
probability of the state of the system based on prior observations), you’re right;
lots of state-space modeling has a Bayesian flavor, although it can also be done
in a frequentist framework (de Valpine and Hastings, 2002; Ionides et al., 2006;
Lele et al., 2007). At this cutting-edge level, there’s a lot more interplay between
Bayesian and frequentist approaches than at more basic levels.

Estimation algorithms for state-space models are essentially systems that
carry out the complicated bookkeeping required to keep track of the current
estimates of the true state of the system at a particular time. For each new
choice of parameters, the algorithm works through the data set one observation
at a time, updating estimates of the true value and variance at that time based
on the parameters and the current estimate of the previous time step (and in
some systems, of the next time step as well). Once this is done for the whole
data set, you can use the estimates and variances to calculate the likelihood for
the new set of parameters and decide how to pick the next one, using a standard
algorithm such as Nelder-Mead or MCMC.

6.1 Kalman filter

The Kalman filter is an algorithm for calculating the expected means and co-
variances of the observed values for a whole time series in the presence of ob-
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servation and process error. In its original form it works only for models that
are linear (exponential increase or decrease or expected constant population
size over time) with multivariate normal error; the extended Kalman filter uses
an approximation that works for nonlinear population dynamics. The Kalman
filter’s great strengths are its (relative) simplicity and speed, and its flexibility.

The Kalman filter works by stepping through the data set one observation at
a time, updating what we know about the mean and variance of the true state
variables at time t. It is an inductive procedure, giving the rules for figuring out
the mean and variance at time t if we already know the mean and variance at
time t− 1. Clearly, then, if we can figure out starting values for the mean and
variance at time 1, we can work through the whole data set this way.

I’ll illustrate this with a very simple example (keeping in mind that we can
add many realistic complications), with a single population growing linearly at
rate a per year, with an autoregressive term b that means that Nt−1 and Nt

have a correlation coefficient of b (over and above the general linear trend with
time). I assume there is both process (σ2

proc) and observation (σ2
obs) error, both

normally distributed.
So our model is:

Nt ∼ Normal(a + bNt−1, σ
2
proc) (8)

Nobs,t ∼ Normal(Nt, σ
2
obs) (9)

If b < 1, then the population is stable, because random deviations in N shrink
by a factor b every year; if b > 1, then the population is unstable and random
deviations grow over time.

Suppose, based on all the observations up through time t−1 we believe that
the mean of the true population size at time t− 1, Nt−1, is µ0, and its variance
is σ2

0 . We can calculate based only on the population parameters a and b what
we expect the mean and variance should be at the next time step, The change
in the mean is a direct reflection of the population model; the variance term is a
combination of multiplying the previous variance by b2 since we have multiplied
the population size by b, and adding the new variability introduced by process
error between t− 1 and t. So

mean(Nt|Nobs,t−1) = µ1 = a + bµ0 (10)

Var(Nt|Nobs,t−1) = σ2
1 = b2σ2

0 + σ2
proc. (11)

More stable populations, indicated by low values of b, imply lower variance. As
b gets very small, no variance carries over from one time step to the next and
the standing variance of the population becomes just σ2

proc.
The mean of the observation at time t equals the mean of the true value (we

assume error, but no biases, in the observation process). The variance equals
the current variance of the true population size plus the observation variance:

mean(Nobs,t|Nobs,t−1) = µ2 = µ1 (12)

Var(Nt|Nobs,t−1) = σ2
2 = σ2

1 + σ2
obs (13)
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The last step of the Kalman filter, taking the information about the current
observation into account, is the hardest. The current observation, of course,
changes the mean of the true population state. How much it changes it depends
on how far the current observation is from where it was expected to be based
on the previous information (Nobs,t − µ2), as well as the ratio of the variances
of the true value and of the observation. If there is no observation error, then
the variance of the observation is the same as the variance of the true state of
the population, and (as shown by the formula below) we simply set the mean of
the population equal to the current observation. If there is lots of observation
error, then the current observation doesn’t tell us very much and we don’t let
an unexpected observation change our value of the mean much.

mean(Nt|Nobs,t) = µ3 = µ1 +
σ2

1

σ2
2

(Nobs,t − µ2) (14)

The Bayesian approach suggests another interpretation of this equation: our
best estimate of the current population size is a weighted average of our prior
— what we think the population size is based on previous time steps (µ1) —
and the current observational data (Nobs,t).

