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1. Introduction 

The chemostat  is a laboratory apparatus used for the continuous culture of  
microorganisms and is helpful for the study of microbial growth under nutrient 
limitation in a controlled environment. In a more speculative vein, it is also useful 
as a guide for identifying the dynamical nature of  some of the population 
interactions that might be present in a more complex system such as a lake. 

There are many articles devoted to the study of the chemostat both from the 
experimental and the modelling point of  view; as a very incomplete sample of  
these, we mention [1, 12, 20, 21, 24, 29, 31, 41, 42, 44, 45]. Here we content oursel- 
ves with recalling that in its simplest-form, the chemostat provides a system in 
which populations of  microorganisms compete in a growth chamber for a single, 
essential, growth-limiting nutrient which is supplied continuously from a feed 
bottle in growth-limiting amounts at a constant rate and removed at the same 
rate together with proportional  amounts of  microorganisms, by-products and 
other growth medium to preserve the volume of the system. 

I f  the system is modelled by means of a dynamical system in which the 
nutrient-uptake for each microorganism is a monotone increasing function of the 
nutrient density, it is known [2, 5, 21] that at most one of the competing popula- 
tions will survive. Indeed, even when the monotonicity requirements are relaxed, 
to model for example, inhibition at high nutrient concentrations, it has been 
shown that at most one competitor can be maintained in the system [5]; in this 
case, the successful populat ion may be determined by the initial configuration 
of the system. Such results of  competitive exclusion are also borne out by 
experiment [20, 47]. 

In this paper,  we introduce a predator population and restrict our attention 
to the case of  only two competitors. We are able to show that this entire food 
web can be made to persist. We also consider the food chain that results if one 
of the competing populations is absent from the system. We attempt to unify the 
mathematical  work already done for these problems. Many of  our results are of  
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a global nature and are for general monotone nutrient-uptake functions. We do 
however, give results for specific prototypes where this is appropriate. 

In addition to obtaining persistence results, we address the related ecological 
question of  whether or not the invasion by a predator can reverse the outcome 
of  competition. The answer depends upon whether one interprets our results 
purely deterministically or whether one allows for stochastic influences. Our 
results also help to confirm the current ecological thinking, based on much 
experimental evidence, (see for example Slobodkin [38] and Paine [32]) that 
predation is often responsible for the diversity in ecosystems. Paine postulates: 
"Local species diversity is directly related to the efficiency with which predators 
prevent monopolization of the major environmental requisites by one species." 

A central concept, in our discussion is the notion of persistence, and it is 
appropriate to give some precise definitions. Several different definitions appear 
in the literature [6, 15, 16, 19, 22] and we offer three of these below. First it will 
be convenient to introduce an autonomous system of ordinary differential 
equations suitable for a general discussion of  population dynamics. 

Let f =  ( f l , f 2 , . . .  , f , )  be a continuously differentiable function from ~" to 
R" such that 

f(w)>~O whenever w = ( w l , . . . ,  w,) satisfies w~---O and w~>O ( j r  i). 

Consider the system 

w'(t) =f(w(t)); we(0) > 0, i = 1 , . . . ,  n. (1.1) 

The conditions on f guarantee that (1.1) defines a dynamical system which 
leaves the positive cone in R" positively invariant (necessary if we are dealing 
with a model of  population dynamics). 

Definition 1.1: The system (1.1) is weakly persistent if for all solutions we have 
limt_,~o w~(t)> 0, i =  1 , . . . ,  n. 

Definition 1.2: The system (1.1) is persistent if for all solutions we have 
lim,~,~ wi(t) > 0, i =  1 , . . . ,  n. 

Definition 1.3: The system (1.1) is uniformly persistent if there exists eo> 0 such 
that for all solutions we have lim,_~ wi(t)>>- Co. 

From the point of view of population dynamics, uniform persistence may be 
regarded as the most desirable form of persistence since in the long run, it provides 
all populations in the system with a uniform "cushion" away from extinction. 

Our paper  is organized in the following manner. In Sect. 2 we set down the 
mathematical model of  the food web that we wish to study and we outline the 
underlying assumptions. An equivalent nondimensional version of this model is 
then given in Sect. 3 where we also define several important parameters and 
introduce notation for the critical points of this system. It is this nondimensional 
version of  the model that we actually analyze. In sect. 4 we introduce notation 
for the three dimensional subsystems that result if one of the competitors or the 
predator is omitted. 

Sections 5 through 9 contain mathematical results. We state and prove pre- 
liminary results in Sect. 5. In Sect. 6, we show that for general monotone dynamics, 
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there is a chain of  transference of global stability from one regime in the system 
to another as certain parameters are decreased. For certain prototypes this takes 
place in a particularly simple fashion as the global stability is handed down from 
one equilibrium point to another in a sequence of bifurcations. (So [40] gives a 
similar result for the classical Lotka-Volterra food chain.) In Sect. 7, we consider 
the food chain that results if the inferior rival is eliminated from the model. We 
determine conditions that ensure uniform persistence of the entire food web in 
Sect. 8. The persistence of the entire food web can be considered predator- 
mediated, since in the absence of the predator at least one of the competitors 
always becomes extinct. This predator-mediated coexistence is highlighted in the 
example in Sect. 9 where we also show that invasion by a predator can in some 
sense reverse the outcome of pure competition. 

We conclude the paper with Sect. 10 in which we summarize our results, 
interpret them with respect to the original model described in Sect. 2, and finally 
consider the ecological ramifications. For completeness we summarize the local 
stability analysis of the food web and of the food chain in Appendix A. Part of 
the linear analysis has already appeared in the literature (see for example Canale 
[7] and Saunders and Bazin [36]). 

Throughout this paper we shall use the following notation: 
C(P) will denote the orbit of a dynamical system that passes through the 

point P and ~+(P) and ~ - ( P )  will denote the positive and negative semi-orbit 
through P, respectively. 

If E is an equilibrium point of a dynamical system, then WS(E) and W"(E) 
will denote the stable and unstable manifolds of E respectively. 

2. The m o d e l - - a  food web 

We shall consider the following model of predator-mediated competition in the 
chemostat: 

S'(t) = (S ~  S ( t ) ) D -  ~ xi(t)pi(S(t)), 
i=1 T~i 

X ; ( t )  ~- X l (  t ) ( - D  + pl( S( t) ) ) - y( t )  q(x  I ( t) )/  z, 

x~(t) = x2(t)(-D+pE(S(t))), (2.1) 

y'( t) = y( t ) ( -O  + q(x,( t) ) ), 

S(0) = So~0,  x,(0) = X,o~> 0, i = 1 , 2 ,  y(0) = yo>~ 0. 

In these equations S(t) denotes the substrate concentration, x~(t) and x2(t) the 
concentrations of  the competing populations and y(t) the concentration of the 
predator population, pi(S) represents the per capita growth rate of  the ith 
competitor, ~7i is a growth yield constant, S O denotes the concentration of nutrient 
in the feed bottle and D denotes the input rate from the feed bottle and the 
washout rate from the growth chamber. In this model x~(t) is viewed as both a 
prey population and a competitor population. Here, q(xl) denotes the per capita 
growth rate of the predator population as a function of the prey concentration; 
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z is the growth yield factor for the predator population feeding on the prey; and 
we assume that q(x l ) / z  represents the prey-uptake function for the predator. 

We make the following assumptions concerning the functions pi and q in the 
model equations (2.1): 

Pi, q :R+-+ R+; 

Pi, q are continuously differentiable; 

p~(S) > 0  for all S c  R+; 

p~(S) >i 0 for all S e R+; 

q'(xl) >I 0 for all Xl ~ ~+; 

p,(0) = 0, q(0) = 0. 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

It will also be convenient to denote q(xl) as 

q ( x l )  = x l h ( X l ) .  (2.8) 

Note that since q is (continuously) differentiable it follows that limx+o h(x)  = 
q'(0) and so we define h (0 )=  q'(0). 

