
COMPETITION IN THE PRESENCE OF A VIRUS IN AN AQUATIC
SYSTEM: AN SIS MODEL IN THE CHEMOSTAT
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Abstract. Recent research indicates that viruses are much more prevalent in aquatic environ-
ments than previously imagined. We derive a model of competition between two populations of
bacteria for a single limiting nutrient in a chemostat where a virus is present. It is assumed that the
virus can only infect one of the populations, the population that would be a more efficient consumer
of the resource in a virus free environment, in order to determine whether introduction of a virus can
result in coexistence of the competing populations. We also analyze the subsystem that results when
the resistant competitor is absent. The model takes the form of an SIS epidemic model. Criteria for
the global stability of the disease free and endemic steady states are obtained for both the subsystem
as well as for the full competition model. However, for certain parameter ranges, bi-stability, and/or
multiple periodic orbits is possible and both disease induced oscillations and competition induced
oscillations are possible. It is proved that persistence of the vulnerable and resistant populations can
occur, but only when the disease is endemic in the population. It is also shown that it is possible
to have multiple attracting endemic steady states, oscillatory behavior involving Hopf, saddle-node,
and homoclinic bifurcations, and a hysteresis effect. An explicit expression for the basic reproduction
number for the epidemic is given in terms of biologically meaningful parameters. Mathematical tools
that are used include Lyapunov functions, persistence theory, and bifurcation analysis.
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1. Introduction. It is known that bacteria are present in abundance in marine
and lake environments, but it was only recently discovered that viruses are present in
even greater abundance than bacteria [6]. Indeed, current research seems to indicate
that viruses have significant impact on bacterial populations in aquatic environments
and may be responsible for controlling phytoplankton blooms in the ocean and they
may play a role in regulating biodiversity [19]. These special viruses that attack bacte-
ria are called bacteriophage or phage. In a letter to Nature, Bergh et al. [5] state that
“...virus infection may be an important factor in the ecological control of planktonic
micro-organisms...” and indicate that studying the role of viruses in aquatic environ-
ments should not be neglected. They suggest that by enhancing bacterial diversity, a
phage can act as a “controller”. Phage usually have a specificity with regard to their
prey, and so they often attack the otherwise “stronger” competitor, thus reducing the
effect of phytoplankton and phytobacterial blooms in the ocean by severely inhibiting
the competitive capacity of the blooming microorganism, allowing “lesser” competi-
tors to step in ([6], [7], [31]). Other studies ([11], [19], [23]) also provide support that
viruses and bacteriophage play a significant role in aquatic bacterial ecology.

There are two typical methods of viral reproduction, the lytic cycle considered
virulent and the lysogenic cycle considered temperate [21]. In [32], the proliferation
of temperate viruses in Lake Superior was studied. Campbell [9] and Lwoff [21] also
report on the widespread nature and significance of lysogenic phage. The lytic cy-
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cle involves four stages: penetration of the host cell; biosynthesis using the host cell
to manufacture large amounts of viral components; biosynthesis i.e., assembling the
viral components into complete viruses; and lysis or bursting of the infected cell re-
leasing new viruses that infect other cells. However, some lytic viruses escape the
host cell without bursting the cell membrane, by budding off taking a portion of the
cell membrane from the host cell. In the lysogenic cycle, the bacteriophage does not
immediately destroy the hosts DNA and take control of the cell. Similar to lytic repro-
duction, lysogenic reproduction also begins when the phage inserts its DNA or RNA
into the host cell through its surface. Once inside the cell, it becomes a part of the
genome of the host cell and is called a prophage. The phages genetic information is
copied and distributed to the daughter cells of the host cell, which continues dividing
naturally. This allows the prophage to be repeatedly copied and passed on without
destroying the host cell it depends on for metabolic and reproduction purposes. In
order for actual active phages to be produced, the segment of genome from the orig-
inal phage exits the genome of the host cell and becomes independent. When this
occurs, it begins the lytic cycle, destroying the cell, but producing new and functional
phages. After becoming lysogenic, some bacteria lose their lysogenic power, becom-
ing newly susceptible. Often bacteriophage use a mixed strategy (see [10]). Such
bacteria/viruses are most relevant here.

The basic chemostat model predicts that coexistence of two or more microbial
populations competing for a single non-reproducing nutrient is not possible. (See
([1], [8], [14], [15], [20], [38]). This prompts the question: Can the incorporation
of a virus induce the stable coexistence of bacterial competitors in a chemostat-like
environment?

We consider a model of exploitative competition in a chemostat containing a virus.
We assume that only one of the competing populations is susceptible to infection by
the virus, the population that would be the superior competitor in the absence of
the virus. We model the dynamics of the infection using an SIS model, i.e. bacteria
become infected with the virus by close contact with other infected bacteria or bacteria
that burst. We assume that not all the infected cells lyse, but rather some are able
to clear the virus and return to the normal susceptible state. Thus there can be both
lytic and lysogenic cycles. Since we assume an infectious contact rate between the
susceptible and infected population, as in most epidemic models, we assume that it is
not necessary to model the virus explicitly. The model of the vulnerable population
takes the form of a standard SIS epidemic model and so the results of our analysis
would apply to any SIS disease in a chemostat. Our model reduces to the SI model
when one of the parameters, the parameter modeling recovery, is set to zero.

Other studies that consider the effect of a virus on competing species in a basic
chemostat include Mestivier et al. [22] and Weitz et al. [35]. Unlike our model,
they model the virus explicitly and do not allow recovery, i.e., they only consider
an SI model. In both studies a linear analysis is given. In [22] simulations show
that coexistence between two bacterial populations can be induced by the addition
of a virulent virus. In [35] it was shown that for a reasonable choice of parameters,
the system possesses a coexistence steady state. They also demonstrated coexistence
using Monte Carlo simulations of populations evolving in a chemostat.

For other related mathematical models of phage-bacteria interaction see ([4], [24]),
[27]). Beretta [3] discussed both deterministic and stochastic models for phage bac-
teria infection in an open marine environment. Mestivier et al. [22] investigate virus-
coerced coexistence and diversity in marine bacteria and Shabir et al. [26] studied
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the coexistence in wastewater treatment in an upflow anaerobic sludge bed reactor
treating sulfate-rich wastewater.

We begin by introducing the model in §2 and discuss its various subsystems. We
then summarize our results in §3. After considering the number and stability (local
and global) of the various equilibria analytically, we explore the bifurcations of the
equilibria using numerical continuation software XPPAUT [13] to demonstrate Hopf,
transcritical, and homoclinic bifurcations, saddle-node bifurcations of equilibria and
of periodic orbits resulting in more than one limit cycle, and a hysteresis effect. We
show that for certain ranges of the parameters initial condition dependent outcomes
(bi-stability) is possible, e.g., it is possible to have multiple stable endemic steady
states or a stable endemic steady state and a stable periodic attractor. Since it is
not always the case that there is a globally asymptotically stable equilibrium, we use
persistence theory to obtain criteria that predicts which populations survive, inde-
pendent of the initial conditions. In particular, we obtain sufficient conditions for the
persistence of both the susceptible and the resistant populations, thus showing that
introducing disease can enhance diversity, since in the absence of disease at most one
competitor population can survive. We demonstrate that this persistence of both the
susceptible and the resistant populations (provided the disease is endemic) can either
be in the form of convergence to an asymptotically stable steady state or in the form
of sustained oscillatory behavior. We demonstrate that there can be both disease
induced oscillations (i.e., oscillatory behavior is possible even when the resistant pop-
ulation is absent) and competition induced oscillations (i.e., invasion by the resistant
population can result in sustained oscillations even if there are no oscillations in its
absence). We summarize our results and discuss certain implications in the discussion
in §4. A subsystem of our model was studied as a model of conjugationally trans-
mitted plasmids in bacterial populations (see Imran and Smith [17] and Stewart and
Levine [30]). Implications of our analysis in this context are described. For clarity of
the presentation, proofs are relegated to the appendices §A, B, and C.

2. The Model. We considered a model that involves two species that compete
exploitatively for a single non-reproducing growth-limiting nutrient, in a well-stirred
chemostat in the presence of a virus. In the growth chamber the concentration at
time t is denoted by S(t). One species x, is susceptible to attack by the virus. This
species is divided into two subpopulations, susceptibles with concentration at time t
denoted by xs(t) and infectives (bacteriophage) with concentration denoted by xI(t).
The second species with concentration denoted by y(t), is not susceptible to attack
by the virus. Since the virus requires a host to replicate, we do not model the virus
explicitly, but rather we assume that the virus is spread when infected bacteria lyse
close to susceptible bacteria. The disease dynamics are therefore modelled in the form
of an SIS epidemic model.

We analyze this system with particular interest in determining under what condi-
tions coexistence of all three populations xs, xI , and y is possible. More specifically,
we consider the following model:

S′(t) = (S0 − S(t))D − αsxs(t)S(t)
ηs

− αIxI(t)S(t)
ηI

− αyy(t)S(t)
ηy

x′
s(t) = xs(t)(−Ds + αsS(t)) − δxs(t)xI(t) + γxI(t)

x′
I(t) = xI(t)(−DI + αIS(t)) + δxs(t)xI (t) − γxI(t)(2.1)

y′(t) = y(t)(−Dy + αyS(t))
with S(0) ≥ 0, xs(0) ≥ 0, xI(0) ≥ 0, and y(0) ≥ 0.
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Here, S0 denotes the concentration of the growth-limiting nutrient in the nutrient
reservoir and D the rate of inflow from the nutrient reservoir to the growth chamber
as well as the rate of outflow from the growth chamber (hence the volume in this
vessel remains constant); Ds, DI , and Dy denote the sum of the species-specific
death rate and the rate of outflow of xs(t), xI(t), and y(t) respectively; and for xs(t),
xI(t), and y(t) respectively, αs, αI , and αy denote the growth coefficients; ηs, ηI ,
and ηy the growth yield constants (i.e. representing the conversion of nutrient to
biomass); δ the rate of infection of susceptibles assumed related to susceptibles being
in close proximity to infected bacteria that burst releasing phage; and γ the rate
of elimination or neutralization of virus (probably very small). We keep the model
as simple as possible in order to focus on the effect of disease on the competitive
outcome. Since without disease, coexistence of competing populations is not possible
in the basic chemostat model for a general class of response functions (monotone and
unimodal) including Holling type I, II, III and IV (see [38]), and we wish to investigate
whether introduction of a disease can result in coexistence and even persistence, we
assume linear response functions (mass action interactions), since coexistence would
be least likely in his case.

It is natural to assume infection by the virus is detrimental to the xI population
(as discussed in [9] and [35]), and so this determines the relative values of the param-
eters. It is assumed throughout that xI has a higher death rate (e.g., due to lysis)
than xs, so that DI > Ds and that its growth coefficient is no better than that of
xs, so that αs ≥ αI . Hence, Ds

αs
< DI

αI
. As for y, we will show that for all species to

coexist, it is necessary to assume that y is a weaker competitor for the nutrient than
xs i.e. Dy

αy
> Ds

αs
.

If γ = 0, system (2.1) becomes an SI model in the chemostat. This model was
analyzed with a different interpretation in [12] and [37]. It was interpreted as a
predator-prey model where the predator xI not only predated on xs, but also com-
peted with xs for the nutrient S.

2.1. Subsystems. There are two subsystems of (2.1) that are of interest. If
xI(0) = 0, then xI(t) ≡ 0 and we have the following virus-free subsystem:

S′(t) = (S0 − S(t))D − αsxs(t)S(t)
ηs

− αyy(t)S(t)
ηy

x′
s(t) = xs(t)(−Ds + αsS(t))

y′(t) = y(t)(−Dy + αyS(t))
with S(0) ≥ 0, xs(0) ≥ 0, and y(0) ≥ 0.

This model is a special case of the model analyzed in [38], where it was proved that, at
most, one species can survive. More specifically, if Ds

αs
≥ S0 then xs(t) → 0 as t → ∞.

If Dy

αy
≥ S0 then y(t) → 0 as t → ∞. On the other hand, if Ds

αs
< min

(
S0,

Dy

αy

)
then

xs(t) is the sole survivor, whereas if Dy

αy
< min

(
S0, Ds

αs

)
then y(t) is the sole survivor.