Finally, we need to update the variance based on the current observation.
Here we actually reduce the current variance of the true value, again based on
the ratio of the variance of the true value to the variance of the observation.

Var(Nt|Nobs,t) = σ2
3 = σ2

1

(
1− σ2

1

σ2
2

)
(15)

If there is no observation error, then σ2
1 = σ2

2 and the variance of the true value
becomes zero. Unlike the mean, the variance is independent of the observed
data.

Now that we’ve figured out the mean and variance of N and Nobs based on
all the observations up to time t, we can repeat the procedure to calculate the
values at time t+1. Once we have worked through the whole data set, we know
the expected mean and variance at each time step, and we can calculate the
standard normal log-likelihood for the observed values (of course we don’t know
the true values to compare with those means and variances).

The concepts are the same but the formulas are considerably more compli-
cated in the general case described by Schnute (1994). The one extension I will
describe here is how to estimate a nonlinear population growth function f(N)
(called the extended Kalman filter).

All we have to do is replace (10) and (11) with appropriate generalizations.
For example, let’s replace the linear equation in (8) with the discrete logistic
equation:

Nt ∼ Normal(Nt−1 + rNt−1

(
1− Nt−1

K

)
, σ2

proc). (16)

Then substitute this equation for (10):

mean(Nt|Nobs,t−1) = µ1 = µ0 + rµ0

(
1− µ0

K

)
(17)
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For the variance, we need to find the equivalent of b, the per capita growth
rate, to substitute into (11). A reasonable approximation for the current per
capita growth rate is the derivative of the population growth rate with respect
to the population size:

∂f

∂N
=

∂(N + rN(1−N/K))
∂N

= 1 + r − 2N/K. (18)

Since this equation is based on a first-order Taylor expansion, it is only good
for relatively small noise or short time steps.

Evaluating the derivative at the current mean value of the population size
(N = µ1) gives

Var(Nt|Nobs,t−1) = σ2
1 = (1 + r − 2N/K)2σ2

0 + σ2
proc. (19)

If the population is currently growing ( ∂f
∂N > 1), the variance is inflated. If it is

shrinking, the variance is deflated.
So how do we implement this in R?
The R supplement defines a function nlkfpred that calculates the non-linear

Kalman filter predictions for a set of time-series data and a nlkflik that uses
those predictions to compute the negative log-likelihood for a set of parameters.
We fit all the parameters on the log scale to avoid the possibility of negative
parameter values.

We need to pick starting values for the estimation. I’m going to cheat here
since I know the true values, but it would be easy enough to do a one-step-ahead
or trajectory-matching fit to the data, or even eye-ball, to estimate reasonable
starting values for r, K, and the variances.

> startvec = list(logr = log(0.25), logK = log(10),

+ logprocvar = log(0.5), logobsvar = log(0.5),

+ logM.n.start = log(3), logVar.n.start = -2)

Maximum-likelihood estimation of the parameters:

> m4 = mle2(minuslogl = nlkflik, start = startvec,

+ data = list(obs.data = y.procobs2), method = "Nelder-Mead",

+ control = list(maxit = 2000))

The fitted parameters are reasonable and the confidence intervals bracket
the true values:

true fitted 2.5% 97.5%
r 0.25 0.30 0.18 0.48
K 10.00 10.43 10.01 10.87
σ2
proc 0.50 0.32 0.13 0.74

σ2
obs 0.50 0.54 0.31 0.92

It’s not surprising that the confidence intervals are narrow for K, slightly wider
for r (the population spends more time around its carrying capacity than in the
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Figure 6: Results of Kalman filter: (a) observed, predicted, and results of un-
conditional simulations; (b) MLE, true value, and approximate 95% bivariate
confidence interval.

growth phase), or that the confidence intervals for the variances are larger than
the confidence intervals for the deterministic parameters.