The system (2.1) describes a chemostat with nonreproducing substrate, con- 
stant input and dilution rate, perfect mixing in the growth vessel, insignificant 
death rates compared to dilution rate, and instantaneous adjustment of  growth 
rates to changes in the concentration of nutrient. Furthermore, just as we assume 
that the substrate-uptake rate is proportional to the rate of conversion to com- 
petitor biomass, we assume that the prey-uptake rate is proportional to the rate 
of conversion to predator biomass. In this model two populations compete solely 
for an essential, growth-limiting substrate. Also a predator population predates 
on the competitor population that would be the sole survivor provided the predator 
population were absent. 

This model is similar to the models studied by Jost et al. [23]. However in 
their model of  a food web they allow the predator to predate on both competitors. 
In all of  their models they use Michaelis-Menten kinetics to describe nutrient 
uptake and competitor (prey) growth. In the food chain that results when the 
second competitor is absent, they consider two different models, one with 
Michaelis-Menten kinetics describing predator-prey dynamics and the other with 
multiple saturation kinetics. Their experimental results seem to indicate that the 
latter model is more satisfactory. In the food web they derive a more complicated 
functional response for the predator that takes food preference into consideration 
but that reduces to multiple saturation dynamics when one competitor is absent. 

Freedman and Waltman [15] consider a general Kolmogorov model of three 
interacting predator-prey populations. They derive persistence criteria for this 
general model and then illustrate their results in special cases. In particular, 
under certain conditions their system can be interpreted as two rival populations 
with a predator predating on either one or both of  the rival populations. 

May [27], Cramer and May [9] and Vance [43] show predator-mediated 
coexistence is possible in a model of a one predator-two prey community based 
on the "classical" Lotka-Volterra equations. Vance discovers a "quasi-cyclic" 
trajectory. Further analysis by Gilpin [18] indicates that this trajectory is an 
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example of "continuous chaos." However, such complicated dynamics cannot 
automatically be assumed to occur in our model since our model is an example 
of the "resource-based" approach (see [45]) as opposed to the more general 
"classical" Kolmogorov type approach (see [13]). Restricted to competitive 
systems, the "resource-based" approach used in this paper predicts trivial 
dynamics (i.e. all trajectories asymptotically approach critical points) no matter 
the number of competitors (see [2, 5, 21]). On the other hand the "classical" 
models can give rise to almost any complicated dynamical behaviour for even 
three or four competitors (see Smale [39]). 

The food chain that results when the ,second competitor is eliminated from 
the model (2.1) was studied by Butler, Hsu and Waltman [4], Bungay and Bungay 
[3] and Sell [37], among others. They all consider a model in which all functional 
responses are modelled by Michaelis-Menten type dynamics. Experiments [17] 
seem to show that this is quite reasonable for soluble organic nutrient-- 
heterotrophic bacteria- holozoic protozoa food chains. Canale [7] considers 
M'Kendrick and Pai's [28] model (i.e. Lotka-Volterra dynamics). The food chain 
with very general dynamics is studied by Saunders and Bazin [36] and by Gard 
[16, 17]. 

3. The nondimensional version of the model 

It will be more convenient to analyze the model after the following substitutions 
are performed: 

~=tD; S=S/S~ 2i=xi/~?iS~ i =  1,2; ~=y/S~ (3.1) 

~,(S) =p,(S)/D; i = 1, 2. (3.2) 

/ ~ ( X I )  = q ( x l ) / D  (and SO ]~(X1)  ---- rhS~  �9 (3.3) 

Omitting the bars, in order to simplify the notation, the nondimensional version 
of model (2.1) can be written: 

2 
S'(t) = (1 -S( t ) )  - ~ x,(t)p~(S(t)), 

i=1  

x~(t) = x l ( t ) ( -  1 + pl(S(t))) - y(t)  q (Xl(t)), 

x'2(t) = x2(t)(-1 +pE(S(t))), (3.4) 

y'(t) = y ( t ) ( -1  + q(xl(t))), 

So~>0, X~o~> 0, i = 1 , 2 ,  yo~>0. 

All the Assumptions (2.2)-(2.8) hold for this nondimensional version of the 
system (2.1). Therefore, there will be no loss of generality if we study system 
(3.4) instead of (2.1) and we can always reinterpret our results in terms of the 
unscaled variables by the appropriate application of (3.1)-(3.3). 

By the monotonicity assumptions (2.4)-(2.6) it follows that there exist uniquely 
defined positive extended real numbers h~ and 6 such that: 

pi(S)<l i fS<h~ ,  

p~(S) > 1 if S >  h .  (3.5) 

q(xl) < 1 if xl < 6, 
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and 

q ( x 0 >  1 i f x l >  8, 

provided we make the following assumption of  a generic nature: 

If  A2 (or 8) is finite, then p~(A2)> 0 (q'(8)> 0). (3.6) 

Assume also that 

all Ai, 8 (other than those which are infinite) are distinct (3.7) 
from each other and from 1, and 

/~t 1 < : h 2  if A1 <oo. (3.8) 

Then Ai and 8 represent the break-even concentrations of  substrate and prey, 
respectively. Also in the absence of the predator, Xl drives x2 to extinction. 

The critical points of  the system (3.4) will be denoted: 

E1 = (1, 0, 0, 0) 

ExL = (A1, 1 - A 1 , 0 ,  0) 

Ex 2 = (A2, 0, 1 - A2, 0) 

Es* = (S*, 8, 0, y*) where y* = 8 ( -1  +pl (S*) )  and S* satisfies 1 - S *  = 8p1(S*). 
A A 

Ex2 = (A2, 8, ~2, )3) where x2 = 1 - A2- 8p1(A2) and ) = 8 ( -1  +pl(A2)) 

and will be assumed to be critical points if and only if all their components are 
nonnegative. Therefore Ea, (resp. Ex2) is a critical point provided A1 ~< 1 (Az~ < 1) 

A A 
and EA2 is a critical point provided x2 = 1-A2-8pl(A2)/> 0. In particular, this 
implies that A2 + 8 < 1. Es. is a critical point provided S*/> 0 is well-defined and 
y*~>0. S* is defined by the equation 1 - S * =  8pl(S*). If  we plot the functions 
1 -  S and 8pl(S) on the same graph, since p l (0 )=  0 and pl(S) strictly increases 
it follows that there is a unique point S* that satisfies the equation 1 - S = 8pl(S) 
and this point lies between 0 and 1. In order for y*~> 0 we require S * ~  > A1. But 
the solution of 1 - S = 8pl(S) is less than A1 if and only if I - A1 < 1 -- S = 8pl(S) < 
8pl()l. 1) = ~, i.e. 1 -  A1 < 6. Thus, Es* is a critical point provided that hi + 6 ~ 1. 
Actually, since in this case S * ~  > hi ,  it follows that 1 -  S * =  8p1(S*)I> 8 and so 
when Es* is a critical point h~ ~< S* ~< 1 - & 

4. Three-dimensional subsystems 

In this section we briefly consider the three dimensional subsystems that result 
if one of  the competitors or the predator is absent from the system. 

If the predator is absent, i.e. Yo = 0, then system (3.4) reduces to: 

2 

S'(t) = (1 - S ( t ) ) -  ~, x,(t)p~(S(t)), 
i = 1  

x[(t)=x~(t)(-l+pf(S(t))),  i=1,2 (4.1) 

So~>0 and X~o>0, i = 1 , 2 .  
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This is the basic chemostat model for two competing populations with arbitrary 
monotone uptake functions, and has been analyzed in [1, 5]. Competitor x2 always 
dies out. In the following lemma, we paraphrase Corollary 3.5 from [5] as it 
applies to (4.1). Recall that hi <h2.  

Lemma 4.1. I f  hi > 1, the critical point (1, 0, 0) is globally asymptotically stable for 
(4.1). I f  hi < 1, the critical point (hi,  1 - ha, 0) is globally asymptotically stable 
for (4.1). 

If  competitor x~ is absent, i.e. Xao = O, then (3.4) reduces to: 

S'(t)  -- (1 - S(t))  - x2(t)p2(S(t)), 

x~(t) = x2(t)(-1 +pE(S(t))), (4.2) 

y'(t) = - y ( t ) ,  

So/>0, X2o>0 and yo>0.  