Coexistence is not possible. If y(0) = 0, then y(t) ≡ 0 and we have the following
subsystem:

S′(t) = (S0 − S(t))D − αsxs(t)S(t)
ηs

− αIxI(t)S(t)
ηI

x′
s(t) = xs(t)(−Ds + αsS(t)) − δxs(t)xI (t) + γxI(t)(2.2)

x′
I(t) = xI(t)(−DI + αIS(t)) + δxs(t)xI(t) − γxI(t)
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with S(0) ≥ 0, xs(0) ≥ 0, and xI(0) ≥ 0.

Subsystem (2.2) was introduced by Stewart and Levin [30] (using different nota-
tion) to describe the dynamics of conjugationally transmitted plasmids in bacterial
populations. Population xI represented the plasmid bearing bacteria and xs the plas-
mid free bacteria. In the context of our model, they considered the existence and local
stability of equilibria in the special case that D = Ds = DI , ηI < ηs, and αs ≈ αI .
Imran and Smith [17] studied the global stability of equilibria of this subsystem as-
suming D = Ds = DI and ηI = ηs.

We include the local and global analysis of this subsystem in this paper, since
much of the analysis of (2.1) is based on understanding this particular subsystem.
Relaxing the assumption that D = Ds = DI and the restriction on the relative values
of the yield constants requires more delicate analysis than previously done in [17] and
[30], and results in differences in the number of possible equilibria and the types of
bifurcations that they can undergo.

If xI(0) > 0, a subsystem of (2.1) with xs(t) ≡ 0 is not possible, since if xs(0) = 0
but xI(0) > 0, then x′

s(0) = γxI(t) > 0. As well, no subsystem is possible without S.
Hence, these are the only two subsystems that are of interest.

3. Results.

3.1. Well-posedness and Competition Independent Extinction. First we
note that the model is well-posed. The proof is standard and hence omitted.

Lemma 3.1. All solutions of system (2.1) and subsystem (2.2) are bounded and
remain non-negative for all t > 0. Moreover, the set

S ≡ {(S, xs, xI , y) : S, xs, xI , y ≥ 0; 0 ≤ S +
A

α
(xs + xI + y) ≤ S0}

is positively invariant and is a global attractor for (2.1), where A = min
{

αs

ηs
, αI

ηI
,

αy

ηy

}
and α = max{αs, αy}, and

S(2.2) ≡ {(S, xs, xI) : S, xs, xI ≥ 0; 0 ≤ S +
A(2.2)

α(2.2)
(xs + xI) ≤ S0},

is positively invariant and is a global attractor for (2.2), where A(2.2) = min
{

αs

ηs
, αI

ηI

}
and α(2.2) = αs.

This next result shows that the concentration in the reservoir must be sufficiently
high in order for survival. Also, at least asymptotically, there can be no infectives
without susceptibles, and if the resistant competitor is an inferior competitor in the
absence of infectives, then it cannot survive unless infectives survive as well. The
proof is also given in Appendix A.2.

Theorem 3.2. The following results hold for system (2.1) and when relevant for
subsystem (2.2).

1. If Dy

αy
≥ S0, then limt→∞ y(t) = 0.

2. If Dy

αy
> DI

αI
, then limt→∞ y(t) = 0.

3. If Ds

αs
≥ S0, then limt→∞ xs(t) = 0.

4. If limt→∞ xs(t) = 0, then limt→∞ xI(t) = 0, and if also Dy

αy
> Ds

αs
, then

limt→∞ y(t) = 0.
5. If lim inft→∞ xs(t) = 0, then lim inft→∞ xI(t) = 0.
6. If limt→∞ xI(t) = 0 and Dy

αy
> Ds

αs
, then limt→∞ y(t) = 0.
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3.2. Equilibria: Existence, Uniqueness, and Stability. We summarize the
criteria for existence, local, and global stability of the equilibria of subsystem (2.2)
and of system (2.1) in Table 3.1. The portions of the proofs justifying the results, not
given in this section, can be found in Appendix B.

Equilibria of the following form (where the components not indicated explicitly
by zero are assumed to be positive) are possible for subsystem (2.2):

E0∗ = (S0, 0, 0), E1∗ = (S̄, x̄s, 0), and E2∗ = (S∗, x∗
s , x

∗
I),

and for the full system (2.1):

E0 = (S0, 0, 0, 0), E1x = (S̄, x̄s, 0, 0), E1y = (S̆, 0, 0, y̆),

E2 = (S∗, x∗
s, x

∗
I , 0) and E3 = (Ŝ, x̂s, x̂I , ŷ)

where

S̄ =
Ds

αs
, x̄s =

(
Dηs

Ds

)(
S0 − Ds

αs

)
, S̆ =

Dy

αy
, y̆ =

(
Dηy

Dy

)(
S0 − Dy

αy

)
(3.1)

x∗
s =

DI − αIS
∗ + γ

δ
, x∗

I =
x∗

s(−Ds + αsS
∗)

(δx∗
s − γ)

,(3.2)

and S∗ satisfies

(S0 − S∗)D − αsx
∗
sS

∗

ηs
− αIx

∗
IS

∗

ηI
= 0 with

Ds

αs
< S∗ <

DI

αI
.(3.3)

Note that once the expressions for x∗
s and x∗

I given in (3.2) are substituted into (3.3),
this becomes an equation that can be solved for S∗. Each positive solution S∗ gives
an equilibrium of the form of E2 provided the corresponding values of x∗

s and x∗
I in

(3.2) are positive. This is the case if and only if Ds

αs
< S∗ < DI

αI
, since x∗

s > 0 if and
only if S∗ < DI+γ

αI
, and x∗

I > 0 if and only if both its numerator and denominator have
the same sign. If S∗ < Ds

αs
, then the denominator is positive, but the numerator is

negative. If S∗ > DI

αI
, then the numerator is positive, but the denominator is negative.

However, both numerator and denominator are positive when Ds

αs
< S∗ < DI

αI
.

Ŝ =
Dy

αy
, x̂s =

[
DI + γ − αI

(
Dy

αy

)](
1
δ

)
, x̂I =

x̂s(−Ds + αsŜ)
(δx̂s − γ)

,

and ŷ =

[
(S0 − Ŝ)D − αsx̂sŜ

ηs
− αI x̂I Ŝ

ηI

](
ηy

αyŜ

)
.(3.4)

A similar argument to that just given to ensure that x∗
s > 0 and x∗

I > 0 can be used
to show that both x̂s > 0 and x̂I > 0 if and only if Ds

αs
<

Dy

αy
= Ŝ < DI

αI
. The criterion

ensuring that ŷ > 0 is indicated by ∗∗ in Table 3.1.
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Equilibria - Existence and Stability for Subsystem (2.2)

Existence Local Asymptotic Stability Global Asymptotic Stability

E0∗ always S0 < Ds
αs

no more assumptions needed

E1∗ S0 > Ds
αs

R0 < 1 (S0 < λc) DI sufficiently large∗

E2∗ Theorem 3.4 Theorem 3.4 D = Ds = DI , ηs = ηI = η∗∗∗

Equilibria - Existence and Stability for System (2.1)

Existence Local Asymptotic Stability Global Asymptotic Stability

E0 always S0 < min
n

Ds
αs

,
Dy

αy

o
no more assumptions needed

E1x S0 > Ds
αs

S0 < λc &
Dy

αy
> Ds

αs
DI sufficiently large∗ &

Dy

αy
> S0

E1y S0 >
Dy

αy

Dy

αy
< Ds

αs
no more assumptions needed

E2 same as E2∗ same as E2∗ & S∗ <
Dy

αy
E2∗ is globally stable for (2.2)

& DI
αI

<
Dy

αy

E3
Ds
αs

<
Dy

αy
< DI

αI
& ∗∗ when it exists∗∗∗ unknown

∗

8<
:

DI > ηs
ηI

αI S̄ + x̄s

“
δ − γ

S0 min{ 1
ηs

, αI
αsηI

}
”

if ηs ≥ ηI

> αI S̄ + ηI
ηs

x̄s

“
δ − γ

S0 min{ 1
ηs

, αI
αsηI

}
”

+ γ
“

ηI
ηs

− 1
”

if ηs < ηI

∗∗ S0 >
Dy

αyD

0
@D + αs

δηI ηs

“
DI + γ − αIDy

αy

” 0
@ηI + ηs

„
Dy
αy

− Ds
αs

«
„

DI
αI

−Dy
αy

«
1
A

1
A ≡ Ψ

∗∗∗ only proved under the assumption that ηs = ηI = η and D = Ds = DI = Dy . Since (2.2)
and (2.1) are dissipative and the equilibria are hyperbolic, the property that a locally asymptotically
stable equilibrium is globally attracting is an open condition in parameter space (see [29]). Since
eigenvalues vary continuously as functions of the parameters, the local asymptotic stability and hence
the global asymptotic stability also hold under small perturbations of these parameters.

Table 3.1

The criteria listed for local stability are also required for global stability, and so are not repeated.
The conditions for existence and for local stability are both necessary and sufficient (excluding con-
sideration of the cases when strict inequality is replaced by equality resulting in eigenvalues with zero
real part), except for E2∗ . Global stability is with respect to initial conditions in the positive cone.
The conditions for global stability are only sufficient, except in the cases of E0∗ , E0, and E1y, where
local asymptotic stability endures global asymptotic stability.

The basic reproduction number R0 for both system (2.1) and subsystem (2.2) can
be given by

R0 ≡ αI S̄ + δx̄s

DI + γ
=

DsαI

αs(DI + γ)
+

δDηs(S0 − Ds

αs
)

Ds(DI + γ)
.(3.5)

The numerator represents the mean number of infectives produced per unit time from
both horizontal and vertical transmission resulting from the introduction of a single
infective into an otherwise totally susceptible population at equilibrium, and 1

DI+γ
represents the mean amount of time an infective individual remains in the chemostat
as an infective.



8 K. NORTHCOTT, M. IMRAN, AND G. S. K. WOLKOWICZ

We also define the closely related parameter,

λc ≡ Ds

δDηs

(
DI + γ +

δDηs

αs
− αIDs

αs

)
.(3.6)

A simple calculation shows that R0 > 1 is equivalent to S0 > λc and R0 < 1 is
equivalent to S0 < λc. Under our assumptions that Ds < DI and αs ≥ αI , it follows
that λc > Ds

αs
.

Remark 3.3. There is at most one equilibrium of the form E0∗ , E1∗ , E0, E1x,
E1y, and E3. However, there can be up to three equilibria of the form E2∗ . Of course,
the number of equilibria of the form E2 is always the same as the number of equilibria
of the form E2∗ .

The next result addresses the existence, number of equilibria of the form E2∗ (and
hence E2), and the stability of E2∗ for subsystem (2.2).

Theorem 3.4. Consider subsystem (2.2).
1. Assume that R0 > 1 or equivalently S0 > λc.
(i) If ηs = ηI , then E2∗ exists, is unique, and is locally asymptotically stable.
(ii) If ηs > ηI , then E2∗ exists and is unique. It is locally asymptotically stable

if αs+αI

δ ≥ ηs − ηI . If it loses stability, it can only do so through a Hopf bifurcation.
(iii) If ηs < ηI , then at least one and at most three equilibria of the form E2∗

exist. If in addition at least one of the following holds:

DI < γ,(3.7)

ηI ≤ αsγηs

αsDI − αIDs
+ ηs,(3.8)

then E2∗ is unique and is locally asymptotically stable. If neither (3.7) nor (3.8) holds,
saddle node bifurcations are possible. However, no Hopf bifurcation is possible in this
case.

2. Assume that R0 < 1 or equivalently S0 < λc.
(i) If ηs ≥ ηI , then no equilibrium of the form E2∗ exists.
(ii) If ηs < ηI , then at most two equilibria of the form E2∗ are possible, and

generically there is either no equilibrium of this form or there are two. Saddle node
bifurcation is possible, but Hopf bifurcation is not.

The proof is given in Appendix B.1.

The condition for local asymptotic stability of E2∗ given in Theorem 3.4 part 1.(ii)
is only sufficient. It is a simplification of the criterion established in Appendix B.1,
using the Routh Hurwicz criterion where it is shown that this equilibrium is locally
asymptotically stability when the expression given in (B.6) is positive, and unstable
if it is negative. Although positive terms in (B.6) seem to far outnumber the negative
terms, this expression can change sign resulting in a Hopf bifurcation as will be
illustrated in Figure 3.4.