The Kalman filter has been widely used in fisheries modeling, where the
need to squeeze information out of rare data is so strong that researchers are
always looking for the next powerful technique. Early on, researchers applied
the technique to abundant but noisy catch-per-unit-effort data. More recent
applications have used the Kalman filter as a way to estimate the locations of
animals from noisy telemetry data, allowing the observed position at a previous
time to help constrain the expected location at the current time (Jonsen et al.,
2003). The KF has more recently begun to make its way into mainstream
terrestrial ecology, as a way of estimating parameters for the growth of species
of conservation concern in the presence of both observation and observation
error (Lindley, 2003). While the assumption of linear population dynamics in
the standard Kalman filter might seem constraining, the autoregressive equation
Nt = a + bNt−1 does allow a range of population dynamics, from fluctuation
around a stable equilibrium if a > 0 and b < 1, to exponential dynamics if a = 0
(declining if b < 1, increasing if b > 1), to a pure random walk if a = 0 and b = 1.
Much of conservation biology is built on linear models, which will often apply
when species are rare and thus intraspecific competition is low (Caswell, 2000).
And if you do need nonlinearity, you can always use the extended Kalman filter.

There are ways to incorporate many other biological complexities in the
Kalman filter such as multiple species, time lags, bias and imperfect catchability
in observations, correlated observations, time-varying control parameters, and
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covariates measured with error); see Schnute (1994) for details. Don’t be scared
by the notation. If you follow through it carefully, you can match up the special
case here with all the details in that paper.

6.2 Markov chain Monte Carlo approaches (WinBUGS et
al.)

The Kalman filter has limitations. In particular, it assumes normal, or log-
normal, distributions. More subtly, the Kalman filter is a prospective algorithm
(Schnute, 1994). It uses only the information up to time t to predict the mean
and variance of the population size, even though the observation at time t + 1
also gives us information about the population size at time t — retrospective
information that we might be able to use to improve estimation.

There are several ways to do retrospective bookkeeping. Schnute discusses a
frequentist approach called the errors-in-variables method, and de Valpine (de
Valpine and Hastings, 2002; de Valpine, 2003) has also developed such a fre-
quentist method. Here I’m going to present Bayesian methods (e.g. Millar and
Meyer, 2000), which are rapidly growing in popularity because BUGS makes it
simple to develop and estimate the parameters of relatively complex population
dynamic models (Lele et al. (2007) suggest a way to use BUGS to calculate
maximum likelihood estimates for complex models). The basic idea carries over
from the Kalman filter; if you assume you know all the observations and the
true values at every other time step, you can use them to estimate the popu-
lation size now. The Markov chain Monte Carlo approach alternates between
picking new random values for each true population size, one at a time (at each
time step pretending you know the population sizes at all the other time steps),
and picking new random values for the parameters that are consistent with the
current assumed population size. Figure 7 shows the dependency graph for the
first four steps of a logistic process. Each observed value depends on the true
value at that time step and the observation error; each true value depends on
the parameters, and determines the observed value and the value at the next
time step. In this kind of graph, though, you can also follow arrows backwards
to see that the true value at time 2 depends in a fairly obvious way on the value
at time 1, but is also influenced by the observed value at time 2 and by the true
value at time 3 — and hence indirectly by the observation at time 3, just as we
suggested above.

To use BUGS to analyze dynamic data you must first decide on a model.
Here we’ll again use the discrete logistic equation with normally distributed ob-
servation and process error for comparison, although BUGS would allow us to be
much more flexible. You also need to set priors for the parameters. Translating
(10) and (11) into BUGS syntax produces the following model.

model {
t[1] <- n0
o[1] ~ dnorm(t[1],tau.obs)
for (i in 2:N) {
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Figure 7: Dependency structure for the logistic model.

v[i] <- t[i-1]+r*t[i-1]*(1-t[i-1]/K)
t[i] ~ dnorm(v[i],tau.proc)
o[i] ~ dnorm(t[i],tau.obs)

}

The first two lines define the initial conditions. The rest of the model steps
through the data set, calculating the deterministic expectation (v[i]) and then
defining the distribution of the true values (t[i]) and observed values (o[i]).