Since the y equation decouples it is clear that lim,_,~ y( t )  = 0 and so asymptotically 
the model reduces to two dimensions consisting of S and x2, only. 

If competitor x2 is absent then (3.4) has the form: 

S'(t) = (1 - S(t)) -Xl( t )pa(S(t)) ,  

x~( t) = Xl(t)(-1 + p~( S( t) ) ) - y( t)q(xl( t) ) , 
(4.3) 

y'( t) = y ( t ) ( - l +  q(x~( t))), 

So>~0, xm>~0 and yo~>0. 

The critical points of this system will be denoted by: E~= (1, 0, 0), E 3, = 
(A1, 1 - A1,0), and E3.  = (S*, 6, y*) where y* = 6 ( -1  +pl (S*))  and S* satisfies 
1 - S * =  6p1(S*) and will be considered critical points if and only if all the 
components are nonnegative. 

System (4.3) describes a food chain where y eats xx which in turn eats S. It 
will be studied in more detail in Sect. 8 and the results of the linear analysis can 
be found in Appendix B. 

For notational convenience we shall identify the nonnegative (S, Xl, y) cone 
with R 3. 

5. Preliminary results 

The following lemmas are straightforward and similar to results given in [5] and 
[21]. 

Lemma 5.1. All solutions S(t),  Xl(t), x2(t ) and y(t) of  (3.4) for which Xio>0, 
i = 1, 2 and yo > 0 are positive and bounded for t > O. 

Lemma 5.2. The simplex 

~ = {  ( S ' x l ' x 2 ' y ) :  S 'x ' 'x2 'y>~O; S+  ~ x'+ y :  

is a global attractor for (3.4). 
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It is evident that for all solutions of (3.4), lim,_,oo S(t)  > 0. 
It will be useful to consider the subsimplices ~H of  ~ :  

~ n  = {(S, x~, x2, y) c ~ :  x, = 0, i ~ H} (5,1) 

where H c {1, 2}. Thus ~ = ~1,  2~. 
The next result concerns extinction of  a population due to insufficient nutrient. 

The extinction is independent of either competition or predation. 

Lemma 5.3. For all solutions of (3.4): 

(i) /fA, ~> 1 (or A, = +~), then limt_,o~ xi(t) = O; 
(ii) / fS~>l  (or 8 = + ~ ) ,  then limt_,~y(t)=O; 

(iii) /f limt_~ Xl(t) = 0 t h e n  lim,..,~o y ( t )  = O. 

6. Transfer of global stability 

In this section we show that there is a hierarchy of  critical points and that under 
certain conditions global stability transfers from one critical point to another as 
various parameters are decreased. In this instance, the global behaviour at each 
stage resides in a single equilibrium point. 

Note that when A1 > 1, then E1 is the only critical point in the nonnegative 
(S, Xl, x2, y) cone, R 4, and when A~ = 1, E~ and Ex~ coalesce. An immediate 
consequence of  Lemmas 5.2 and 5.3 is 

Lemma 6.1. If /~ 1 ~-~ 1, then E1 is globally asymptotically stable for (3.4). 

Now we shall maintain A1 + 8 > 1, but allow A~ to decrease below 1. We shall 
show that as Ea 1 appears in R 4 there is a transfer of  global stability from E1 to 
Eal, and Ea~ remains globally asymptotically stable provided 1 - 8  < A1 < 1. In 
this parameter range El, E;q, and if A2 <~ 1, Exz, are the only equilibria in R4+. In 
order to prove this we shall use the following lemma, whose proof  is straight- 
forward and omitted. 

Lemma 6.2. Assume A1 < 1. Then for any solution of (3.4) for which Xl0>0, 
limt_.oo Xl(t) :> 0. 

Theorem 6.3. I f  1 -  8 < A1 < 1, then Ex I is globally asymptotically stable for (3.4) 
with respect to all solutions with initial conditions satisfying Xl0 > 0. 

Proof. Let (S(t), Xl(t), x2(t), y(t)) be a solution of (3.4) and let O denote its 
omega-limit set. Since 1 -  8 < A~ < 1, Ex~ is locally asymptotically stable for (3.4) 
(see Appendix A). Therefore E x ~ / 2  implies /2={E~}.  By Lemma 6.2, 
1-~-mt~oo x~(t) > 0, and so there exists P = (S, ~1,22, 37) ~/2 with ~ > 0. Let ~(t) = 
(S(t) ,  ~ ( t ) ,  ~2(t), 37(t)), where ~2(0)= P, be the solution of (3.4) through P and 
denote its orbit by 0(P) .  Since cl 0 (P )  c / 2 ,  if 37 = 0 then Ex1 c /2  by Lemma 4.1. 
If  37 ~ 0, by the preceding argument it suffices to show that limt_,o~ 37(t)= 0. 

Assume 8 < 1 or the result follows by Lemma 5.3(ii). Define e such that 
1 - 8 + e =/~1. Then e > 0. Since P ~ 12 a n d / 2  c ~ by Lemma 5.2, 

(S+~1+~2+37) ( t )=1  foral l  t~>0, (6.1) 

and 

( g + ~ + 2 2 + 3 7 ) ' ( t ) = 0  foral l  t~>0. (6.2) 



Predator-mediated competition in the chemostat 175 

If li---mt-,oo~q(t)<A1, then lim,_,oogl(t)=0 contradicting Lemma 6.2. But 
lim,_,oo S(t)>/A1 implies that S ( t ) >  A1 for all large t or there exists r >i 0 such 
that hi I-- -q(z) >I h I - -  e/2.  By (6.1) ~ ( z )  <~ 1 - -q ( r )  <~ 1 - (hi - e /2)  = 8 - e/2.  But 
then y'(~-) ~ y(~')(-1 + q(8 - e /2))  < 0. S(z) <~ Xl implies ~ ( r )  <~ 0 and ~ ( z )  <~ 0. 
Therefore, by (6.2) g'(~')> 0 and so S ( z ) I - - h i -  e /2  for all t>~ z. In any case it 
follows that S( t ) I - -h~-  e /2  for all sufficiently large t and so ~l(t)~< 8 -  e /2  for 
all large t. This implies lim,~oo)7(t)=0. The result follows. [] 

Next we shall assume that A2 is sufficiently large so that s = 1 - A2- 8pl(A2) < 
0. This is equivalent to S*~<A2. However, we shall allow the sum A1+8 to 
decrease. When A ~ + 8 = l  then Ex I and Es. coalesce, i.e. S*=A1 and y * = 0 .  
Therefore condition (A.2) (i.e. y * ( S q ' ( 8 ) - l ) / 8 + S p ~ ( S * ) > O )  holds, since 
p~(A~) > 0 by (2.4). By the continuity of the roots of the characteristic equation 
as a function of its coefficients, it follows that as the sum A1 + 8 decreases below 
1, Es. is at least initially locally asymptotically stable (see Appendix A). At the 
same time Ex~ loses not only its global stability but also its local stability since 
1 - A1 > 8 implies that the eigenvalue -1  + q(1 - ;t~) is positive (see Appendix A). 

Thus far our discussion has been for the general system (3.4). In certain 
special cases Es. picks up the global stability lost by Ex~ and maintains it provided 
A~ + 8 < 1 and 1 - A2 - 8p1(A2) < 0, In this case, if we allow A2 and /o r  8 to decrease, 
o n c e  1 - ) t 2 - t ~ p l ( A 2 ) = 0 ,  Es. and Ea 2 coalesce. As these parameters decrease 
further, Es. loses its local stability since then S * >  A2, and there is a transfer of 
global stability to Ex2. The transition from competitive exclusion to persistence 
is complete and the global attractor at each stage is a single equilibrium point. 
That this nice sequential transfer of global stability from one critical point to 
another is not always the case with general monotone kinetics will be demonstrated 
by an example in Sect. 9. 

The global stability results that follow can be obtained through Lyapunov 
function arguments. The details are given in [46]. 

