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1 Introduction. Self-cycling fermentation is a computer-aided bio-
technological process developed for environmental cleanup programs
such as sewage treatment or the reduction of toxic waste. Waste (nu-
trient) in a well-stirred tank is consumed by microorganisms, and used
for growth and reproduction. A probe inserted in the tank monitors
the system until certain conditions are met. The computer then insti-
gates a rapid emptying and refilling process. A fraction of the contents
of the tank is released into the environment and then replaced by an
equal volume of fresh medium. The process then begins anew with the
microorganism consuming the new medium until the conditions for the
emptying and refilling process are met again. Under the right conditions,
this cycling continues indefinitely, and the process does not require an
operator or any estimate of the natural cycle time of the microorganisms
in advance.

Since the duration of the emptying and refilling process is extremely
short compared to the cycling time, this can be approximated by an in-
stantaneous change in state. Thus, the system can be modelled by a sys-
tem of impulsive differential equations. Such systems describe processes
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that are continuous under most conditions, but undergo instantaneous
changes when certain conditions are satisfied.

The development of the process is described in Sheppard and Cooper
[5] and a model similar to the one discussed here is given in Wincure,
Cooper, and Rey [6]. Impulsive differential equations are described in
Bainov and Simeonov [1], [2], [3] and Lakshmikantham, Bainov, and
Simeonov [4].

2 Growth in the nutrient driven self-cycling fermentation

process. Let tn denote the time at which the n-th moment of impulse
occurs, i.e., when the nutrient reaches the specified threshold, s̄. In
accordance with the theory of impulsive differential equations, we define

∆y ≡ y+ − y− ≡ y+
n − y−

n ≡ y(t+n ) − y(t−n ) ≡ lim
t→t

+
n

y(t) − lim
t→t

−

n

y(t).

The following model of a single species in the self-cycling fermentation
process with nutrient concentration as the triggering factor is considered.

(2.1)

ds

dt
= −

1

Y
f(s)x s 6= s̄

dx

dt
= −d̄x + f(s)x s 6= s̄

∆s = −rs̄ + rsi s = s̄

∆x = −rx(t−n ) s = s̄

s(0) > s̄, x(0) ≥ 0.

In this model, s denotes the concentration of waste (nutrient) in
the fermentation tank, assumed to be toxic to the environment, x the
biomass of the population of microorganisms that consume the nutrient,
Y the cell yield constant, d̄ the species specific death rate, s̄ the toler-
ance of the waste in the environment consistent with standards set by
the appropriate environmental protection agency, si the concentration
of the pollutant in the environment added to the tank at the beginning
of each new cycle, and r the emptying/refilling fraction. It is assumed
that d̄ ≥ 0, Y > 0, si > s̄ > 0, and 0 < r < 1.

The response function is denoted f and satisfies

i) f : R → R,

ii) f is continuously differentiable,
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iii) f(0) = 0,
iv) f ′(s) > 0, if s > 0.

Let λ denote the break-even concentration of nutrient, that is the
concentration of the nutrient so that f(λ) = d̄. If f(s) < d̄ for all s > 0,
then we assume λ = ∞.

Also define

sint ≡ Y

∫ (1−r)s̄+rsi

s̄

(

1 −
d̄

f(s)

)

ds.

The sign of s̄ plays a key role in predicting the dynamics. Note that if
s̄ ≥ λ, then sint > 0. However, if s̄ < λ, the sign of sint depends on the
parameters. For example, if (1 − r)s̄ + rsi ≤ λ, then sint < 0.

Theorem 1. Consider model (2.1). There exists a unique nontrivial
positive periodic orbit if and only if sint > 0. This periodic orbit has
exactly one impulse per period and has the property of asymptotic phase.

Let T > 0 denote the period of the periodic orbit. At the impulse
points the periodic orbit satisfies

s(t−n ) = s̄, s(t+n ) = (1 − r)s̄ + rsi,

x(t−n ) =
sint

r
, x(t+n ) = (1 − r)

sint

r
.

1. Assume that sint > 0.

(i) If s̄ ≥ λ, then the periodic orbit attracts all orbits with initial
conditions satisfying x(0) > 0.

(ii) If s̄ < λ, then the periodic orbit attracts all orbits with initial

conditions satisfying x(0) sufficiently large or
∫ s(0)

s̄
(1− d̄

f(s)) ds >

0 and x(0) > 0. In particular, if s(0) ≥ (1 − r)s̄ + rsi, then the
periodic orbit attracts all orbits with initial conditions satisfying
x(0) > 0.

(iii) If
∫ s(0)

s̄
(1− d̄

f(s)) ds ≤ 0, and x(0) > 0 is sufficiently small, then

there are no moments of impulse and x(t) → 0, s(t) → s∗ =
s∗
(

s(0), x(0)
)

, as t → ∞, where s̄ ≤ s∗ < λ.

In cases (i) and (ii) the fermentor cycles indefinitely and so there
exists an infinite sequence of times {tn}

∞

n=1. As n → ∞, tn → ∞,
tn+1 − tn → T , x(t−n ) → sint

r
, and x(t+n ) → (1 − r) sint

r
.
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For all positive integers n, solutions satisfy s(t+n ) = (1 − r)s̄ + rsi

and s(t−n ) = s̄, and one of the following holds:

(a) tn+1 − tn = T , x(t−n ) = sint

r
, and x(t+n ) = (1 − r) sint

r
; or

(b) tn+1 − tn > T , x(t−n ) < x(t−n+1), x(t+n ) < x(t+n+1), x(t−n ) < sint

r
,

and x(t+n ) < (1 − r) sint

r
; or

(c) tn+1 − tn < T , x(t−n ) > x(t−n+1), x(t+n ) > x(t+n+1), x(t−n ) > sint

r
,

and x(t+n ) > (1 − r) sint

r
.