The rest of the model file defines the priors:

r ~ dunif(0.1,maxr)
K ~ dgamma(0.005,0.005)
tau.obs ~ dgamma(0.005,0.005)
tau.proc ~ dgamma(0.005,0.005)
n0 ~ dgamma(1,n0scale)

}

The prior growth rate r is uniformly distributed between 0.1 and a max-
imum value, which I made a parameter so I could vary it within R without
changing my BUGS input file. The priors for the carrying capacity K and the
precisions (inverse variances) τobs and τproc are gamma distributions with rate
and shape parameters of 0.005, giving them a mean of 1 and a large variance
(0.005/0.0052 = 200: remember that BUGS uses a shape+rate parameterization
rather than the shape+scale parameterization we are used to). The initial den-
sity n0 has a prior distribution that is gamma with shape parameter 1 and a rate
parameter equal to the reciprocal of the first observed value — again defined as
an parameter to be calculated in R — which gives it an exponential distribution

20



with mean equal to the first observed value. Though weak, this prior is stronger
than the prior distributions for the carrying capacity and precisions.

A bit of R code to define the upper limit of the r prior and the parameter
of the initial-state prior:

> library(R2WinBUGS)

> maxr <- 2

> n0rate <- 1/y.procobs2[1]

Setting up the model, using the same data series y.procobs2 as before: we
start 5 different chains, using the perturb.params from the emdbook package
to change the values of r and the precisions (τobs, τproc). We should probably
vary the starting values of the precisions a bit more systematically, although
BUGS tends to crash if the starting values are too extreme.

> o <- y.procobs2

> N <- length(y.procobs2)

> statespace.data <- list("N", "o", "maxr", "n0rate")

> inits = perturb.params(list(n0 = y.procobs2[1], r = 0.2,

+ K = 10, tau.obs = 1, tau.proc = 1), alt = list(r = c(0.1,

+ 0.4), tau.obs = 3, tau.proc = 3))

Defining the parameters we want to keep track of: we could also track the
estimated true values at each time step.

> parameters <- c("r", "K", "tau.obs", "tau.proc",

+ "n0")

Running WinBUGS from within R, and converting the output to a CODA
object — the format returned by R2WinBUGS and the CODA format have
slightly different formats and capabilities:

> statespace.sim <- bugs(data = statespace.data, inits,

+ param = parameters, model = "statespace.bug",

+ n.chains = length(inits), n.iter = 15000)

> s1 = as.mcmc.bugs(statespace.sim)

R2WinBUGS’s defaults for running an MCMC analysis are to take the total
number of iterations (the default is 2,000); set aside half of them as “burn-in”;
divide the other half equally among all the chains specified by the user (the
default is 3); and “thin” the results until there are a total of 1,000 iterations
saved across all chains. In this case I chose to do 15,000 iterations with 5
chains, so each chain ran for 3000 steps; the first 1500 were discarded; and then
13% of the remaining iterates were kept for a total of 1000.

Checking convergence:

> gelman.diag(s1)

21



Potential scale reduction factors:

Point est. 97.5% quantile
r 1.00 1.02
K 1.01 1.02
tau.obs 1.02 1.05
tau.proc 1.05 1.09
n0 1.01 1.02
deviance 1.02 1.05

Multivariate psrf

1.02

Based on the G-R rule of thumb that a scale reduction factor < 1.2 for all
variables means adequate convergence, the G-R diagnostic suggests that the
chains did in fact run long enough to mix with each other.

The summary of a CODA object provides the quantiles of the chains; these
results are practically identical to those from the Kalman filter. I have inverted
the precisions (τproc = 1/σ2

proc, τobs = 1/σ2
obs to make it easier to compare

directly with the KF results; the median is not identical to the mode (close to
the maximum likelihood estimate if the priors are weak), but it’s close.