Theorem 6.4. Assume that A 1 + ~ < 1. I f  X2o > 0, assume that 1 - A2 - 8p1(A2) <~ 0. 
Let q(xl) be linear, i.e. q (x l )=  Xl/ ~ and assume that each pi(S), i =  1, 2 is either 
linear, i.e. p~( S) = S /  Ai or Michaelis-Menten, i.e. pi( S) = miS/ ( Ai( mi - 1) + S). Then 
Es. is globally asymptotically stable for (3.4) with respect to all solutions for which 
xlo > 0 and Yo > O. 

Theorem 6.5. Assume that 1 - A2- t~pl(A2) >0.  Let q(x~) = x l /  ~ and assume that 
for each i = 1, 2 either pi(S) = S/AI or pi(S) = miS / (A i (mi -  1) + S). Then Ex~ is 
globally asymptotically stable with respect to solutions of  (3.4) for which X~o> 0, 
i = 1, 2 and Yo > O. (Recall that Ex: = (A2, 8, x2, y) where x2 = 1 - A2- t~pl(A2) and 
)3= 8 ( -1  +pl(A:)).)  

Theorems 6.4 and 6.5 indicate that the evolution of  the global attractor for 
the system (as various parameters are varied, making conditions favourable 
enough for a new population to survive) takes a very simple form if the appropriate 
assumptions of  Lotka-Volterra or Michaelis-Menten kinetics are made. 

7. A simple food chain 

We first encountered the following food chain in Sect. 4 (see system (4.3)) where 
we considered the three dimensional subsystems of the food web (3.4). 
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S'( t ) = 1 - S( t ) -  x( t)p( S(  t) ), 

x ' ( t )  = x( t ) ( -1  +p(S ( t ) ) )  - y ( t ) q ( x ( t ) ) ,  
(7.1) 

y'( t)  = y( t ) ( -1  + q(x( t ) ) ) ,  

So, Xo, and Yo >i 0. 

We drop the subscript 1 here (except for hi), since there is no ambiguity, and 
we use the notation for the critical points 3 3 (El,  EA1, and E : , )  introduced for 
system (4.3). 

System (7.1) has been studied by others (e.g. [4, 12, 17, 24, 37, 42]). Except 
for Butler et al. [4] and Gard [17] most of the previous work has concerned local 
stability analysis, numerical solutions or experimental results. The local analysis 
is summarized in Appendix B. 

Note that all the results in Sects. 5 and 6 apply to (7.1) with the obvious 
modifications. In particular, there is a transference of global stability from E~ to 
E:1 as •1 decreases below 1 and at least a transference of local stability from 
E3~ to E3. as h i + 6  decreases below 1. 

In the special case that the functional response q is Lotka-Volterra and p 
satisfies either Lotka-Volterra or Michaelis-Menten kinetics, by Corollary 6.6, 
E3. is globally asymptotically stable provided ha + 8 < 1. 

Assuming the functional responses p and q both satisfy Michaelis-Menten 
kinetics, Butler et al. [4] use the Poincar6 criterion (see, e.g. Coppel [8]) to show 
that E3. s is globally asymptotically stable whenever it is locally asymptotically 
stable. Since E3. is at least initially asymptotically stable as ha+ ~ decreases 
below 1, this implies that in this case, there is a transfer of global stability from 
E]I to E3.. They also show that if E3. is ever unstable then there is at least one 
periodic orbit surrounding it. They conjecture that if E3. is unstable then the 
limit cycle is unique and hence must be a global attractor with respect to noncritical 
orbits with positive initial conditions. Though they do not comment, by their 
method of proof they actually show that if E3. loses stability by decreasing hi + 
appropriately, then a certain inequality (see Appendix (B1) must be reversed 
and so at least initially there is a unique periodic orbit which is globally attracting 
with respect to noncritical orbits with positive initial conditions. In this case, 
then, there is a transfer of global stability from E~. to a bifurcating periodic 
orbit (as hi + ~ decreases). 

Gard [17] on the other hand, considers a more general model than (7.1) which 
reduces to (7.1) if the function g(x)  in his model is taken to be 1 - x  and the 
parameters a, b, c and d in his model are all equal to 1. In this case Gard obtains 
conditions under which weak persistence occurs (see Definition 1.1). He also 
shows that there is a unique interior equilibrium and if the equilibrium is unstable 
there is a nontrivial periodic orbit with trajectory in L{1 } N •3. 

In this section we show that (7.1) is persistent using a technique similar to 
the one used to prove Theorem 2.1 in [15]. This strengthens a result of Gard [17] 
in which just weak persistence was obtained. We also prove several results which 
will be used in Sect. 8 to show uniform persistence of (3.4). These results are 
interesting in themselves since they concern the eventual behaviour of solutions 
of (7.1). 
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Theorem 7.1. Let y( t )  = (S(t) ,  x( t ) ,  y( t ) )  be a solution of  (7.1). Then 

(i) lim,~,~ S ( t )>0 .  
(ii) if  hl < l and xo> O, lim,_,o~x(t)>0. 

(iii) / fh l  + 6 < 1 and Xo, yo > 0, limt_~ y( t )  > O, thus (7.1) is persistent. 

Proof: (i) is obvious. 
(ii) Let 12 denote the omega-limit set of y(t).  By Theorem 5.1 12 c •3 is 

compact. 
Assume h l < l  and Xo>0. Suppose E]~12. Since ) h < l ,  E 3 is an unstable 

hyperbolic critical point (see Appendix B) with stable manifold WS(E3) = 
{(S ,x ,y) :  S>~O,x=O,y>~O}. Since y(0)~ W~(E1), 12 r By Lemma 5.2 of 
[5] (see also [15]), there exists ps~  (W~(E31)\{E31}) n 12. By Lemma 5.2, ps~  
12 c Lr a positively invariant set. But then 6-(PS) r R 3, a contradiction since 
PS ~ 12 implies that  cl(6(P~)) c 12 = R 3. Therefore E]~  12. 

Suppose h, < 1, Xo> 0 and lim~_,oo x( t )  = 0. Then there exists P = (S, 0, )7) ~ 12 
and so cl(~7(P))~ O. By Lemma 5.3(iii), E3~12, a contradiction. Therefore 
lim~_.o~ x(t) > 0. 

(iii) Suppose ) t l q - 6 < 1  , Xo, y 0 > 0 .  By a similar argument to the one used 
above to show E ~  12, it can be shown that E3,~ 12. Assume limt_,ooy(t)= 0. 
Then there exists Q = (S, ~, 0) c 12 where ~ > 0 since lim,~,oo x( t )  > 0 by (ii). It 
follows from Lemma 4.1 that E 3 ~ c l ( 6 ( Q ) ) =  12, a contradiction. Therefore 
lim,_~oo y( t ) > O. [] 

Remark 7.2: In Theorem 7.1(iii), we can in fact prove the stronger assertion of 
uniform persistence by using the results of [6]. The main result of [6], paraphrased 
in our context, asserts that if ~ is a dynamical system for which R+ and its 
boundary are invariant, then ~ is uniformly persistent provided the following 
conditions hold: 

(1) o ~ is dissipative 
(2) ~ is weakly persistent 
(3) 0 ~  (the restriction of ~ to the boundary of R+) is "isolated" 
(4) 0ff is "acyclic." 
Although the dynamical system defined by (7.1) is not invariant on ~3+ or its 

boundary, the result quoted above is easily modified to apply to a dynamical 
system ff  on R+ for which the boundary 0R+ is the union of two sets Ba and B2 
such that B~ is invariant under ~ and B2 is a "repeller" into the interior of E+, 
provided that conditions (3) and (4) above are satisfied by 0ff~, the restriction 
of ~- to B 1 . 

For the system (7.1), condition (1) above holds by Theorem 5.2, and a stronger 
statement than condition (2) above has just been proved in Theorem 7.1(iii). 
Conditions (3) and (4) are somewhat technical to describe in general, but roughly 
speaking they are satisfied if the invariant sets on 0R~_ "repel" into the interior 
of ~ and are not "cyclically linked" by solution trajectories lying in 0R~_. 