Example of non-uniqueness of E2∗ : Set parameters S0 = 110, D = 0.19, Ds = 0.2,
DI = 1, αs = 0.5, αI = 0.4, ηs = 0.01, ηI = 1, δ = 1, and γ = 0.02. Both criteria
(3.7) and (3.8) fail in this case, i.e. DI = 1 > 0.2 = γ and ηI = 1 > 0.01024 ≈

αsγηs

αsDI−αIDs
+ ηs. By substituting x∗

s and x∗
I given by (3.2) into (3.3), we obtain a

cubic polynomial in S:

f(S) = −0.0792S3 + 0.4024S2 − 0.594684S + 0.209,
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with roots that give possible values for S∗. (f(S) is defined explicitly in general in
Appendix B.1 equation (B.1).) We are only interested in roots which give an E2∗

with all components positive. Hence, we only consider roots S∗ ∈
(

Ds

αs
, DI

αI

)
. Solving

f(S) = 0, there are three distinct roots: 0.5094696702, 2.074468768, and 2.496869643
and all three fall in the interval

(
Ds

αs
, DI

αI

)
= (0.4, 2.5), giving 3 distinct equilibria

of the form E2∗ with all components positive. In Figure 3.5 one can see that three
equilibria of the form E2∗ exist for a wide range of the parameter S0. Note that two
of the three equilibria of the form E2∗ arise out of a saddle-node bifurcation that will
be described in more detail in §3.4.

We close this subsection with some observations related to the equilibrium E3 of
system (2.1). The proof is given in Appendix B.3. See also Figure 3.7.

Theorem 3.5. Assume that an equilibrium of the form E3 exists for system
(2.1).

1. E0, E1x, E1y, and at least one equilibrium of the form E2 exists.
2. If ηs ≥ ηI , then S∗ > Ŝ = Dy

αy
.

3. If ηs ≥ ηI , then E3 is the only equilibrium that can be locally asymptoti-
cally stable. If ηs < ηI , then E1x or an equilibrium of the form E2 can be locally
asymptotically stable.

We only obtained conditions for local asymptotic stability of E3 in the special
case: ηs = ηI = η and D = Ds = DI = Dy. Restricting the parameters in this way
simplified the analysis, since it allowed us to consider a limiting three dimensional
system. Since eigenvalues of a matrix vary continuously as functions of the parameters,
it follows that local stability of E3 still holds at least under small perturbation of the
parameters. The example illustrated in Figure 3.1 shows that E3 can still be locally
asymptotically stable and coexistence of all three populations is still possible even
when the difference between the death rates as well as between the yield constants is
relatively large. However, if we relax these assumptions it is possible for E3 to lose
stability through a Hopf bifurcation as will be shown in § 3.4.1.
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Fig. 3.1. Timeseries illustrating coexistence of all three species in system (2.1). Parameters:
S0 = 10, D = 8, Ds = 10, DI = 20, Dy = 15, αs = 7, αI = 5, αy = 6, ηs = 10, ηI = 5, ηy = 7,
δ = 0.7, and γ = 0.2. Initial conditions: (S(0), xs(0), xI(0), y(0)) = (10, 2, 3, 5). E3 is locally
asymptotically stable, even though the difference between the death rates and the yield constants is
relatively large.

Remark 3.6. The results on existence, and local and global stability of the various
equilibria in this model are summarized in Table 3.1 and proved in Appendix B.
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3.3. Criteria for Persistence of the Populations. Some related notation
and preliminary results are given in Appendix A.1. The proofs of the results in this
section for subsystem (2.2) can be found in Appendix C.

Definition 3.7. A population z(t) is said to be uniformly strongly persistent
(uniformly weakly persistent) if there exists ε > 0, such that lim inft→∞ z(t) ≥ ε
(lim supt→∞ z(t) ≥ ε), where ε is independent of the initial conditions, provided z(0) >
0.

Theorem 3.8. The following hold for system (2.1) and when relevant for sub-
system (2.2).

1. If Ds

αs
>

Dy

αy
, then limt→∞(xs + xI)(t) = 0. If in addition, S0 >

Dy

αy
, then

E1y is globally asymptotically stable with respect to solutions with y(0) > 0.
2. If xI(t) is uniformly strongly persistent, then xs(t) is uniformly strongly

persistent.
3. If (xs + xI)(t) is strongly persistent, then xs(t) is strongly persistent. If

(xs+xI)(t) is uniformly strongly persistent, then xs(t) is uniformly strongly persistent.
4. If xI(t) is weakly persistent and S0 < DI+γ

αI
, then xs(t) is uniformly strongly

persistent.
5. If S0 > Ds

αs
, then xs(t) is uniformly strongly persistent for subsystem (2.2).

If in addition, Dy

αy
> Ds

αs
, then xs(t) is also uniformly strongly persistent for system

2.1).
6. If R0 > 1 (or equivalently S0 > λc), then both xs(t) and xI(t) are uniformly

strongly persistent for subsystem (2.2). If in addition, Dy

αy
> Ds

αs
, and xI(0) > 0

implies that limt→∞ y(t) = 0, then both xs(t) and xI(t) are also uniformly strongly
persistent for system (2.1).

7. If R0 > 1, E2∗ is globally asymptotically stable for subsystem (2.2), and
S∗ >

Dy

αy
> Ds

αs
, then all three populations xs(t), xI(t), and y(t) are uniformly strongly

persistent, and so system (2.1) is uniformly strongly persistent.
Remark 3.9.

1. Using Theorem 3.2 parts 1. and 6., it also follows that when Dy

αy
> Ss

αs
, if

y(t) is weakly perisistent, then xI(t) is weakly persistent.
2. Theorem 3.8 combined with the global stability results in Table 3.1 basically

says that for subsystem (2.2), the persistence of the infected and susceptible popula-
tions depends upon S0, the input concentration of the nutrient. If it is too low, neither
population survives. For intermediate values xs(t) persists, and whether or not xI sur-
vives can also depend upon the relative values of the yield constants. For high enough
concentrations both populations persist. As well, when the infection persists, there
will always be susceptibles, since xI(t) cannot persist unless xs(t) also persists. Using
Theorem 3.2 parts 1. and 6., it also follows that when Dy

αy
> Ss

αs
, competitor y(t) can

only survive if some infectives survive as well.
3. From Theorem 3.2 2. and Theorem 3.8 part 1. it follows that for both the

infected population and the resistant population to persist, Ds

αs
≤ Dy

αy
≤ DI

αI
must hold,

i.e., the resistant population y must be a less effective competitor than the susceptible
population xs, but a more effective competitor than the infected population xI . This is
also a necessary condition for a coexistence steady to exist as indicated in Table 3.1.

4. It is surprising to note that even if S0 < DI+γ
αI

, it is possible for xI to survive.
In particular, one can show that λc < S0 < DI+γ

αI
if and only if DsαI < δDηs. In

fact, in the numerical simulation illustrated in Figure 3.2, S0 < DI

αI
and yet all three
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populations survive. For all of the initial conditions we tried, there was convergence
to the coexistence equilibrium E3, and so it is likely that E3 is globally asymptotically
stable, and hence all populations are uniformly strongly persistent in this example.
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Fig. 3.2. Timeseries illustrating coexistence of all three species in system (2.1), and hence xI ,

even though S0 < DI
αI

. Parameters: S0 = 9.9 and αI = 2. All of the other parameters are the same

as for Figure 3.1. Initial conditions: (S(0), xs(0), xI(0), y(0)) = (10, 2, 3, 5).

3.4. Bifurcation Analysis. System (2.1) and subsystem (2.2) have rich dy-
namics. Equilibria are involved in transcritical, saddle-node, Hopf, and homoclinic
bifurcations. As well it is possible to have a saddle-node bifurcation of limit cycles.
Multiple stable attractors are possible, and there can be more than one periodic orbit.
We illustrate some of these interesting phenomena by means of bifurcation diagrams.
All bifurcation diagrams included were created using XPPAUT [13] and MATLAB
[18]. In all of these diagrams, a solid/dashed line represents a stable/unstable equi-
librium, and a closed/open circle represents a stable/unstable periodic orbit. We
consider the cases ηs ≥ ηI and ηs < ηI separately, since different bifurcations are
possible in each of these cases. We also assume that Ds

αs
<

Dy

αy
, since otherwise both

xs and xI die out (see Theorem 3.8 part 1.). Parameters are chosen for illustrative
purposes only, and not based on experimental data.

3.4.1. Case 1: ηs ≥ ηI . Recall that there is at most one equilibrium of the form
E2 in this case, and since there is always at most one equilibrium of any of the other
forms, no saddle-node bifurcation of equilibria is possible.

Transcritical Bifurcation of Equilibria
In this case, in system (2.1) there is typically a successive transfer of stability from
E0 to E1x to E2 to E3, each transfer via a transcritical bifurcation, as the parameter
S0 is increased. For an example see Figure 3.3. For S0 ∈

(
0, Ds

αs

)
, E0 is stable. E0

coalesces with and transfers stability to E1x when S0 = Ds

αs
. For S0 ∈ (Ds

αs
, λc), E1x

is stable. E1x coalsces with E2 when S0 = λc, and then stability is transferred to
E2. For S0 ∈ (λc, Ψ), E2 is stable (where Ψ was defined when the existence of E3

was addressed in Table 3.1). E2 coalsces with E3 when S0 = Ψ and then stability is
transferred to E3.

Hopf Bifurcation of E2∗ and E2, and Saddle Node Bifurcation of Limit Cy-
cles
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Fig. 3.3. Bifurcation diagrams for system (2.1) with ηs > ηI . Parameters: D = 8, Ds = 10,
DI = 20, Dy = 15, αs = 7, αI = 5, αy = 6, ηs = 10, ηI = 5, ηy = 7, δ = 0.7, and γ = 0.2. The
top left and right graphs have S and xs on the ordinate axis, respectively. Both show the series of
bifurcations that occur where stability is transferred successively from E0 to E1x at S0 = Ds

αs
≈ 1.43,

to E2 at S0 = λc ≈ 3.76, and then to E3 at S0 = Ψ ≈ 8.34, all via transcritical bifurcations. There
is also a transcritical bifurcation involving E0 and E1y, shown in the top left graph. However,
both equilibria are unstable. The bottom left and right graphs have xI and y on the ordinate axis,
respectively, and show the transfer of stability from E2 to E3. The bottom right graph shows that
E1y and E3 are not involved in a bifurcation at S0 = Ψ, even though the curves meet and even
overlap, since the S components are equal in the top left graph. E1y remains unstable.

In this case, the equilibrium E2 in system (2.1) (E2∗ for subsystem (2.2)) can be
involved in a Hopf bifurcation. We only gave sufficient conditions for the local asymp-
totic stability of E2∗ in Theorem 3.4 part 1.(ii), based on the signs of the expressions
given in (B.5) and (B.6). Hopf bifurcation is possible if ηs > ηI , since (B.6) can change
sign from positive to negative as ηs increases beyond ηI . As this bifurcation occurs
in the face where y ≡ 0, we illustrate it for subsystem (2.2) in Figure 3.4. As the
parameter ηs is increased from zero, there is a saddle-node bifurcation of limit cycles
resulting in two periodic orbits, one orbitally asymptotically stable and one unstable.
As ηs is increased further, the unstable periodic orbit disappears in a subcritical Hopf
bifurcation at E2∗ .

3.4.2. Case 2: ηs < ηI . Non-uniqueness of equilibria of the form E2 is possible
in this case (see Theorem 3.4 parts 1.(ii) and 2.(ii)). However, unlike in the previous
case, no Hopf bifurcation involving E2∗ or E2 is possible.
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Fig. 3.4. A saddle-node bifurcation of limit cycles and a subcritical Hopf bifurcation of E2∗

as ηs is varied in subsystem (2.2). Parameters: S0 = 100, D = 8, Ds = 10, DI = 200, αs = 7,
αI = 6.5, ηI = 0.5, δ = 2, and γ = 0.01. There is a range of the parameter ηs for which there
are two limit cycles, the one with larger amplitude orbitally asymptotically stable and the other one
unstable. A Hopf bifurcation of E2∗ is not possible unless ηs > ηI .