2.5% median 97.5%
r 0.17 0.30 0.48
K 9.99 10.45 10.98
σ2
proc 0.14 0.36 0.82

σ2
obs 0.22 0.52 0.90

Figure 8 shows the results of the R2WinBUGS run for σ2
obs and σ2

proc.
The values from the Kalman filter (Figure 6) are shown in gray. The 95%
credible interval matches the approximate 95% confidence interval reasonably
well, especially considering that the 95% interval is an approximation based on
the local curvature. The mode of the posterior density, as expected, is very close
to the MLE — with a weak prior probability distribution, the likelihood surface
and the posterior probability distribution are close to the same shape. The mean
is slightly larger than the mode — there is some skew towards large values of
the process variance — while the median, not shown, falls between the mean
and the mode. All four summary values (posterior mean, mode, and median,
and the MLE) and the true value all fall within the 50% credible interval; as is
often the case, all of these estimates give us approximately the same answer.

Finally, Figure 9 shows density plots for the R2WinBUGS analysis. The
densities are all reasonably symmetric and bracket the known true values (the
density of tau.obs extends to very high values; this is the result of a single
freakish excursion in one of the chains to a very high value). Each chain’s
density is drawn with a different line types; they all fall on top of each other,
reassuring us that the chains have converged and are all telling the same story.
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7 Conclusions

This chapter has covered a variety of methods for estimating the parameters of
dynamic models, ranging from crude (assuming either process error or observa-
tion error, but not both) to sophisticated (state-space models).

We have largely skipped over the question of how to decide which dynamic
models to fit. We have mentioned the logistic and a few simple discrete stochas-
tic models here, and the theta-logistic in Chapter ??, but most of the book
has focused on static models. Understanding dynamic models is a huge topic,
mostly focused on deterministic models — Ellner and Guckenheimer (2006) or
the other references listed in the ecological modeling section in Chapter 1 (p. ??)
make a good starting point on the dynamics side, Clark (2007) includes a review
of dynamic modeling in his presentation of Bayesian methods, and Bjørnstad
and Grenfell (2001) give an overview of more recent advances in the field.

On the other hand, it’s easy to incorporate some additional ecology in the
single-species logistic model. For example, with either the Kalman filter or
MCMC you can incorporate the effects of covariates on the growth rate. To
incorporate a linear effect of rainfall on the growth rate, you could just change
the appropriate line of the BUGS model file to

v[i] <- t[i-1]+(r0+r1*rain[i-1])*t[i-1]*(1-t[i-1]/K)

and change the parameters and data values accordingly in the R code.
All too often, you can observe only one facet of a complicated ecological

interaction. For example, we might be able to sample just hare populations in
a complex Canadian ecosystem consisting of lynx, hare, vegetation, and birds
of prey. While trying to reconstruct an entire ecosystem from observations of a
single species is hopeless, it is in principle possible to include additional unob-
served variables in a state-space model — remember that the “true” population
sizes are also unobserved. Be very careful not to incorporate more complexity in
your model than the data can support: try your model out with some optimistic,
but plausible, simulation data. Such reconstruction has been shown to work,
for example, in simple epidemic models, where the number of new cases is ob-
served but the number of possibly susceptible individuals left in the population
is not. A formal process of “susceptible reconstruction” provides a time-series of
susceptibles to go along with the time-series of infected individuals, which then
allows estimation of a transmission parameter (Finkenstädt and Grenfell, 2000;
Lekone and Finkenstädt, 2006).

This chapter has presented only analyses of discrete-time models, where the
methods are much better developed. It is a shame that continuous-time methods
for dynamical data are so sparse, since most theoretical models of ecological
systems are defined in continuous time. Analysis is feasible if you assume only
observation error (Gani and Leach, 2001; van Veen et al., 2005) or know the
amount of observation error and use SIMEX to correct bias (Ellner et al., 2002;
Melbourne and Chesson, 2006), but the Kalman filter and MCMC approaches
have been used almost exclusively in discrete time (although Fujiwara et al.
(2005) provide a recent counterexample). Gibson has developed such methods
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(Gibson and Renshaw, 1998, 2001; Gibson, 1997; Streftaris and Gibson, 2004),
but they have yet to be widely used or made practical.