In the case of Theorem 7.1(iii), (3) and (4) hold, for the (x, y)-face of OR 3 
"repels" into the interior of R3+ and the only invariant sets in 0R 3 are the critical 
points E] and E3.  Thus we have uniform persistence. This also implies that (7.1) 
has a compact weak global attractor lying in the interior of R3+ [6]. 
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We have therefore shown that no matter how tenacious the predator,  provided 
the substrate concentration is sufficient for the prey to survive in pure competition, 
it will survive predation in the sense that its concentration remains bounded away 
from zero for all positive time. To avoid extinction of  the predator,  however, the 
predator  must be efficient enough, i.e. Al'q-~ < 1. In this case the food chain 
persists. On the other hand it is possible to show that the more efficient the 
predator  (i.e. the closer 6 is to zero), the smaller the prey concentration is "on 
the average" and even though the prey concentration is bounded away from zero, 
the closer that bound is to zero. This is basically the content of  the next lemma 
in which we clarify what we mean by "on the average." We shall also require 
this lemma and the following as technical lemmas for our discussion of persistence 
of  the food web in Sect. 8. However,  before stating the next lemma we introduce 
the following parametrizat ion of  (7.1): 

S'( t) = 1 - S(  t) - x(  t )p(  S(  t) ), 

x'( t) = x ( t ) ( - 1  + p( S(  t) ) ) - y ( t )q~(x (  t) ), 

y'( t) = y ( t ) ( - 1  + qs(x(  t) ) ), 

So, Xo and Yo ~> O. 

(7.2)~ 

We assume that the function q~ satisfies all the usual assumptions on q (i.e. 
(2.2)-(2.3); (2.6)-(2.8); and (3.5)-(3.7)). In addition we assume that 

lim~_,o§ qs(e)  = + ~  for every fixed e > O. (7.3) 

It may be verified that if q satisfies Lotka-Volterra,  Michael is-Menten or multiple 
saturation kinetics then q can be parametrized in this way. In these examples 
6 -~ 0 + is equivalent to the maximum growth rate tending to +oo. 

Lemma 7.3. Let  e > 0 be given. Assume that A1 + 8 < 1. Let  ( S( t ), x (  t ), y(  t ) ) be 
any f ixed solution o f  (7.2) ~ for  which Xo > 0 and Yo > O. Choose l > O, L > 1 and 

>~ 0 such that l < y(  t) < L for  all t >t T where I and T depend on 6 and the solution. 
(This is possible by Lemmas  5.1, 5.2 and Theorem 7.1.) Select any T > In(L/ l )  and 
any s >! T +  T. Define A = { t c Is - T, s]: x(  s ) >I e }, a = I~ ( A ), the Lebesgue measure 
o f  A,  and a = (1/  T ) I z (A) .  Then a < 2 /  q~(e). 

Proof: Define A c to be [s - T, s ] \A .  

I f  t c A then y ' ( t ) / y ( t )  >~ - 1  + q~(e). 

I f  t ~ A c then y ' ( t ) / y ( t )  >i - 1 .  

Integrating the y equation from s -  T to s yields: 

l n ( y ( s ) / y ( s -  T))>~ IA ( - 1  + q s ( e ) )d lx+  IAo-1  d/~ 

= ( - l + q ~ ( e ) ) a - ( r - a )  

= T ( a q s ( e )  - 1). 
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Therefore a <2/q~(e)  since otherwise 

ln (L / l )  >- ln (y ( s ) / y ( s  - T)) >- T, 

a contradiction. [] 

We can also show that if 6 > 0 is sufficiently small then "'on the average" the 
S-component of any solution eventually remains close to one. This is made 
rigorous in the following lemma. 

Lemma 7.4. Choose e sueh that 0 < e < l / 4  and choose L > I .  Let M =  
max(L ,p (L) ) .  Assume 6 > 0  is sufficiently small so that h i + 6 <  1 and q~(e)> 
4(1 + M / ek ) / 4F, where k = (1/,J-e) - 1. Let ( S( t ), x( t ), y( t ) ) be any fixed solution 
of  (7.2)~ for whieh x0> 0 and yo > 0. Choose l> 0 and 7"> 0 so that 

l<~y(t)<~L, O<~S(t)<~L, and O<-x(t)<-L 

for all t >! T. Select 

such that 

For any s >i 2 T, define 

Then 3 < 6x/-e. 

Proof. Define 

T > max(In(L\  l), 2/e,  T) 

S(t)  < 1 + eM for all t>~ T. 

B = { t ~ [ s -  T, s]: S(t)<~ 1 - ( l + k ) e M }  

1 
b = / z ( B )  and /3=~/ .~(B) .  

Then, 

A =  {t c [ s -  T, s]: x( t )  >i e}, 

1 
a = ~ ( A )  and a = - ~ / z ( A ) .  

Let B c denote [ s -  T; s]\B. Then [ s -  T, s] = U~=l Gi where 

G a = B n A  ~ 

G2= Bc~A 

G3=BC n A  c 

G 4 = B ~ n A  

(and so/z(G1) t> b - a), 

(and so/~(G:)  <~ a), 

(and so/.~(G3) ~ < T), 

(and so/~ (G4) ~< a). 

S'(t)>~ 1 - ( 1  - ( l  + k ) e M ) - e M =  ekM 

S'(t) >~ 1 - (1 - (1 + k ) e M )  - M 2 >1 - M  2 

S'( t) ~ 1 - (1 + eM)  - eM >i - 2 e M  

~ r  tE G1, 

~ r t e G 2 ,  

~ r t ~ G 3 ,  
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and 

S ' ( t ) > ~ I - ( I + e M ) - M 2 = - e M - M  2 for t ~ G4, 

since s is chosen sufficiently large. 
Integrating the S equation from s -  T to s yields 

M >I S(s) - S(s - T) >i ekM(b - a) - M2a - 2 e M T -  (eM+ M2)a. 

Therefore, 

or  

b <~ a(1 + 1/k) + (1 +2Ma +2eT)/ek, 

<~ 2a + 1 /Tek+2Ma/ek+2/k ,  

since k > l i f 0 < e < l / 4  

<~6v~- 

since T >  2 /e  by selection, and for 0 <  e < 1/4, k >  1/(2~/-e -) which implies that 
1/Tek < ~ and 2 /k  < 4v/e. Also, 2a (1 + M~ ek) < 4 ~  by Lemma 7.3 since q~ (e) > 
4(l + M /  ek)/v/-~. [] 

Since by Lemma 5.2, S + x + y ~  1, it is evident that if the hypothesis of  the 
preceding Lemma hold then "on the average" the y-component  of  any solution 
eventually remains close to zero provided 6 > 0 is sufficiently small. 

8. Persistence of the food web 

In this section, we again focus our attention on the food web described by model 
(3.4), and obtain conditions under which system (3.4) uniformly persists. 

We begin with the results that require the fewest restrictions on the functions 
Pl, i = 1, 2 and q. If  not otherwise stated, the only assumptions on these functions 
are those given in Sects. 2 and 3. 

Lemma 8.1. For any solution of (3.4): 
(i) / f A l < l  andxlo>O , then limt_,oox~(t)>O; 

(ii) / f A l + 8 < l  andxlo, yo>O, then limt_,~y(t)>O. 

Proof. Let y( t )  = (S(t), xl(t), x2(t), y(t)) be a solution of (3.4) and let 12 denote 
the omega-limit set of  y(t) .  