Transcritical Bifurcations and Saddle-Node Bifurcation of E2∗ and E2

The sequence of transcritical bifurcations that occur as S0 is varied is the same as in
the case of ηs ≥ ηI . Compare Figure 3.3 with Figures 3.6 and 3.7. If also (3.7) or
(3.8) holds, then no saddle-node bifurcation of equilibria is possible either. However,
when both of these conditions are violated, E2∗ and hence E2 can be involved in two
saddle-node bifurcations (see Figure 3.5 for subsystem (2.2) and Figure 3.6 for system
(2.1)). Notice that in this example, when this occurs and hence three equilibria of the
form E2∗ exist for subsystem (2.2), two are asymptotically stable and one is unstable.
However, when species y is introduced to obtain system (2.1), one of the stable equi-
libria becomes unstable. These saddle-node bifurcations are also illustrated in the
example shown in Figure 3.7.

Hopf Bifurcation of E3 and Homoclinic Bifurcation
When ηI > ηs it is not possible for the equilibrium E2 in system (2.1) or E2∗ for
subsystem (2.2) to be involved in a Hopf bifurcation. However, it is possible for E3

to undergo a Hopf bifurcation. Figure 3.6 illustrates this Hopf bifurcation for system
(2.1). The period of the periodic orbit increases as the parameter S0 is decreased.
In fact, it appears that as S0 approaches a critical value, around S0 = 173.9 in the
bifurcation diagram in Figure 3.6, the period of the periodic orbit approaches infinity.
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Fig. 3.5. Bifurcation diagrams for subsystem (2.2) ηI > ηs as S0 is varied. Parameters:
D = 0.19, Ds = 0.2, DI = 1, αs = 0.5, αI = 0.4, ηs = 0.01, ηI = 1, δ = 1, and γ = 0.02. Besides
the transcritical bifurcations involving E0∗ and E1∗ and E1∗ and E2∗ , both graphs show two saddle-
node bifurcations of E2∗ . Thus there is a parameter range for which there are three equilibria of the
form E2∗ . Two of these can be stable for the same value of S0 or one equilibrium of the form of
E2∗ and E1∗ can both be stable, demonstrating the possibility of a hysteresis effect in both cases.

Hence, it seems that the periodic orbits originate from a homoclinic bifurcation that
involves one of the E2 equilibria that is a saddle point.

The model predicts possible coexistence of all three species once S0 is above
the critical value for the homoclinic bifurcation. However, in this example, if S0 is
not large enough, the amplitude of the oscillations of the xs xI , and y populations
would be very large, with their lowest values getting dangerously close to 0, so that
a stochastic event could easily wipe out one or more of the populations. This seems
less likely as S0 becomes sufficiently large. Once S0 increases past the critical value
for the Hopf bifurcation, the coexistence of xs, xI and y seems more likely.

A similar sequence of bifurcations is illustrated in Figure 3.7. However, there it
is shown that bi-stability and hence initial condition dependent outcomes is possible
for a range of the parameter S0.

4. Discussion. In this paper the effect of a virus on two competing populations,
one susceptible and the other resistant, was investigated using an SIS epidemic model
in a chemostat-like environment. As expected the basic reproduction number, given in
(3.2), played an important role in predicting which populations survive (see Table 3.1)
as did S0 the concentration in the input reservoir. That these two quantities are
related is apparent, since we showed that R0 > 1 is equivalent to S0 > λc where λc

was defined in (3.6).
It was shown that although competitive exclusion occurs when there is no virus,

coexistence of competitors is possible in the presence of the virus. However, this is
only possible if Ds/αs < Dy/αy < DI/αI , i.e., the resistant population if an inter-
mediate competitor in the absence of the virus. On the other hand, surprisingly, it
is not necessary for DI/αI < S0 for the survival of all three populations to coexist.
Our results predict that the presence of viruses in the ocean may enhanced bacterial
diversity. They therefore also predict that elimination of a virus could result in the
extinction of bacterial species. In an extreme case, an attempt to eliminate a virus
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Fig. 3.6. Bifurcation diagrams for system (2.1) with ηI > ηs as S0 varies, illustrating the effect
of introducing y to the example illustrated in Figure 3.5. Parameters: αy = 0.6 and Dy = 1. All
the other parameters are the same as for Figure 3.5. The transcritical and saddle-node bifurcations
of the equilibria are the same as in Figure 3.5. However, comparing the two top graphs and the
lower left one with the graphs in Figure 3.5 shows that one of the equilibria of the form E2∗ that
was stable for subsystem (2.2) becomes unstable when y is introduced. As S0 is increased, a stable
periodic orbit is born from a homoclinic bifurcation involving the E2 that changed stability when y
was introduced. This periodic orbit disappears in a Hopf bifurcation of E3.
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Fig. 3.7. Bifurcation diagram for system (2.1) with ηI > ηs as S0 varies. Parameters: D =
0.19, Ds = 0.2, DI = 1, Dy = 1.4, αs = 0.5, αI = 0.4, αy = 0.6, ηs = 0.01, ηI = 1, ηy = 1,
δ = 1, and γ = 0.02. The graph shows four transcritical bifurcations involving E0 and E1x, E0

and E1y, E1x and E2, and E2 and E3; two saddle-node bifurcations involving E2; a supercritical
Hopf bifurcation of E3; and a homoclinic bifurcation involving one of the unstable (saddle point)
equilibria of the form E2. As S0 increases, a stable periodic orbit is born as the homoclinic orbit
breaks and then vanishes at the Hopf bifurcation of E3. There is bi-stability for a range of values of
S0, and hence initial condition dependent outcomes, i.e., E2 and either E3 or the periodic orbit are
both stable. Also, there is a range of values of S0 where E3 exists and is unstable, and either E1x

or E2 is locally asymptotically stable.

could end in creating a super-competitor that out-competes many other species. We
also showed that in the presence of virus, a rich variety of dynamics is possible includ-
ing bi-stability and multiple limit cycles. We assumed that population y is completely
resistant to the virus. This can be considered a limiting case, and the predictions of
this model are likely to hold if y is also susceptible, but the effect of the virus on y is
sufficiently small compared to its effect on population xs.

In the Lotka-Volterra competition model with SI disease studied by van den
Driessche and Zeeman [34], both disease induced oscillatory behavior as well as compe-
tition induced oscillatory behavior were shown to occur. Both behaviors also occur in
our model as well. However, disease induced oscillatory behavior is likely only to occur
in our subsystem (2.2) if R0 > 1 and (αs +αI)/δ < ηs−ηI (see Theorem 3.4). This is
demonstrated in Figure 3.4. If ηs is sufficiently large, the periodic solution appears to
be globally attracting. For intermediate values of ηs with (αs +αI)/δ < ηs−ηI , there
is bi-stability, and although there is a stable endemic equilibrium and both a stable
and an unstable limit cycle, invasion by a small number of resistant bacteria would
likely result in coexistence at the stable endemic equilibrium. That the yield constants
play a role in the dynamics is interesting here, since in the absence of disease, yield
constants can be scaled out of the basic chemostat model, and play no role in deter-
mining the outcomes. That invasion by a resistant competitor can induce oscillations
when there is no oscillatory behavior when the disease is endemic and there are no
resistant bacteria can be observed in the example illustrated in Figures 3.5 and 3.6.
Again the yield constants play a role. When Ds = DI = Dy and ηs = ηI it was shown
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in Appendix B that when the coexistence equilibrium E3 exists is is always locally
asymptotically stable. However, in the example in Figure 3.6, competitor induced
oscillatory behavior resulting from a supercritical Hopf bifurcation is observed when
ηI > ηs.

Both the subsystem without the competitor population y, (2.2) and the full system
(2.1) exhibit the possibility of a hysteresis effect (see Figures 3.5 and 3.7), respectively.
For the parameter values used in Figure 3.5, for small input concentrations of S0 >
Ds

αS
, the subsystem has only one stable equilibrium and it is of the form E1∗ . As

S0 increases there is a saddle-node bifurcation of E2∗ and then the subsystem has
two stable equilibria, one of the form E1∗ and one of the form E2∗ , and the one of
the form E1∗ has a much higher concentration of susceptibles. As S0 increase even
further, there is a transcritical bifurcation involving E1∗ and E2∗ , and above this
value there are two stable equilibria for the form E2∗ , with a very low concentration
of susceptibles. If the system was first observed at moderate values of S0 (between
above the transcritical bifurcation but below the saddle-node bifurcation) where there
were two stable equilibria of the form E2∗ and had approached the equilibrium with
the larger concentration of susceptibles, if S0 was increased past the saddle-node
bifurcation, there would be a drastic reduction in the concentration of the susceptible
population that could not be corrected by simply lowering S0 past the saddle-node
bifurcation. One would have to lower S0 drastically, beyond the lower saddle-node
bifurcation, wait for the population to approach the equilibrium of the form E1∗ , and
then start increasing S0 back to the intermediate values where the concentration of
the susceptible population was healthier. However, this might prove disastrous for
a natural habitat where it might not be possible to reduce S0 enough to effect the
recovery. Similar scenarios could be described for the full system.

Predictions based on the analysis could have other interesting implications for eco-
logical systems. For example, as seen in Figure 3.4, as the parameter ηs is increased,
the amplitude of the oscillations in the population sizes increases. This is pausible,
since the size of ηs relates to the ability of the microorganisms to convert nutrient
to biomass, and the better the nutrient-converter, one might expect the higher the
maximum possible population size. However, in addition to having a larger maximum
population size, the increase in ηs also results in a smaller minimum population size.
Although deterministically the population would not die out, this makes the popu-
lation more vulnerable to a stochastic event such as a heat or cold spell that could
easily result in the extinction of the species if it occurs at one of its low points in
the oscillation. Hence, efficiency in conversion of the nutrient may not be an entirely
good thing.

Predictions of our model also have implications for the dynamics of conjuga-
tionally transmitted plasmids. As mentioned in §2, subsystem (2.2) was studied
(with different notation) in this context. In the special case that (in our notation)
D = Ds = DI and ηs ≈ ηI Stewart and Levine [30] argued that the plasmid bearing
and plasmid free bacteria can coexist, and when they do coexist there is a unique
locally asymptotically stable equilibrium. Assuming that D = Ds = DI and ηs = ηI ,
Imran and Smith [17] proved that this equilibrium is globally asymptotically stable.
However, we showed that although (αs + αI)/δ > ηs − ηI , is a sufficient condition
for the local asymptotic stability of this coexistence equilibrium of subsystem (2.2),
(E2∗), analysis predicts that this equilibrium can lose stability through a Hopf bi-
furcation, and that a saddle-node bifurcation of limit cycles can also occur resulting
in more than one limit cycle (see Figure 3.4). Thus bi-stability is possible, result-
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ing in sustained oscillatory behavior or convergence to E2∗ , depending on the initial
conditions, and hence there can be plasmid induced oscillatory behavior.

It was mentioned earlier (in §2) that an SI epidemic/chemostat model had already
been analyzed with a different interpretation. Interestingly, the context/application
had nothing to do with epidemiology; it was a model of a food web with a predator
feeding on two trophic levels [12], [37]. Many models have many different interpreta-
tions. For instance, the model in [22] could also be viewed as a model for predator-prey
interactions in the chemostat. As such, our model could also describe various other
applications. Although chemostats are typically used to study bacteria, our system
could be seen as modelling a fish population in a lake, where fish are competing ex-
ploitatively for their food, and where one species is infected by a disease. Within
the lake/ocean context, there could be other similar scenarios of interest to a lake or
marine ecologist for which this model would apply.

On the other hand, we can make predictions about the outcomes of an SI disease
model in the chemostat from the results in [12] and [37]. The only difference between
that model and system 2.1 is that in our model we would have to take γ = 0 to obtain
their model. However, this apparently small change has important implications for
the possible dynamics. In particular, in [37] it is shown that in the SI model there
is an extra equilibrium point in which there are infected individuals, but neither
susceptibles nor resistant individuals, and in their Theorem 2.1 that it is possible
for this equilibrium to be globally asymptotically stable. Therefore, their results
can be used to show that it is possible for the infected population to persist in the
absence of susceptibles. Their results can also be used to show that is possible that
the introduction of infected individuals can result in the entire population becoming
infected in the absence of resistant individuals, where as in their presence all three
populations can persist. Hence there is competition-mediated coexistence. This is
different than for the SIS model that we studied. Recall that in system (2.1) if there
are infected individuals there must also always be susceptible individuals and if there
are resistant individuals there must also be infected individuals and hence susceptible
individuals (see Theorem 3.2 parts 4. and 6).