Right now Bayesian analyses of dynamic models are easier than frequentist
analyses, but the frequentists are catching up fast. Particle filtering or sequen-
tial importance sampling are powerful frequentist alternatives to the Bayesian
MCMC methods presented here (Doucet et al., 2001; Buckland et al., 2004;
Thomas et al., 2005; Harrison et al., 2006; Ionides et al., 2006). Particle filter-
ing starts with a large number of random samples (“particles”: e.g. 250,000 in
(Thomas et al., 2005)) from a prior (or pseudo-prior) distribution, including the
distribution of the initial values of the state variables. Each sample is projected
forward (simulated) one step, and a likelihood based on the first observation is
calculated for each sample. The same number of particles are then resampled,
but with weights proportional to their likelihoods. After simulating one more
step, the likelihoods based on the next observation are calculated and the par-
ticles are resampled again (thus taking the observations at both t and t+1 into
account). This process is iterated for the whole time series of observations, with
various algorithms used to prevent all of the resamples from coming from a very
small number of particles.

Estimating parameters of dynamic ecological models is still clearly an exer-
cise on the cutting edge of science. Most of the papers that have appeared to
date are technical and methods-oriented rather than applications to particular
ecological questions. As time goes on the tools will improve and more exam-
ples will appear, giving potential users a better idea how much data (at least
within an order of magnitude) is needed to apply these methods successfully. In
the meantime, always check your answers against the results of simulations and
against one-step-ahead (process error only) and trajectory-matching (observa-
tion error only) fits.

R supplement

Kalman filter

Here’s a function that computes the Kalman filter predictions. Nobs is the data
set; r and K are the population dynamic parameters (soon we will estimate these
by maximum likelihood); procvar and obsvar are the process and observation
variances; and M.n.start and Var.n.start are the starting values of the mean
and variance. This code sets aside numeric vectors for the results on the mean
and variance of the observed population size at each time step: we don’t have
to save the mean and variance of the true population size since we don’t have
anything to compare them with. It then sets the starting values and works
through the data set one time step at a time, applying the equations above:

> nlkfpred = function(r, K, procvar, obsvar, M.n.start,

+ Var.n.start, Nobs) {

+ nt = length(Nobs)

+ M.nobs = numeric(nt)
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+ Var.nobs = numeric(nt)

+ M.n = M.n.start

+ Var.n = Var.n.start

+ M.nobs[1] = M.n.start

+ Var.nobs[1] = Var.n.start + obsvar

+ for (t in 2:nt) {

+ M.ni = M.n + r * M.n * (1 - M.n/K)

+ b = 1 + r - 2 * r * M.n/K

+ Var.ni = b^2 * Var.n + procvar

+ M.nobs[t] = M.ni

+ Var.nobs[t] = Var.ni + obsvar

+ M.n = M.ni + Var.ni/Var.nobs[t] * (Nobs[t] -

+ M.nobs[t])

+ Var.n = Var.ni * (1 - Var.ni/Var.nobs[t])

+ }

+ list(mean = M.nobs, var = Var.nobs)

+ }

Our likelihood function takes a set of parameters (all fitted on the log scale
so we don’t run into trouble with negative values of the parameters), runs the
Kalman filter to predict the values of the means and variances, and then plugs
these values into a Normal likelihood comparison with a set of observed values
(taking the square root of the estimated variance since dnorm uses the standard
deviation, not the variance, as a parameter):

> nlkflik = function(logr, logK, logprocvar, logobsvar,

+ logM.n.start, logVar.n.start, obs.data) {

+ pred = nlkfpred(r = exp(logr), K = exp(logK),

+ procvar = exp(logprocvar), obsvar = exp(logobsvar),

+ M.n.start = exp(logM.n.start), Var.n.start = exp(logVar.n.start),

+ Nobs = y.procobs2)

+ -sum(dnorm(obs.data, mean = pred$mean, sd = sqrt(pred$var),

+ log = TRUE))

+ }

References

Bjørnstad, O. N. and B. T. Grenfell. 2001. Noisy clockwork: Time series analysis
of population fluctuations in animals. Science 293:638–643.

Buckland, S. T., K. B. Newman, L. Thomas, and N. B. Kösters. 2004. State-
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