(i) Assume A~<I and Xl0>0. Suppose l i m , ~ x l ( t ) = 0 .  Then there exists 
/5=(S,  0, ~2, 37) ~12, and by Lemma 5.2, S+~2+37=1.  By Lemma 5.1, 12 is 
compact and contained in •4. From (4.2) it follows that 

at least one of  E1 or E~ 2 (if As < 1) c 12 (8.1) 

Suppose E~c12. 12~{E~} since by Lemma 6.2, l im,_,~Xl(t)>0. Since E~ is 
hyperbolic (see Appendix A), by Lemma 5.2 of [5], there exists P~c 
(WS(E1)\{E1})nff2. But WS(E1)={(S, xI,x2, y)EI~4:xI:0 and if A2<l  then 
x2 = 0}. Thus ps c {(S, Xl, x2, y) ~ ~ :  Xl = 0, y/> 0 and if A2 < 1 then x2 = 0}. If  
A2~ > 1, by Lemma 5.3(i), l i m t ~  XE(t)= 0 and so there is no loss of  generality if 
we assume A2 < 1. But then ~7-(P ~) r R 4. Since P~ c 12 implies that cl(O(P~)) c 12, 
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we have derived a contradiction. Therefore El ~ O. Suppose }~2 < 1 and Ex 2 E [2. 
{Ex2} ~ 12 since lim,_,oo Xl( t )> 0. Since EA~ is hyperbolic, by Lemma 5.2 of [5], 
there exists QS E (WS(Ex2)\{E~2}) c~ [2. Since WS(E~) = {(S, Xa, x2, y) E R~: xl = 0, 
x2 > 0} and I2 c ~,  QS c {(S, x~, x2, y) E ~ :  x~ = 0, x2 > 0}, a two-dimensional posi- 
tively invariant set. By the Poincar6-Bendixson Theorem, either E1 ~/2 or 
6 - ( Q  s) r R4+. But both alternatives are impossible. Therefore E~2~ ~2. Hence, by 
(8.1) limt~o~ x~(t) > 0. 

(ii) Assume A 1 + 6 < 1  and X~o, yo>0.  Suppose limt_.ooy(t)=0. Then the 
system reduces to the chemostat model (4.1). Since X~o>0, lim,_~oo S ( t ) =  A~, 
lim,~,~x~(t) = 1-Aa and lim,~oox2(t)=0 by Lemma 4.1. But 1 - A ~ > 8  and so, 
since yo> 0, y ' ( t )>  0 for all sufficiently large t. Therefore 

lim y( t )  r 0. (8.2) 
t --~ o o  

If A2/> 1, by Theorem 5.3 (i), lim,_~oo x2(t) = 0 and so the result follows by Theorem 
7.1. Therefore, assume A2<l .  Suppose limt_~ooy(t)=0. Then there exists t3= 
(S, ~ ,  82, 0) E 12 with S +  ~a + 82 = 1. t5 E O implies that cl ~(/5) c / 2  and so at 
least one of El ,  Ex, or Ease/2. But by part (i), l imt_~Xl ( t )>0  and so E1~I2 
and Ex2~O. Suppose E~IEs By (8.2) lim~_~ooy(t)#0. Therefore {Ea,}~I2. 
Since Ex~ is hyperbolic (see Appendix A), by Lemma 5.2 of [5], there 
exists PsE(WS(E~,)\{Ex~})c~(2 where WS(Exl)={(S, x1,x2,y)E~4".Xl>O, 
y = 0}. Since P~ E 12 c ~7, p" E {(S, x~, x2, y) E ~7: Xl > 0, y = 0}. Now either Ea 
or E x ~ c l f f - ( P  ~) or c l ~ - ( P ~ ) r  4. None of these alternatives is possible. 
Hence lim,_,oo y( t )  > O. [] 

Part (i) of  this lemma tells us that if the system is viewed purely deterministi- 
cally, the introduction of  a predator cannot reverse the outcome of the competi- 
tion. We comment further on this in the discussion in Sect. 10. 

It is evident from Lemma 6.1 and Theorem 6.3 that a necessary condition for 
persistence of (3.4) is that ;h + 6 < 1. This condition is certainly not sufficient since 
Es. is locally asymptotically stable if, as well, A1 + 6 is sufficiently close to 1. The 
next few results deal with sufficient conditions for persistence of (3.4). 

The proof  of the following Lemma is similar to the proof  of Theorem 7.1. 

Lemma 8.2. Let y( t) = ( S(  t), x~( t), x~( t), y( t) ) be any solution of  (3.4) such that 
X~o> 0 i = 1, 2, yo > 0 and limt~oo x2(t) > 0. Then limt_,~o S( t )  > 0, l i m t ~  x~(t) > 0 
and lim~o~ y( t )  > 0. 

Theorem 8.3. Assume A~<I. Assume also that q ( x ( t ) ) = q ~ ( x ( t ) )  where 
lim~_~o+ q~ ( e ) =  +oo for any fixed e > O. Provided 6 > 0 is sufficiently close to zero, 
it follows that limt_,oo x~(t) > 0 for any solution of  (3.4) for which So >i O, X~o, Yo > 0 
i = 1, 2 and hence system (3.4) is persistent. 

Proof. Define 

g = p2(A2 + (1 - A~)/2) - 1. (8.4) 

Then g > 0  since A2<l .  Choose L >  1 and let M = m a x ( L , p ( L ) ) .  Select e > 0  
such that 

e < m i n [ ~ , ( l _ A 2 ~ 2  g 2 
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Choose  6 > 0 sufficiently small  so that  

1 1 + 6 < 1  and q~(e)>4(l+M/ek)/x/-{ ,  where  k = ( 1 / v r ~ ) - l .  (8.6) 

Let y ( t )  = (S( t ) ,  x l ( t ) ,  x2(t), y ( t ) )  be  a fixed solut ion of  (3.4) for  which So/> 0 
and  X~o, y o > 0  i = 1, 2. Assume  l imt_~ x 2 ( t ) = 0 .  Then,  there  exists a sequence  
{t,} with t, ~ m as n ~ 0o such that  x2(t,)  ~ 0 and  x2(t,) < x2(t) for  all t < t,. Since 
all solut ions are bounded ,  wi thout  loss of  generali ty,  we assume that  3 '(t ,)  ~ / 5  = 
(,S, 21,0,  )7) (passing to a subsequence  and relabell ing if necessary) .  Let p ( t )  = 
(S( t ) ,  2a(t) ,  0, y ( t ) )  denote  the solut ion o f  (3.4) th rough  /5. Since A l+  6 < 1, by 
L e m m a  8.1, if1(0) > 0 and  y(0)  > 0. 

Choose  l >  0 and T~> 0 with respect  to the solut ion ~( t )  so that  

l<-y(t)<-L, 

0~< S( t )  ~< L, and 

for  all t/> T.. Select 

O<~2(t)<-L 

T >  m a x [ 2 / e ,  ln(L/l),  7"], (8.7) 

such that  

S ( t ) < l + e M  f o r a l l  t~>T. 

Since the funct ions  on the r ight -hand side of  (3.4) are C 1 and  since (3.4) is 
a u t o n o m o u s  with all solut ions bounded ,  it follows by cont inuous  dependence  
on initial condi t ions  that  there exists 6 >  0 such that  p(y(.c), ~(~-)) < t~ implies 
that  p(y(t) ,  ~(t)) <V~-~M for  all t e [ ~ ' -  T, ~-] where  6 depends  on T but  not  on 
~'. Here  the metr ic  p is def ined by p(a, b) 4 -- Y~i=l lai - b~l if  a = ( a , ,  a2, a3, a4) and 
b = (bl ,  b2, b3, b4). Since y ( t , )  ~/5,  there exists ~r > 0 such that  p(y(t ,) ,  P) < g 
prov ided  n/> 1~/. Since the system (3.4) is au tonomous ,  there is no loss of  general i ty  
if  we a s s u m e / 5 =  ~( tN)  for  any  N>~ N, fixed. Therefore ,  p(y(tN), 9 ( t n ) )  < g a n d  
so p(y(t),  ~,(t)) <x/-{M for  all t e  [tN - T, tN]. Therefore ,  by  the definit ion of  p, 

IS(t)  - ,~(t)l < x/e-M for  all t e [tN -- T, tN]. (8.8) 

Define,  

B = {t e [tN - T, tN]: S(t) <~ 1-2,/-gM}, 

G = {t e [tN - T, tN]: S(t) <~ 1 -x/-eM}, 

1 1 
/ 3 = - ~ ( B )  and y = - ~ / ~ ( G ) .  