Another possible application of our analysis is to wastewater treatment or biolog-
ical remediation. Our results suggest that new methods could be developed that take
advantage of multiple species of bacteria which might be enabled to coexist through
the addition of a virus. There is also some renewed interest in studying the use of
phage in the treatment of bacterial infections in humans [36], due to the increase in
antibiotic-resistant bacteria and our results may find relevance in that context.

APPENDIX
Throughout the appendix we assume that Ds < DI and αs ≥ αI , unless stated

otherwise.

Appendix A. Preliminaries.

A.1. Useful Notation and Lemmas. For a real-valued function p on [0,∞)
we define

p∞ = lim inf
t→∞ p(t), p∞ = lim sup

t→∞
p(t).

The following Lemma is given in [33] as Corollary 2.4 (a).
Lemma A.1. Let J be a bounded interval in R and g : (t0,∞) × J → be

bounded and uniformly continuous. Further let x : (t0,∞) → J be a solution of
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x′ = g(t, x), which is defined on the whole interval (t0,∞). Then lim inf
t→∞ g(t, x∞) ≤

0 ≤ lim sup
t→∞

g(t, x∞) and lim inf
t→∞ g(t, x∞) ≤ 0 ≤ lim sup

t→∞
g(t, x∞). We will also use the

following results from [33] given there as Theorem 1.3 and Theorem 4.5.
Theorem A.2. Let X be a locally compact metric space that is the disjoint union

of two sets X1 and X2 with X2 compact in X. Let X1 be forward invariant under the
continuous semiflow Φ on X.

1. Then X2 is a uniform strong repeller for X1, whenever it is a uniform weak
repeller for X1.

2. Assume that Ω2,

Ω2 = ∪y∈Y2 ω(y), Y2 = {x ∈ X2 : Φt(x) ∈ X2, ∀t > 0},
(where ω(y) denotes the omega limit set of Φt(y)) has an acyclic isolated covering
M = ∪m

k=1Mk. If each part Mk of M is a weak repeller for X1, then X2 is a uniform
strong repeller for X1.

A.2. Proofs of Preliminary Results. Lemma A.3. For all solutions of (2.1)
or (2.2), S∞ ≥ min{AD

αB , S0} > 0, where for system (2.1) A = min
{

αs

ηs
, αI

ηI
,

αy

ηy

}
, B =

max{αs

ηs
, αI

ηI
,

αy

ηy
}, and α = max{αs, αy}, but for subsystem (2.2) A = min

{
αs

ηs
, αI

ηI

}
,

B = max{αs

ηs
, αI

ηI
}, and α = αs.

Proof. We prove the result for system (2.1). The proof for subsystem (2.2) is
similar. Select any ε > 0. Define the interval J = [0, max{S0, αS0

A } + ε]. Apply
Lemma A.1 to the S equation of system (2.2), noting that by Lemma 3.1, (xs + xI +
y)∞ ≤ α(S0−S∞)

A and S(t) ∈ J for all sufficiently large t. Since S∞ ≤ S∞ ≤ S0, it
follows that

0 ≥ (S0 − S∞)D − BS∞(xs + xI + y)∞

≥ (S0 − S∞)D − BS∞

(
α(S0 − S∞)

A

)
≥ (S0 − S∞)

(
D − αBS∞

A

)
.

Noting the first term is nonnegative, and isolating S∞ on the right hand side, the
result follows.

Proof. (of Theorem 3.2). 1. From the S equation of (2.1), either S(t) ≥ S0 for
all sufficiently large t or S(t) < S0 for all sufficiently large t. In the former case, by
Lemma 3.1, S′(t) ≤ 0 for all sufficiently large t, and so S(t) → S0 monotonely, and
xs(t), xI(t), y(t) → 0 as t → ∞. In the latter case, from the y equation of (2.1), either
y(0) = 0 and the result follows or y′(t) < 0 for all sufficiently large t, and hence y(t)
converges. By Lemma 3.1 and the y equation, y : R+ → R is a bounded differentiable
function and y′ is uniformly continuously differentiable. By the Barbălat Lemma [2],
limt→∞ y′(t) = 0. If limt→∞ y(t) = ε̄ > 0, by Lemma 3.1, S∞ < S0 ≤ Dy

αy
. But then

taking the lim sup on both sides of the y equation of (2.1), 0 = ε̄(−Dy + αyS∞) < 0,
a contradiction.

2. Assume that Dy

αy
> DI

αI
. Adding the second and third equations of (2.1), we

obtain:

(xs + xI)′(t) ≥ (xs + xI)(t)(−DI + αIS(t)).
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Integrating both sides of the above inequality with respect to t and rearranging,∫ t

0

S(t)dt ≤ DIt + ln((xs + xI)(t)) − ln((xs + xI)(0))
αI

.(A.1)

Integrating both sides of the y′ equation of (2.1),

ln(y(t)) = ln(y(0)) − Dyt + αy

∫ t

0

S(t)dt.(A.2)

Equations (A.1) and (A.2) imply that

ln(y(t)) ≤ ln(y(0)) +
αy

αI
ln
(

(xs + xI)(t)
(xs + xI)(0)

)
+ αyt

(
DI

αI
− Dy

αy

)
.(A.3)

By Lemma 3.1, y(t), xs(t), and xI(t) are non-negative and bounded above for all
t ≥ 0, and so lim inft→∞ y(t) ≥ 0 and lim supt→∞ (xs + xI)(t) < ∞. Therefore, if
Dy

αy
> DI

αI
, taking the lim sup on both sides of (A.3), lim supt→∞ ln(y(t)) = −∞, and

so y(t) → 0 as t → ∞.
We prove 3. – 5. for system (2.1). The proof for (2.2) is similar.
3. Assume that Ds

αs
≥ S0. Without loss of generality, assume that xI(0) > 0 or

the result follows from the basic theory of two species competition in the chemostat
[38]. Assume also that for all sufficiently large t, 0 ≤ S(t) < S0. Otherwise, as shown
in part 1., xs(t), xI(t), y(t) → 0 as t → ∞. Adding the second and third equations of
(2.2), given any ε > 0, for all sufficiently large t:

(xs + xI)′(t) = xs(t)(−Ds + αsS(t)) + xI(t)(−DI + αIS(t))
≤ [−Ds + αsS(t)](xs + xI)(t)
≤ [−Ds + αs min{S0, S∞ + ε}](xs + xI)(t).

If Ds

αs
> S0, the term in the square brackets is a negative constant. This implies that

(xs + xI)(t) → 0 as t → ∞. Since by Lemma 3.1, xs(t) ≥ 0 and xI(t) ≥ 0 for all
t ≥ 0, both xs(t) → 0 and xI(t) → 0 as t → ∞. If Ds

αS
= S0, this implies that the

term in the square brackets is nonpositive and so limt→(xs +xI)(t) exists. If the limit
is zero the result follows as in the previous case. The limit cannot be positive, since
then by Lemma 3.1, there exists ε > 0 such that S∞ + ε < S0, and again the term in
the square brackets is negative, leading to a contradiction.

4. If limt→∞ xs(t) = 0, from the xs equation of (2.1) and Lemma 3.1, xs :
R+ → R is a bounded differentiable function and x′

s(t) is uniformly continuously
differentiable. By the Barbălat Lemma [2], limt→∞ x′

s(t) = 0. That limt→∞ xI(t) = 0
follows immediately from the xs equation of (2.1).

Integrating the xs and y equations of (2.1), since limt→∞ xs(t) = 0, there exists
T > 0 such that δxs(t) < γ for all t > T , and so xs(t) > xs(T )e

R
t
T

−Ds+αsS(u) du,
and since Dy

αy
> Ds

αs
, y(t) < y(T )e

R t
T

−Ds+αsS(u) du. Therefore, using Lemma 3.1,
limt→∞ y(t) = 0.

5. We argue using proof by contradiction. Assume that xs∞ = 0, but that
lim inft→∞ xI(t) �= 0. Then, x∞

I ≥ xI∞ > 0. Applying Lemma A.1 to the xs equation
of (2.1) with J defined as in the proof of Lemma A.3,

0 ≥ xs∞ (−Ds + αsS∞ − δx∞
I ) + γxI∞ = 0 + γxI∞ > 0,
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a contradiction. Therefore, xI∞ = 0.
6. Let P (t) = (S(t), xs(t), xI(t), y(t)) be any solution of (2.1). It suffices to

assume that Dy

αy
< S0 or the result follows by part 1. It also suffices to consider the

case that lim supt→∞ xs(t) > 0, since otherwise the result follows by part 4. For any
such solution, there is a point of the form (S, xs, xI , y) in the omega limit set of P (t)
where xs > 0 and xI = 0. Since the closure of the entire orbit though this point
must be in the omega limit set of P (t), it follows from the standard results for the
chemostat([38]) that the equilibrium point E1x must also be in the omega limit set
of P (t), and that it is globally attracting for all points with xs > 0 and xI = 0.
Using the Butler-McGehee Theorem [28], it follows that if limt→∞ xI(t) = 0, this
equilibrium point must be the only point in the omega limit set of P (t), and hence
limt→∞ y(t) = 0.

Appendix B. Proofs: Existence, Uniqueness, and Stability.

B.1. Existence, Uniqueness, and Local Stability for Subsystem (2.2).

Existence, Uniqueness, and Local Stability of E0∗ . It is easily seen that E0∗

always exists and is unique. For the local stability of E0∗ consider the Jacobian of
(2.2) at E0∗ :

JE0∗ =

⎡⎣−D −αs

ηs
S0 −αI

ηI
S0

0 −Ds + αsS
0 γ

0 0 −DI + αIS
0 − γ

⎤⎦ .

The eigenvalues are given by the diagonal elements. They are all negative when
S0 < Ds

αs
and S0 < DI+γ

αI
. Since we assume that Ds

αs
< DI+γ

αI
, E0∗ is locally asymp-

totically stable if S0 < Ds

αs
and is unstable if S0 > Ds

αs
.

Existence, Uniqueness, and Local Stability of E1∗ . S̄ is always positive, and x̄s

is positive when S0 > Ds

αs
. Hence, E1∗ exists when S0 > Ds

αs
, and is uniquely defined.

To determine the stability of E1∗ , consider the Jacobian matrix of (2.2) evaluated at
E1∗ .

JE1∗ =

⎡⎢⎣ −αsS0D
Ds

−Ds

ηs
−αIDs

ηIαs

αs

(
ηsS0D

Ds
− Dηs

αs

)
0 −δ

(
ηsS0D

Ds
− Dηs

αs

)
+ γ

0 0 −DI + αI S̄ + δx̄s − γ

⎤⎥⎦ .

To obtain the characteristic equation, evaluate det(JE1∗ − λI) to obtain:

(
λ + DI − αI S̄ − δx̄s + γ

)(
λ2 + λ

(
αsS

0D

Ds

)
+ αsD

(
S0 − Ds

αs

))
= 0.

Since both coefficients of the quadratic term are positive, the corresponding eigenval-
ues have negative real part. The eigenvalue from the linear term is,

−DI + αI S̄ + δx̄s − γ = −DI + αI

(
Ds

αs

)
+ δ

(
ηsS

0D

Ds
− Dηs

αs

)
− γ

< 0 if S0 < λc.
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Therefore, all eigenvalues have negative real parts if λc > S0, and at least one eigen-
value with positive real part if λc < S0 Hence, when it exists, E1∗ is locally asymp-
totically stable when λc > S0 and unstable if the inequality is reversed.

Existence, Uniqueness, and Local Stability of E2∗ .

Proof. (of Theorem 3.4). First we consider existence and uniqueness. Substitute
the expressions given by (3.2) for x∗

s and x∗
I into the S′(t) equation of system (2.2)

and set S′(t) = 0. The denominator of the resulting expression is always negative for
S < DI

αI
. The numerator of the resulting expression is the cubic:

f(S) = DηsηIδS
0DI + S(−S0DαIηsηIδ − DηsηIδDI − αsηIDIγ − αsηID

2
I

+αIηsDsγ + αIηsDsDI) + S2(αIDηsηIδ + 2αsαIηIDI + αsαIηIγ(B.1)
−α2

IηsDs − αsαIηsγ − αsαIηsDI) + S3αsα
2
I(ηs − ηI).