2. Assume that sint = 0. Then lim inft→∞ x(t) = 0. If x(0) is suffi-
ciently large or s(0) ≥ (1− r)s̄ + rsi and x(0) > 0, then there are an
infinite number of impulses, but the time between impulses increases,
approaching infinity. If s̄ < s(0) < (1− r)s̄+ rsi and x(0) > 0 is suf-
ficiently small, there are no impulses and s(t) → s∗ = s∗

(

s(0), x(0)
)

as t → ∞, where s̄ ≤ s∗ < λ.
3. Assume that sint < 0. If x(0) > 0, there are at most a finite num-

ber of impulses, the time between impulses increases, and eventually
s(t) → s∗ = s∗

(

s(0), x(0)
)

and x(t) → 0 as t → ∞, where s̄ ≤ s∗ < λ.

The proof is given in Smith [7].

Thus, if sint > 0, then solutions that undergo impulsive effect once will
undergo an infinite number of impulsive effects and will monotonically
approach the periodic orbit. If sint = 0, then solutions that undergo
impulsive effect once will also undergo impulsive effect an infinite number
of times, but the time between impulses will increase without bound and
the microorganism will essentially wash out. If sint < 0, then solutions
undergo impulsive effect at most a finite number of times, and then the
microorganism washes out.

3 Competition. We consider the self-cycling fermentation process
with two species competing for a single nonreproducing nutrient. The
model is extended in the obvious way to include more than one species.
There are many interesting issues to resolve. For example, can more than
one species coexist in the tank and if so, is the result initial condition
dependent? Can we predict the outcome in advance?

In this section, we fix r = 1
2 throughout, since this is the value of r

used in the experimental literature (see Wincure, Cooper and Rey [6]).
We use a specific form for the uptake functions, the Monod form, and
we assume the death rates are negligible.

Thus, the model we study for two-species competition in the self-
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cycling fermentation process is

(3.1)

ds

dt
= −

1

Y1
xf1(s) −

1

Y2
yf2(s) s 6= s̄

dx

dt
= xf1(s) s 6= s̄

dy

dt
= yf2(s) s 6= s̄

∆s = −
s̄

2
+

si

2
s = s̄

∆x = −
x(t−n )

2
s = s̄

∆y = −
y−

n

2
s = s̄

s(0) > s̄, x(0) ≥ 0, y(0) ≥ 0,

where all the parameters are defined as for model (2.1) with the appro-
priate subscripting where necessary. The Monod form for the response
functions is given by

fi(s) =
µis

Ki + s
, i = 1, 2.

Here, µi denotes the maximum specific growth rate and Ki denotes the
half saturation constant for each species.

Note that each face where one of the populations is absent is invari-
ant. As well, on each face the model reduces to the one discussed in the
previous section and so Theorem 1 applies. Also, since the species spe-
cific death rate for each population is assumed to be zero, the break-even
concentration for each population equals zero and so the corresponding
value of sint is positive on each face. Therefore, there is a nontrivial
periodic orbit on each face where one of the populations is absent. We
can use impulsive Floquet theory (see [3]) to analyse the stability of
these planar periodic orbits with respect to the entire s, x, y-space. For
model (3.1), the Floquet multiplier giving the stability of the nontrivial
periodic orbit on the face where x ≡ 0 with respect to the positive cone
is given by

(3.2) µ2x = 2
µ2(K1+si)

µ1(K2+si)
−1

·

(

K2 + si

2 + s̄
2

K2 + s̄

)

µ2(K1−K2)

µ1(K2+si)

.
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Similarly, the Floquet multiplier giving the stability of the nontrivial
periodic orbit on the face where y ≡ 0 with respect to the positive cone
is given by

(3.3) µ2y = 2
µ1(K2+si)

µ2(K1+si)
−1

·

(

K1 + si

2 + s̄
2

K1 + s̄

)

µ1(K2−K1)

µ2(K1+si)

.

It can be shown that the periodic orbit on the face y ≡ 0 is asymptot-
ically stable if µ2x < 1 and unstable if µ2x > 1. Similarly, the periodic
orbit on the face x ≡ 0 is asymptotically stable if µ2y < 1 and unstable
if µ2y > 1. In the region of parameter space where µ2x > 1 and µ2y > 1,
we proved that both species persist.

Theorem 2. Consider system (3.1). Suppose that the nontrivial Flo-
quet multiplier for the periodic orbit on each face, where x ≡ 0 or y ≡ 0,
given by (3.2) and (3.3) respectively, satisfies µ2x > 1 and µ2y > 1.
Then solutions of (3.1) with initial conditions x(0) > 0 and y(0) > 0
satisfy lim inft→∞ x(t) > 0, and lim inft→∞ y(t) > 0.

The proof is given in Smith [7].
The above theorem gives conditions under which there is coexistence

of the two species, independent of initial conditions (provided both
species are present to begin with). However, it says nothing about the
nature of that coexistence. All of the numerical simulations in the ap-
propriate region of parameter space seem to indicate that coexistence is
in the form of an attracting impulsive periodic orbit with one impulse
per period.

We also investigated the obvious generalisation of (3.1) to three com-
petitors using numerical simulations. We were able to find paramaters
and initial conditions where the simulations seemed to indicate that co-
existence of three species competing for a single nonreproducing nutrient
in the self-cycling fermentation process is also possible in the form of an
impulsive periodic orbit with one impulse per period. It is interesting to
note that in one of the simulations two populations x and y were able
to coexist on an impulsive periodic orbit with population x dominating.
When a third competitor was introduced, all three species coexisted on
an impuslive periodic orbit, but now population y dominated.
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