Then  by L e m m a  7.4, 3' <~ 6x/-~ p rov ided  tN > 2T. Since t, ~ oo as n ~ 0o and the 
only restr ict ion on N is tha t  N I> ]<r, there is no loss of  general i ty  if we assume 
tN > 2 T .  By (8.8) B c  G and so 

fl ~ y ~ 6v/-e -. (8.9) 
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Also, if 7~ [tN - T, tN]kB, defined to be B c, then 

S(t") > 1 - 2 v ~ M  

[1 --12"~ by (8.5) 

= a2+ (1 - t2)/2.  

Therefore, by (8.4) 
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- l+p2(S ( t ) )>~g  for all t c B  ~. (8.10) 

Integrating the x2 equation from tN - T to tN yields 

) Xz(tN) = Xz(tN - T) exp ( -1  +p2(S(v)))  dv , 
\ d t  N - -  T 

which implies that 

I tN ( - l + p 2 ( S ( v ) ) )  (8.11) dv<O 
t N - - T  

since by construction of  the sequence {t,}, x2 ( tN-  T ) >  x2(tN). However, 

( - l + p 2 ( S ( v ) ) ) d v =  ( - l + p ~ ( S ( v ) ) )  dr+ ( - l + p 2 ( S ( v ) ) ) d v  
t N - -  T c 

~ ( - 1 ) l ~ ( B ) + g ( T - l z ( B ) )  by (8.10) 

= T ( g - f l ( l + g ) )  

~> T ( g - 6 ~ / ~ ( l + g ) )  by (8.6) and (8.9) 

> T ( g - 6 ( ~ ( l + g ~ ) ( l + g ) )  by (8.5) 

= 0  

contradicting (8.11). Therefore, provided 6 > 0 is sufficiently close to zero so that 
(8.6) holds, l i m , ~  x2(t) > O. 

That system (3.4) persists now follows immediately from Lemma 8.2. [] 

Remark 8.4. As with Theorem 7.1, we may make the stronger assertion that (3.4) 
is uniformly persistent. 

One can actually show that S( t )+x2( t )  is "on the average" as close to 1 as 
we like if q can be parametrized as in the hypothesis of  the previous theorem 
and 6 > 0 is chosen sufficiently close to zero. The proof  is similar to the proof  
of  Lemma 7.3. From this we infer that as 6 tends to zero the uniform lower 
bounds on both lim,~oo xl( t)  and limt+ooy(t) tend to zero. We shall comment 
further on the ecological implications of  this in the discussion in Sect. 10. 

Theorem 8.5. Assume 1 - h2 - 6p1(12) > 0. I f  Es. is globally asymptotically stable 
for (3.4) with respect to solutions for which xl0 > 0, X2o = 0 and Yo > O, then system 
(3.4) is uniformly persistent. 
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Proof. Let y ( t ) =  (S(t) ,  xl(t) ,  XE(t),y(t)) be a solution of (3.4) for which Xio, 
y >  0 i = 1, 2 and let s denote the associated omega-limit set. Since 1 - A 2 -  
6pl(AZ) > 0 implies that A1 + 6 < 1, by Lemma 8.2 and Remark 8.4 it suffices to 
show that limt~oo X2(t) > 0. 

Suppose limt_~ x2(t) = 0. Then there exists /5 = (~, xl,  0, )7) c/2,  where $1, 
)7 > 0 by Lemma 8.2, and c l (~( /5 ) )c  O. Note that 1 -A2-6p~(A2)> 0 implies that 
S * >  A2 and so (see Appendix A), Es* is unstable. Therefore {Es.} ~ / 2  since 
y(O)~ W~(Es . )={(S ,  xa,xE, y): Xl>0,  xz=0 ,  y > 0 ,  S~>0} because X2o> 0. Sup- 
pose /5  = Es..  Since Es. is hyperbolic and {Es*} r  by Lemma 5.2 of [6] there 
exists P~ ~ (W ' (Es . ) \ {Es . } )  n O. Therefore, without loss of generality, assume 
/5 ~ Es..  Since/5 ~ 5r and ~ ,  )7 > 0, the closure of the  negative semi-orbit through 
15 either contains E~, Eat, Ea2 or it is not contained in R4+. But lirn~_.~ y ( t ) >  0 
and O = R 4 and so none of these alternatives is possible. This contradiction yields 
the result. [] 

One may obtain a number of technical conditions that guarantee the global 
stability of E3.  with respect to (7.1), by virtue of Theorem 8.5. 

Corollary 8.6. Assume 1--/~2--~pl(A2)>0. Suppose that one of  the following 
alternatives holds: 

(i) H is differentiable and AI + 6 is sufficiently close to 1, or 
(ii) h is differentiable and h'(x) >! 0 for all 0 < x < 1 - A1, or 

(iii) q is twice differentiable and convex for 0 < x <  1-A1. Then system (3.4) 
is uniformly persistent. 

By Theorem 5.2 it is possible to eliminate S from model (3.4) to obtain a 
three-dimensional Kolmogorov model that could be interpreted as two com- 
petitors and a predator with the predator predating on one of the competitors. 
In [15], Freedman and Waltman derive persistence criteria for general 
Kolmogorov models describing three interacting predator-prey populations as 
long as it can be shown that there are no nontrivial periodic orbits on the bounding 
coordinate planes. Our results contrast with theirs, since in our more restricted 
context, we are able to derive persistence criteria without having to exclude 
the possibility of periodic orbits. See in particular Theorem 8.3 and the 
example in the following section. 

9. An example 

That the orderly transfer of  global stability from one critical point to another, as 
described in Sect. 6 (see Theorem 6.4 and 6.5), is not always the case for the 
food web (3.4) will be illustrated by means of an example. Recall that Es. is 
always locally asymptotically stable when it first enters the nonnegative cone (i.e. 
just as the sum AI + 6 is decreased below 1). In the following example, as 6 is 
decreased further, Es* loses its stability via a Hopf  bifurcation before E~ 2 appears 
and/~2 is unstable as it enters R4+. If 3 is decreased sufficiently there is predator- 
mediated persistence and not only does the otherwise inferior competitor survive, 
but it survives at a higher concentration than that of its rival. 



Predator-mediated competition in the chemostat 185 

Example 9.1. In  this example  we assume that  Pl is Lo tka -Vol te r ra  and  q is 
Michae l i s -Menten .  More  specifically, let 

pa(S) = 4 S  (i.e. }k I = 1/4) (9.1) 

and  

q(x,) = x1( 6 + 2 a ) / ( 6 ( 2 a  + x0 ) ,  

We also fix 

Then,  p rov ided  

where  a = ( ~ - 2 ) / 1 2 ~ 0 . 1 3 3 8 .  (9.2) 

h2 = 67/100. 

6 > 3 3 / 2 6 8 = 0 . 1 2 3  (i.e. 1-h2-6p~(h2)<O)  

/~x2 does not  lie in R 4, but  p rov ided  

6~<3/4 (i.e. h l + 6 ~ < l )  

(9.3) 

Es* does lie in ~4.  For  this example  

S *  = A , / ( ~ I  -[- 8)  = 1 / ( 1  + 4 6 )  

(9.4) 

(9.5) 

p2(S) = 150S/(67 + 50S). 

In  bo th  figures we take 

So= 0.4, Xlo = 0.3, X2o = 0.2 and Yo = 0.1. (9.9) 

In  Fig. 1, 8 = 0.3 > a. The solut ion converges to Es..  In  Fig. 2, 6 = 0.13 < a and 

I f  (9.7) is positive, Es. is locally asymptot ica l ly  stable and if (9.7) is negative,  
then Es. is unstable.  With Pl and q satisfying (9.1) and  (9.2), (9.7) equals 
(8(1682 + 32a6 + 8a - 3)) / ( (1  + 4 6 ) ( 2 a  + 8)). Thus the sign of  (9.7) depends  on 
the sign o f  g ( 6 ) =  1 6 6 2 + 3 2 a 6 + 8 a - 3 .  Since a > 0, g (6)  is a strictly increasing 
funct ion of  8. Not ing that  g ( a ) =  0, it follows that  Es. is locally asymptot ica l ly  
stable for  8 >  a and is uns table  for  6 < a. For  6 = a bo th  (9.4) and  (9.5) are A 
satisfied and  so Es. loses its stability before  E~ 2 appears  in the nonnegat ive  cone. 
At a = 8, the characteris t ic  equat ion  can be shown to have two real, negative 
roots and two pure  imaginary  roots and the real par t  o f  the complex  conjugate  
pa i r  o f  roots  crosses zero t ransversely at 6 = a. Thus the change in stability at 
6 = a is via a H o p f  bifurcat ion.  Numer ica l  results seem to indicate  that  the 
bi furcat ing per iodic  orbits exist for  6 < a and  are stable. 