In § 3.2, we proved that E2∗ exists if and only if there is a root S∗ of this equation,
with S∗ ∈

(
Ds

αs
, DI

αI

)
. It is useful to note that:

f(0) = DηsηIδS
0DI > 0(B.2)

f

(
Ds

αs

)
= DηsηIδ

(
DI − αI

Ds

αs

)(
S0 − λc

)
(B.3)

f

(
DI

αI

)
= DIηsγ

(
Ds − αs

DI

αI

)
< 0,(B.4)

We proceed by considering the cases (I) ηI = ηs, (II) ηs > ηI , and (III) ηI > ηs,
separately.

(I) First assume that ηs = ηI = η. Then, f(S) reduces to a quadratic equation
with f(0) > 0, f

(
DI

αI

)
< 0, and the coefficient of S2 is positive. Therefore, both roots

are real and positive, and one root lies to the right of DI

αI
. If f

(
Ds

αs

)
> 0, or equiva-

lently S0 > λc, as assumed in part 1.(i), there is a unique positive root S∗ ∈
(

Ds

αs
, DI

αI

)
and hence an equilibrium of the form E2∗ exists and is uniquely defined. If S0 < λc,
as assumed in part 2.(i), no equilibrium of this form exists.

(II) Next consider ηs > ηI . The coefficient of S3 in the cubic, f(S) is positive.
Hence, as S tends to positive (negative) infinity, f(S) tends to positive (negative)
infinity. Also, f(0) > 0, and so there must be at least one negative root of f(S), and
f
(

DI

αI

)
< 0, and so there must be a positive root that is larger than DI

αI
. This leaves

one root, and it lies in
(

Ds

αs
, DI

αI

)
if and only if f

(
Ds

αs

)
> 0, i.e., if and only if S0 > λc

as assumed in part 1.(ii). Thus, in this case there is exactly one root in
(

Ds

αs
, DI

αI

)
,

and E2∗ exists and is unique. If f
(

Ds

αs

)
≤ 0, or equivalently S0 ≤ λc, as assumed in

part 2.(i), then no equilibrium of the form E2∗ exists. (Recall that it is the relative
values of S0 and λc that determines the local stability of E1∗ , and so we have just
shown that if ηs > ηI , when E2∗ exists E1∗ must be unstable.)
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(III) Finally, assume that ηI > ηs. The condition S0 > λc in part 1.(iii), is
sufficient to ensure that at least one equilibrium of the form E2∗ exists, since f

(
DI

αI

)
<

0 and if S0 > λc, f
(

Ds

αs

)
> 0. Therefore, there must be at least one root S∗ ∈(

Ss

α)s , DI

αI

)
. However up to three distinct values of S∗ in this interval are possible as

illustrated in Figures 3.5-3.6.
Next we show that when S0 > λc that E2∗ is unique when at least one of (3.7)

or (3.8) holds. To prove uniqueness when (3.7) holds, we argue as follows. Define
G(S) = (S0 − S)D − αIxI(S)S

ηI
and H(S) = αsxs(S)S

ηs
, where xs(S) and xI(S) are

defined in (3.2). Therefore, S′(S∗, x∗
s, x

∗
I) = G(S∗)− H(S∗) = 0, and so intersections

of G(S) and H(S) for S ∈
(

Ds

αs
, DI

αI

)
are the only candidates for the S component of

any equilibrium of the form E2∗ .

dG

dS
= −D − αI

dxI

dS S

ηI
− αIxI

ηI

= −D

(
αIS

ηI

)(
γαI(−Ds + αsS) + αs(−αIS + DI + γ)(DI − αIS)

δ(DI − αIS)2

)
< 0 for S ∈

(
Ds

αs
,
DI

αI

)
dH

dS
=

αs
dxs

dS S

ηs
+

αsxs

ηs

=
−2αsαIS + αsDI + αsγ

δηs

> 0 for S ∈
(

Ds

αs
,
DI

αI

)
, when DI < γ.

Therefore, G is decreasing for S ∈
(

Ds

αs
, DI

αI

)
, and H is increasing there provided that

DI < γ, i.e. (3.7) holds. As well,

S0 >
Ds

Dδηs

(
DI + γ − αIDs

αs
+

δDηs

αs

)
= λc

⇔ (S0 − Ds

αs
)D − (DI − αIDs

αs
+ γ)Ds

δηs
> 0

⇔ (S0 − Ds

αs
)D − (DI − αI

Ds

αs
+ γ)(−Ds + αs

Ds

αs
)

δ(DI − αI
Ds

αs
)

(
αI

ηI

Ds

αs

)
>

(DI − αI
Ds

αs
+ γ)αs

Ds

αs

δηs

⇔ G(
Ds

αs
) > H(

Ds

αs
).

Also, G(DI

αI
) < lim

S→D
−
I

αI

H(S) = ∞. This ensures one and only one intersection of

G(S) and H(S) in
(

Ds

αs
, DI

αI

)
.

To prove uniqueness when (3.8) holds, we use the following argument.
Let g(S) = δD(S0−S)

S and h(S) =
[

αs

ηs
+ αI (−Ds+αsS)

ηI(DI−αIS)

]
(DI +γ−αIS), where S′(S∗) =

g(S∗) − h(S∗) = 0. We again find criteria for g and h to have only one intersection
for S ∈

(
Ds

αs
, DI

αI

)
.
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Clearly g(S) is decreasing.

h′(S) = −αI

[
αs

ηs
+

αI(−Ds + αsS)
ηI(DI − αIS)

]
+ (DI + γ − αIS)

[
αI(αsDI − αIDs)

ηs(DI − αIS)2

]
=

αI

ηsηI(DI − αIS)2
[−αsηI(DI − αIS)2 + ηsαs(DI − αIS)2

+ηsγ(αsDI − αIDs)]

The factor on the right in the square bracket is positive when (3.8) holds, and so
h(S) is increasing in this case. It remains to show that g

(
Ds

αs

)
> h

(
Ds

αs

)
and that

g
(

DI

αI

)
< h

(
DI

αI

)
.

S0 >
Ds

Dδηs

(
DI + γ − αIDs

αs
+

δDηs

αs

)
= λc ⇔ g(

Ds

αs
) > h(

Ds

αs
).

Also, g
(

DI

αI

)
< lim

S→D
−
I

αI

h(S). This ensures one and only one intersection of g(S)

and h(S) in
(

Ds

αs
, DI

αI

)
, when (3.8) holds, i.e., ηI ≤ αsγηs

αsDI−αIDs
+ ηs.

If S0 < λc, as assumed in part 2.(ii), then f(0) > 0 and f
(

Ds

αs

)
< 0, and so at

least one root must lie in
(
0, Ds

αs

)
. Thus at most two equilibria of the form E2∗ are

possible, and since f
(

DI

αI

)
< 0, generically (i.e., unless there is a double root), there

is either no equilibrium of this form or there are two.

Next we consider the local stability of E2∗ . Evaluate the Jacobian of (2.2) at E2∗

to obtain:

JE2∗ =

⎡⎢⎣−S0D
S∗ −αs

ηs
S∗ −αI

ηI
S∗

αsx
∗
s −γ

x∗
I

x∗
s

−δx∗
s + γ

αIx
∗
I δx∗

I 0

⎤⎥⎦ ,

Evaluate det(JE2∗ − λI) to obtain the characteristic equation. It is of the form λ3 +
a1λ

2 + a2λ + a3 = 0, where

a1 =
S0D

S∗ +
γx∗

I

x∗
s

, a2 =
γS0Dx∗

I

x∗
sS

∗ +
α2

sx
∗
sS

∗

ηs
+ δx∗

I(δx
∗
s − γ) +

α2
Ix

∗
IS

∗

ηI
,

a3 =
δS0Dx∗

I

S∗ (δx∗
s − γ) + αsαIδS

∗x∗
sx

∗
I

(
1
ηI

− 1
ηs

)
+

αsαIγS∗x∗
I

ηs
+

α2
IγS∗x∗

I
2

ηIx∗
s

.(B.5)

By the Routh-Hurwitz Criterion ([16], [25]), all roots of the characteristic equation
have negative real part if and only if a1 > 0, a3 > 0, and a1a2 > a3. Note that a1 > 0.

Whenever E2∗ exists, x∗
s > γ

δ . If ηI ≤ ηs, as in part 1.(i),(ii) or 2.(i), the coefficient
a3 is always positive. When ηI > ηs and (3.7) holds

a3 =
δS0Dx∗

I

S∗ (δx∗
s − γ) +

αsαIδS
∗x∗

sx
∗
I

ηI
− αsαIδS

∗x∗
sx

∗
I

ηs
+

αsαIγS∗x∗
I

ηs
+

α2
IγS∗x∗

I
2

ηIx∗
s
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> x∗
I(δx

∗
s − γ)

(
δS0D

S∗ − αIαsS
∗

ηs

)
.

Using (3.3) to substitute for S0D, in the expression in the brackets, it follows that
a3 > 0 if

T =
δ

S∗

(
S∗D +

αsx
∗
sS

∗

ηs
+

αIx
∗
IS

∗

ηI

)
− αIαsS

∗

ηs
> 0.

Substituting for x∗
s using (3.2), omitting the terms involving D and x∗

I , and recalling
that S∗ < DI

αI
, it follows that

ηs

αs
T > (DI − αIS

∗ + γ) − αIS
∗ = DI + γ − 2αIS

∗ > DI + γ − 2DI = γ − DI > 0.

Therefore, if ηI > ηs and (3.7) holds, a3 is also always positive.
When ηI > ηs and (3.8) holds, as assumed in part 3,

a3 > αIS
∗x∗

I

(
αsδx

∗
s

ηI
− αsδx

∗
s

ηs
+

αsγ

ηs
+

αIγx∗
I

ηIx∗
s

)
.

Substituting x∗
I given in (3.2), the expression inside the brackets equals(

1
ηsηI(δx∗

s − γ)

)
((δx∗

s − γ)(αsδηsx
∗
s − αsδηIx

∗
s + αsγηI) + αIγηs(−Ds + αsS

∗)) .

Therefore, a3 > 0 if αsδηsx
∗
s − αsδηIx

∗
s + αsγηI ≥ 0. Substituting x∗

s given in (3.2),
recalling that S∗ > Ds

αs
, and rearranging, a3 > 0 when (3.8) holds, since

αsδηsx
∗
s − αsδηIx

∗
s + αsγηI = αsγηI − αs(DI − αIS

∗ + γ)(ηI − ηs)
≥ αsγηs − (αsDI − αIDs)(ηI − ηs)
≥ 0, when (3.8) holds.

Next consider the sign of a1a2 − a3. After using (3.3) to substitute for S0D, and
then factoring a common denominator, we obtain:

a1a2 − a3 =
1

η2
sη2

Ix∗
s
2 (η2

sη2
Iγ2x∗

I
2D + ηsη

2
Iγ2αsx

∗
sx

∗
I
2 + η2

sηIγ
2αIx

∗
I
3

+D2η2
sη2

Iγx∗
sx

∗
I + 2ηsη

2
Iγαsx

∗
s
2x∗

ID + 2η2
sηIγαIx

∗
sx

∗
I
2D

+η2
Iγα2

sx
∗
s
3x∗

I + 2ηsηIγαsαIx
∗
s
2x∗

I
2 + η2

sγα2
Ix

∗
sx

∗
I
3

+ηsη
2
Iα2

sx
∗
s
3S∗D + η2

Iα3
sx

∗
s
4S∗ + η2

sηIα
2
Ix

∗
s
2x∗

IS
∗D(B.6)

+ηsηIαsαIx
∗
s
3x∗

I(αs + αI − ηsδ + ηIδ) + η2
sα3

Ix
∗
s
2x∗

I
2S∗

+η2
sη2

Iγδx∗
sx

∗
I
2(δx∗

s − γ) + ηsη
2
Iγx∗

s
2x∗

I(αs − αI)).

Since αs ≥ αI , and x∗
s > γ

δ whenever E2∗ exists, a sufficient condition for a1a2 −
a3 > 0 is that αI+αs

δ ≥ ηs − ηI . Note that this always holds when ηI ≥ ηs as assumed
in part 1.(i),(iii) or 2.(ii).

B.2. Proofs: Criteria in Table 3.1 – Global Stability for Subsystem
(2.2).
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Global stability of E0∗ . The global stability of E0∗ when Ds

αS
> S0 follows im-

mediately from Theorem 3.2 parts 3. and 4.
Remark B.1. Note that E0∗ is globally asymptotically stable whenever it is locally

asymptotically stable. Otherwise, for all sufficiently large t, for all solutions of (2.2),
0 ≤ S(t) ≤ S0.
Global stability of E1∗ . Consider the following Lyapunov function:

V (S, xs, xI) = S − S̄ − S̄(ln(S) − ln(S̄)) + k1[xs − x̄s − x̄s(ln(xs) − ln(x̄s))] + k2xI

with k1, k2 > 0 positive constants to be determined.

V̇ =
(

S − S̄

S

)
Ṡ + k1ẋs

(
xs − x̄s

xs

)
+ k2ẋI

=
(

S − S̄

S

)[
(S0 − S)D − αsxsS

ηs
− αIxIS

ηI

]
+k1

(
xs − x̄s

xs

)
[xs(−Ds + αsS) − δxsxI ] + k1γxI

(
xs − x̄s

xs

)
+k2[xI(−DI + αIS) + δxsxI − γxI ]

=
(

S − S̄

S

)[
(S0 − S)D − αsx̄sS

ηs

]
−αs

(
1
ηs

)
(S − S̄)(xs − x̄s) + k1αs(xs − x̄s)(S − S̄)

+k2xI [−DI + αIS + δxs − γ + γ
k1

k2
− γ

k1

k2

(
x̄s

xs

)
− k1

k2
δxs +

k1

k2
δx̄s − SαI

k2ηI
+

S̄αI

k2ηI
]

= T 1 + αs(S − S̄)(xs − x̄s)
(

k1 − 1
ηs

)
+ k2xI

(
−DI +

αI S̄

k2ηI
+

k1

k2
δx̄s − γ + γ

k1

k2

)
+k2xI

[
αIS

(
1 − 1

k2ηI

)
+ δxs

(
1 − k1

k2

)
− γ

k1

k2

(
x̄s

xs

)]
where T 1 =

(
S−S̄

S

) [
(S0 − S)D − αsx̄sS

ηs

]
≤ 0, with equality if and only if S = S̄. Let

k1 = 1
ηs

, to eliminate the second term, and k2 = 1
ηs

. Then,

V̇ = T 1 +
1
ηs

xI

(
−DI +

ηs

ηI
(αI S̄) + δx̄s

)
+

1
ηs

xI

[
αIS

(
1 − ηs

ηI

)
− γ

(
x̄s

xs

)]
.(B.7)

The third term is always non-positive. If DI is sufficiently large, then the second
term is non-positive, and V̇ ≤ 0 with equality if and only if S = S̄ and xI = 0. Since
by Lemma 3.1 all solutions are bounded, by the LaSalle Extension Theorem, every
solution of (2.2) approaches M, the largest invariant subset of

Ω = {(S, xs, xI) ∈ R
3
+ : V̇ (S, xs, xI) = 0} = {(S, xs, xI) ∈ R

3
+ : S = S̄, xI = 0}.

To be in M, since S = S̄, must be constant, S′(t) ≡ 0 must hold, and since xI = 0, it
follows that xs(t) ≡ x̄s. Hence, M = (S̄, x̄s, 0) = E1∗ , and so E1∗ is globally asymp-
totically stable when it is locally asymptotically stable provided that in addition, DI

is sufficiently large.
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Remark B.2. If ηs < ηI , then take k2 = 1
ηI

.

V̇ = T 1 +
1
ηI

xI

(
−DI + αI S̄ +

ηI

ηs
(δx̄s) − γ

(
1 − ηI

ηs

))
+

1
ηI

xI

[
δxs

(
1 − ηI

ηs

)
− ηIγ

ηs

(
x̄s

xs

)]
A similar argument applies. Again E1∗ is globally asymptotically stable when it is
locally asymptotically stable provided that in addition, DI is sufficiently large.
Global stability of E2∗ . In the special case that ηs = ηI = η and D = Ds = DI , if
z(t) = S0 − S(t) − xs(t)

η − xI(t)
η , then

z′(t) = −S0D + S(t)D +
xs(t)D

η
+

xI(t)D
η

= −Dz(t).

This implies that z(t) = z(0)e−Dt, and so as t → ∞, z(t) → 0 and hence S(t)+ xs(t)
η +

xI(t)
η → S0. Therefore we can consider the two dimensional limiting system obtained

from (2.2) by replacing S(t) by S(t) = S0 − xs(t)
η − xI(t)

η :

x′
s(t) = xs(t)

(
−D + αs

(
S0 − xs(t)

η
− xI(t)

η

))
− δxs(t)xI(t) + γxI(t) ≡ f1(xs, xI)

x′
I(t) = xI(t)

(
−D + αI

(
S0 − xs(t)

η
− xI(t)

η

))
+ δxs(t)xI(t) − γxI(t) ≡ f2(xs, xI)

for {(xs, xI) : xs ≥ 0, xI ≥ 0,
xs

η
+

xI

η
≤ S0}.(B.8)

System (B.8) has three equilibria, X1 = (0, 0), X2 = ( η
αs

(−D + αsS
0), 0), and X3 =

(x∗
s , x

∗
I), with x∗

s and x∗
I defined in (3.2). The local stability results of subsystem

(2.2) apply to (B.8), and so when D
αs

< S∗ < D
αI

and γ
δ < x∗

s < D+γ
δ , X1 is a

repeller, X2 is a saddle point, with stable manifold restricted to the xs-axis, and X3

is locally asymptotically stable. Applying the Dulac criterion with auxiliary function
β(xs, xI) = 1

xsxI
on {(xs, xI) : xs > 0, xI > 0},

∂

∂xs
(βf1) +

∂

∂xI
(βf2) = − αs

xIη
− γ

x2
s

− αI

xsη
< 0.

It follows that (B.8) has no nontrivial periodic orbits. By Lemma 3.1, all solutions are
bounded, and so by the Poincaré-Bendixson Theorem, X3 is a globally asymptotically
stable with respect to solutions with xs(0) > 0, xI(0) > 0, and 1

η (xs(0)+xI(0)) < S0.
There are no cycles of rest points, since the only trajectories connecting equilibria go
from X1 to X2 to X3, and cannot leave X3, since X3 is locally asymptotically stable.
Since all five hypotheses (H1) - (H5) are of Theorem F.1 of [28] are satisfied, E2∗ is
globally asymptotically stable for subsystem (2.2).

B.3. Existence, Uniqueness, and Local Stability for System (2.1).

Existence, Uniqueness, and Local Stability of E0. E0 always exists. The
Jacobian of (2.1) evaluated at E0 is:

JE0 =

⎡⎢⎢⎣
−D −αs

ηs
S0 −αI

ηI
S0 αy

ηy
S0

0 −Ds + αsS
0 γ 0

0 0 −DI + αIS
0 − γ 0

0 0 0 −Dy + αyS0

⎤⎥⎥⎦ .
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The eigenvalues of JE0 are on the diagonal. E0 is locally asymptotically stable when
S0 < min

(
Ds

αs
,

Dy

αy

)
, and is unstable if S0 >

Dy

αy
or S0 > Ds

αs
.

Existence, Uniqueness, and Local Stability of E1x. Just as for E1∗ , E1x exists
when Ds

αs
< S0. For the local stability the Jacobian of (2.1) evaluated at E1x is:

JE1x =

⎡⎢⎢⎣
−αyDs

ηyαs

JE1∗ 0
0

0 0 0 −Dy + αy

(
Ds

αs

)
⎤⎥⎥⎦ .

The eigenvalues of this matrix are the eigenvalues of the 3 × 3 sub-matrix E1∗ and
−Dy +αy

(
Ds

αs

)
. This eigenvalue is negative if Ds

αs
<

Dy

αy
, and positive if the inequality

is reversed and so asymptotically stable when Ds

αs
<

Dy

αy
and E1∗ is asymptotically

stable, i.e., S0 < λc.

Existence, Uniqueness, and Local Stability of E1y. E1y exists when S0 >
Dy

αy
.

The Jacobian of (2.1) at E1y is:

JE1y =

⎡⎢⎢⎢⎢⎢⎣
−αyS0D

Dy
−αsDy

ηsαy
−αIDy

ηIαy
−Dy

ηy

0 −Ds + αsDy

αy
γ 0

0 0 −DI + αI

(
Dy

αy

)
− γ 0(

αyDηy

Dy

)(
S0 − Dy

αy

)
0 0 0

⎤⎥⎥⎥⎥⎥⎦ .

To find the characteristic equation, evaluate det(JE1y − λI) to obtain:(
DI − αIDy

αy
+ γ + λ

)(
Ds − αsDy

αy
+ λ

)[
λ2 +

αyS0D

Dy
λ + αyD

(
S0 − Dy

αy

)]
= 0

Two eigenvalues αI

(
Dy

αy
− DI+γ

αI

)
and αs

(
Dy

αy
− Ds

αs

)
are given by the linear terms.

Since we are assuming throughout that Ds

αs
< DI

αI
, they are both negative when

Dy

αy
< Ds

αs
. Both roots of the quadratic term have negative real part by the Routh-

Hurwitz Criterion, since the coefficient αyDS0

Dy
, is always positive; and the constant

term αyD
(
S0 − Dy

αy

)
, is positive whenever E1y exists. Hence, E1y is locally asymp-

totically stable when it exists and Dy

αy
< Ds

αs
and unstable if Dy

αy
> Ds

αs
.

Existence, Uniqueness, and Local Stability of E2. The first three components
of E2 are identical to those of E2∗ and so the number of equilibria that exist of the
form E2 is identical to the number of equilibria that exist of the form E2∗.

For the local stability of E2, evaluate the Jacobian of (2.1) at E2 to obtain:

JE2 =

⎡⎢⎢⎣
−αy

ηy
S∗

JE2∗ 0
0

0 0 0 −Dy + αyS∗

⎤⎥⎥⎦ .
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Therefore, three of the characteristic roots are the same as those for E2∗ , and the
fourth root is −Dy +αyS

∗. Therefore, E2 is locally asymptotically stable, if S∗ <
Dy

αy

and the corresponding equilibrium of the form E2∗ is locally asymptotically stable.

Existence, Uniqueness, and Local Stability of E3. It is clear that only one
equilibrium of the form E3 can exist, since its components are each uniquely defined
in (3.4). Ŝ = Dy

αy
is always positive; x̂s is positive when Dy

αy
< DI+γ

αI
; x̂I is positive

when Ds

αs
<

Dy

αy
< DI

αI
; and ŷ is positive when

S0 >
Dy

αyD

⎡⎣αs(DI + γ − αIDy

αy
)

δηs
+

αI(DI + γ − αIDy

αy
)(−Ds + αsDy

αy
)

δηI(DI − αIDy

αy
)

+ D

⎤⎦ .

Hence, E3 exists when Ds

αs
<

Dy

αy
< DI

αI
, and

S0 >
Dy

αyD

⎛⎝D +
αs

δηIηs

(
DI + γ − αIDy

αy

)⎛⎝ηI + ηs

(
Dy

αy
− Ds

αs

)
(

DI

αI
− Dy

αy

)
⎞⎠⎞⎠ .

Next consider the local stability of E3 in the special case: ηs = ηI = η and
D = Ds = DI = Dy. Restricting the parameters thus, simplifies the analysis. Let
z(t) = S0 − S(t) − xs(t)

η − xI(t)
η − y(t)

ηy
. Then

z′(t) = −S0D + S(t)D +
xs(t)D

η
+

xI(t)D
η

+
y(t)D

ηy
= −Dz(t).

This implies that z(t) = z(0)e−Dt, and so as t → ∞, z(t) → 0 and hence S(t)+ xs(t)
η +

xI(t)
η + y(t)

ηy
→ S0. Therefore we can consider the three dimensional limiting system

obtained from (2.1) by replacing S(t) by S(t) = S0 − xs(t)
η − xI(t)

η − y(t)
ηy

:

x′
s(t) = xs(t)

(
−D + αs

(
S0 − xs(t)

η
− xI(t)

η
− y(t)

ηy

))
−δxs(t)xI(t) + γxI(t)

x′
I(t) = xI(t)

(
−D + αI

(
S0 − xs(t)

η
− xI(t)

η
− y(t)

ηy

))
+δxs(t)xI(t) − γxI(t)

y′(t) = y(t)
(
−D + αy

(
S0 − S(t) − xs(t)

η
− xI(t)

η
− y(t)

ηy

))
(B.9)

This system has the corresponding interior equilibrium E3 = (x̂s, x̂I , ŷ). The three
eigenvalues of this system have the same sign as three eigenvalues of the full four
dimensional system; the fourth eigenvalue is negative. The Jacobian matrix for (B.9)
evaluated at E3 is:

JE3 =

⎡⎢⎣−αsbxs

η − γbxIbxs
−αsbxs

η − δx̂s + γ −αsbxs

ηy

αI bxI

η + δx̂I −αI bxI

η −αI bxI

ηy

−αy by
η −αy by

η −αy by
ηy

⎤⎥⎦ .
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The characteristic equation is of the form λ3 + a1λ
2 + a2λ + a3 = 0, where

a1 =
αsx̂s

η
+

γx̂I

x̂s
+

αI x̂I

η
+

αy ŷ

ηy
,

a2 =
γx̂I

x̂s

(
αI x̂I

η
+

αy ŷ

ηy

)
+

δx̂sx̂I

η
(αs − αI) + δx̂I(δx̂s − γ) +

γαI x̂I

η
, and

a3 =
δαyx̂I ŷ

ηy
(δx̂s − γ).