Figures 1 and  2 i l lustrate this H o p f  b i furca t ion  in the case that  

(9.8) 

(9.7) y*(6q'(8) - 1) /8  + 6p~(S*). 

and so if  bo th  (9.4) and (9.5) hold,  S* </~2" Therefore ,  by  (A2) the local stability 
of  Es. depends  on the sign of  

(9.6) 
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Fig. 4. Predator-mediated persistence (~ = 
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so ~ satisfies (9.4) and (9.5). Therefore /~2~ R4+ and Es. is unstable. This figure 
seems to depict a stable periodic solution. 

Figures 3 and 4 also depict solutions with p2(S) defined by (9.8) and initial 
conditions (9.9). In Fig. 3, 8 =0.12 and so /~2eN 4, but 6 is close to the value 
at which/~A2 and Es* coalesce. Clear ly/~2 is unstable. 

In the final graph, Fig. 4, we reduce 6 even further, to 6 = 0.014. For this 
value of 6 we obtain persistence. Note that not only does x2 survive, but it survives 
at higher concentrations than its rival, xl. Also, a good deal of  the time the 
concentrations of  xl and y are very close to zero. Thus each of these populations 
is in danger of  a small stochastic event causing extinction in finite time. 

10.  D i s c u s s i o n  

We have been concerned with the qualitative behaviour that can result when a 
predator invades a chemostat  in which two populations of  microorganisms are 
competing for a single, essential, growth-limiting nutrient. We are also interested 
in the 3-dimensional food chain that results when the competitor that is inferior 
in the absence of predation is eliminated. For the most part  we consider 
general monotone dynamics for microbial-nutrient dynamics. We are however, 
motivated by results obtained by considering three common prototypes for 
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monotone functional responses: Lotka-Volterra,  Michaelis-Menten,  and multiple 
saturation. 

In general we can summarize the results of  this paper  as follows. As various 
parameters are decreased, the model exhibits a sequence of  different stages of  
global behaviour. At each stage, conditions have become sufficiently favourable 
for a new populat ion to survive. Eventually the model predicts persistence of the 
entire food web. 

We obtain our most complete results in the case that a Lotka-Volterra response 
function is used to describe prey utilization by the predator  and each response 
function describing competi tor-substrate  interaction is of  either Lotka-Volterra 
or Michael is-Menten form. In this case there is an unbroken chain of  transference 
of  global stability from one critical point to another as certain parameters decrease. 

I f  we relax the assumptions on the functional responses further to allow quite 
general monotone  kinetics, there is still a transference of  global stability from 
El to Ex 1 to Es. as described above. However,  the chain can be broken at this 
point. What  one can however show is that if predation is voracious enough the 
entire food web persists. 

I f  we interpret the thresholds A~, hi + 6, and 1 - A~ - 6p~(A2) in terms of their 
counterparts for the unscaled model, we gain insight into the biology of the 
situation. Decreasing a Ai can be achieved either by increasing S ~ the concentra- 
tion of nutrient in the feed bottle, by decreasing D, the dilution rate or by selecting 
a competitor that is more efficient at low concentrations of  substrate. Decreasing 
6 can be achieved by increasing S ~ by decreasing D or by selecting a predator 
that is more efficient at low concentrations of  the prey. However, 8 can also be 
decreased by selecting a prey with larger growth yield constant Yl. Thus, according 
to the predictions of  this model,  there are a number  of  ways that an experimenter 
can make adjustments in order to influence the outcome of the microbial interac- 
tions in a chemostat. Also, he should be able to predict the outcome in advance, 
based on the measurement  of  certain parameters  and the measurement  of  these 
parameters  can be achieved by studying the interactions between pairs (i.e. 
competi tor-substrate  pairs or the predator-prey pair). Therefore, the predictions 
of  this model can be tested in the laboratory in a way analogous to that used by 
Hansen and Hubbell  [20] to verify the predictions of  the model analyzed by Hsu, 
Hubbell  and Waltman [21]. 

In [5] we showed that in the absence of a predator,  one competi tor  always 
outcompetes his rival (i.e. there is at most one survivor). This model evidently 
confirms current ecological thinking that predation can be responsible for diversity 
in ecosystems. Levin [26] explains: "Two species can coexist at a stable equilibrium 
i f  each is limited by an independent combination of  predation and resource limitation, 
since then two independent factors are serving to limit two species." Paine [32] gives 
experimental results that actually show that the removal of  one predator,  Pisaster, 
resulted in a collapse from a 15 species to an 8 species food web. For other 
examples of  competitive coexistence resulting from predation see 
[10, 11, 30, 33, 34, 48]. 

What can be said about  the possibility of  invasion by a predator  actually 
causing reversal in the outcome of  competit ion between two rivals? In the strictly 
deterministic sense, invasion by a predator does not reverse the outcome of the 
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competition. However, at a sufficiently high level of predation, the loser in pure 
competition survives at a more abundant concentration on the average than his 
rival, who periodically plunges to dangerously low levels (see Fig. 4). So from 
a stochastic point of view it is conceivable that there would be a reversal of 
competitive outcome. 

With respect to Rosensweig's paradox of enrichment [35], it is also noteworthy 
that this model predicts that the more the environment is enriched by increasing 
the concentration of substrate in the feed bottle, the more diverse the ecosystem 
that persists, even though, as Saunders and Bazin [36] point out, enrichment can 
cause all the equilibria to destabilize. 

Appendix: Linear analysis of the food web and food chain models 
A. Linear analysis --food web model 

We summarize the local stability of  each of  the critical points E~, Ex~ , Ex2, Es., Ea2" 
a. Et is asymptotically stable if A1, )t 2 > 1 and is unstable if either A~ < 1 or h 2 < 1. 
b. EA2 is always unstable. 
c. E~ is asymptotically stable provided 1 -  fi < A~ < 1 and is unstable if A~ + 6 < 1. 
d. Es .  is asymptotically stable provided that 

(i) S*<A2,  

and 

(ii) y*(6q'(6)-l) /6+@~(S*)>O. (A2) 

If the inequality in (i) or (ii) is reversed then Es. is unstable. Note that, 

6q'(6) - 1 = 62h'(8), 

so that (ii) is equivalent to 

(ii)' y*h'(6)+pi(S*)>O. (A3) 

e. /~A2 is locally asymptotically stable provided 

(i) Co>0 ,  C ~ > 0  and C 2 > 0  , (A4) 

and 

(ii) 32=C2C, -Co>0  , (A5) 

where co, c~, c 2 are the coefficients of  the associated characteristic equation, and is unstable if any 
inequality in (i) or (ii) is reversed. One can show that provided/~A2 lies in the positive (S, x~, x2, y) 
cone and 6q'(6)/> 1 then /~x2 is locally asymptotically stable. In particular this applies if q(xl) is 
Lotka-Volterra, i.e. q(xl) = xl /8 since then 6q'(8) = 1. However, if q(x 0 satisfies Michael is -Menten 
kinetics, i.e. q(x 0 = t~x~/6(l~ - 1) + x 1 where/~ > 1, then 6q'(6) = (/~ - 1)/~t < 1. 

B. Linear analysis -- food chain model 

We summarize the local stability of  each of the critical points E 3, E ~ ,  E3. .  
a. E~ is asymptotically stable if )q > 1 and is unstable if A1 < 1. 
b. Eaa, is asymptotically stable provided 1 -  6 < }t I < 1 and is unstable if A~ + 6 < 1. 
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c. E3s �9 is asymptotically stable provided 

y*(~q'(t~) - 1)/t~ + 8p~(S*) > 0 (B1) 

and is unstable if the inequality is reversed. 
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