Clearly, a1 > 0. Since αs ≥ αI , when E3 exists, i.e. x̂s > γ
δ , then a3 > 0. Now,

a1a2 − a3 = (
αsx̂s

η
+

γx̂I

x̂s
+

αI x̂I

η
)

[
γx̂I

x̂s
(
αI x̂I

η
+

αy ŷ

ηy
) +

δx̂sx̂I

η
(αs − αI) +

γαI x̂I

η

+δx̂I(δx̂s − γ)

]
+

αyŷ

ηy

[
γx̂I

x̂s
(
αI x̂I

η
+

αy ŷ

ηy
) +

δx̂sx̂I

η
(αs − αI) +

γαI x̂I

η

]
> 0.

Hence, under these restrictions on the parameters, by the Routh-Hurwitz criterion,
E3 is locally asymptotically stable whenever it exists.

Proof. (of Theorem 3.5.) 1. If an equilibrium of the form E3 exists, S0 >
Dy

αy
> Ds

αs

(see Table 3.1), and hence E1x and E1y exist. It remains to show that if an equilibrium
of the form E3 exists, at least one equilibrium of the form E2 also exists.

Any equilibrium of the form E2 or E3 must have components satisfying xs(S) =
−αIS+DI+γ

δ > 0, xI(S) = xS(−Ds+αsS)
δxs−γ > 0 and

y(S) = ηy

αy

(
S0D

S − D − αsxs

ηs
− αIxI

ηI

)
, where y(Ŝ) > 0 for E3 and y(S∗) = 0 for E2.

Define a function

H(S) = (S0 − S)D − αsSxs(S)
ηs

− αISxI(S)
ηI

.

Then H(Ŝ) > 0, since

(S0 − Ŝ)D − αsŜxs(Ŝ)
ηs

− αI ŜxI(Ŝ)
ηI

− αyŜy(Ŝ)
ηy

= 0

and y(Ŝ) > 0.
For S ∈ (Ŝ, DI

αI
), H(S) is a continuous function of S. Note that xs

(
DI

αI

)
> 0 and

lim
S→DI

αI

− xI(S) = +∞, and so lim
S→DI

αI

− H(S) = −∞, and that if Ds

αs
< S0 < DI

αI
,

then since xs(S) > 0 and xI(S) > 0 for S ∈ [Ŝ, S0], it follows that H(S0) < 0. Hence,
there exists a value of S∗ ∈ (Ŝ, min(S0, DI

αI
)) satisfying H(S∗) = 0, xs(S∗) > 0, and

xI(S∗) > 0. Therefore, an equilibrium of the form E2 exists.

2. By part 1., we can assume that if E3 exists an equilibrium of the form E2

also exists. Differentiating the expressions for the components xs(S), xI(S), and y(S)
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given in part 1., with respect to S,

dxs

dS
=

−αI

δ
,

dxI

dS
=

[(−αI

δ

)
(−Ds + αsS) + αsxs

]
(δxs − γ) + δ

(
αI

δ

)
xs(−Ds + αsS)

(δxs − γ)2

=
γαI(−Ds + αsS) + αs(−αIS + DI + γ)(DI − αIS)

δ(DI − αIS)2
,

dy

dS
=

ηy

αy

(
−S0D

S2
− αs

ηs

dxs

dS
− αI

ηI

dxI

dS

)
,

=
ηy

αy

[
−S0D

S2
+

αsαI

ηsδ

]
−αIηy

ηIαy

(
γαI(−Ds + αsS) + αs(−αIS + DI + γ)(DI − αIS)

δ(DI − αIS)2

)
=

ηy

αy

[
−S0D

S2
− αsαI

δ

(
1
ηI

− 1
ηs

)]
− ηy

αy

[
αIγ

ηIδ(DI − αIS)

(
αI(−Ds + αsS)

(DI − αIS)
+ αs

)]
.

Recall that the S component of E2 must lie in the interval
(

Ds

αs
, DI

αI

)
, and note that

if ηs ≥ ηI , the above expression for dy
dS is always negative for S ∈

(
Ds

αs
, DI

αI

)
and

Ŝ = Dy

αy
∈
(

Ds

αs
, DI

αI

)
. Therefore, since y(S∗) = 0, in order for ŷ > 0, it follows that

Ŝ < S∗.

3. If ηs ≥ ηI , and E3 exists, then an equilibrium of the form E2 must exist by
part1. and so by Theorem 3.4, S0 > λc, and by part 2., S∗ >

Dy

αy
. That no other

equilibrium can be stable, follows directly from Table 3.1.
If ηs < ηI , that E1x or an equilibrium of the form E2 can be locally asymptotically

stable when E3 exists is demonstrted in the example given in Figure 3.7.

B.4. Proofs: Criteria in Table 3.1 – Global Stability for System (2.1).
Global stability of E0. Assume that S0 < min

{
Ds

αs
,

Dy

αy

}
. The global stability in

this case follows immediately from Theorem 3.2 parts 1., 3, and 4.
Remark B.3. If E0 is locally asymptotically stable, then E0 is globally asymp-

totically stable. Otherwise, for all sufficiently large t, for all solutions of (2.1),
0 ≤ S(t) ≤ S0.
Global stability of E1x. Consider the Lyapunov function:

V (S, xs, xI , y) = S − S̄ − S̄ ln
(

S

S̄

)
+

1
ηs

[
xs − x̄s − x̄s ln

(
xs

x̄s

)]
+

1
ηs

xI +
1
ηy

y.

V̇ =
(

S − S̄

S

)[
(S0 − S)D − αsx̄sS

ηs

]
+

1
ηs

xI

(
−DI +

ηs

ηI
(αI S̄) + δx̄s

)
+

1
ηs

xI

[
αIS

(
1 − ηs

ηI

)
− γ

(
x̄s

xs

)]
− y

ηy
(Dy − S0αy).
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Except for the last term involving y, the is exactly the same as (B.7) and so, assuming
E1x is locally asymptotically stable, the proof of global stability of E1x is similar to
the proof of global stability of E1∗ , provided that S0 <

Dy

αy
, so that y = 0 must hold

for V̇ = 0. The same LaSalle Extension Theorem argument applies, with

Ω = {(S, xs, xI , y) ∈ R
4
+ : S = S̄, xI = 0, xs ≥ 0, y = 0}

and M = {(S̄, x̄s, 0, 0)} = {E1x}, the largest invariant subset of Ω. Therefore, as for
E1∗ , E1x is globally asymptotically stable if S0 <

Dy

αy
and DI is sufficiently large.

Global stability of E1y. That E1y is globally asymptotically stable provided that
it exists and is locally asymptotically stable follows from Theorem 3.8 part 1., proved
in Appendix C.

Global stability of E2. Assuming that E2 exists and is locally asymptotically stable
and that E2∗ is globally asymptotically stable for (2.2), implies that E2 is unique and
hence that R0 > 1 by Theorem 3.4. Therefore, by Theorem 3.8 part 6., it suffices to
show that y(t) → 0 as t → ∞. That y(t) → 0 as t → ∞ when Dy

αy
> DI

αI
, follows from

Theorem 3.2 part 2.

Appendix C. Proofs: Persistence Results.
Proof. (of Theorem 3.8.) 1. Assume that Dy

αy
< Ds

αs
. Adding the second and third

equations of (2.1), we obtain:

(xs + xI)′(t) ≤ (xs + xI)(t)(−Ds + αsS(t)).

Integrating both sides of the above inequality with respect to t and rearranging,∫ t

0

S(t)dt ≥ Dst + ln((xs + xI)(t)) − ln((xs + xI)(0))
αs

.(C.1)

Integrating both sides of the y′ equation of (2.1), we again obtain (A.2). Equations
(C.1) and (A.2) imply that

ln(y(t)) ≥ ln(y(0)) +
αy

αs
ln
(

(xs + xI)(t)
(xs + xI)(0)

)
+ αyt

(
Ds

αs
− Dy

αy

)
.(C.2)

By Lemma 3.1, y(t), xs(t), and xI(t) are non-negative and bounded above for all t ≥ 0,
and so lim supt→∞ y(t) < ∞. Therefore, if Dy

αy
< Ds

αs
, taking the lim sup on both sides

of (C.2), unless limt→∞(xs + xI)(t) = 0, lim supt→∞ ln(y(t)) = ∞, a contradiction.
If in addition, y(0) > 0 and S0 >

Dy

αy
, E1y is globally asymptotically stable, since

either there is a point in the omega limit set of an orbit with y(0) > 0 of the form
(S̃, 0, 0, ỹ) with ỹ > 0, or limt→∞ y(t) = 0. In the former case, E1y must also be in the
omega limit set (since on the face where xs ≡ 0 and xI ≡ 0 the system is a model of
growth of a single species in a basic chemostat [38]), but E1y is locally asymptotically
stable with respect to (2.1), and hence it would have to be the only point in the omega
limit set. That limt→∞ y(t) = 0 is impossible, since then limt→∞ S(t) = S0 >

Dy

αy

and from the y equation of (2.1) it would follow that y(t) must become unbounded,
contradicting Lemma 3.1.

2. We prove this result for system (2.1). The proof for subsystem (2.2) is similar.
If xI(t) is uniformly strongly persistent, then there exists ε̄ > 0 independent of the
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initial conditions (provided xI(0) > 0), such that for any solution of (2.1), xI∞ > ε̄.
Applying Lemma A.1 to the xs equation of (2.1), recalling that from Lemma 3.1,
x∞

I ≤ αS0

A , where α and A are defined in the statement of Lemma 3.1,

0 ≥ xs∞ (−Ds + αsS∞ − δx∞
I ) + γxI∞ ,

≥ xs∞ (−Ds − δx∞
I ) + γxI∞ .

Rearranging, xs∞ ≥ γxI∞
Ds+δx∞

I
≥ γε̄A

ADs+αδS0 > 0, giving a uniform positive lower bound
for xs∞ .

3. We prove this result for system (2.1). The proof for subsystem (2.2) is similar.
Since (xs +xI)(t) is strongly persistent, by Theorem 3.2 part 4., xs(t) must be at least
weakly persistent. We continue using proof by contradiction. First suppose that xs(t)
is not strongly persistent. Then there exists a solution for which lim supt→∞ xs(t) > 0
and lim inft→∞ xs(t) = 0. Since (xs + xI)(t) is strongly persistent, for this solution,
there exists ε > 0 such that lim inft→∞(xs + xI)(t) = ε. Using the Barbălat Lemma
[2], there must be a sequence of times {tn} → ∞ as t → ∞ such that x′

s(tn) = 0 for
all n, limn→∞ xs(tn) = 0, and limn→∞ xI(tn) ≥ ε > 0. Consider the xs equation of
subsystem (2.2).

0 = x′
s(tn) = xs(tn)(−Ds + αsS(tn) − δxI(tn)) + γxI(tn).

Taking the limit as n → ∞ on both sides, we obtain 0 ≥ γε > 0, a contradiction.
Therefore xs(t) is strongly persistent.

Next we proceed using proof by contradiction, to show that if (xs + xI)(t) is uni-
formly strongly persistent, then xs(t) is also uniformly strongly persistent. Since (xs+
xI)(t) is uniformly strongly persistent, there exists x̄ > 0 such that lim inft→∞(xs +
xI)(t) ≥ x̄, independent of initial conditions, provided that xs(0) > 0 and xI(0) > 0.
Since we just showed that (xs+xI)(t) strongly persistent implies that xs(t) is strongly
persistent, if xs(t) is not uniformly strongly persistent, it follows that there exists a
solution (S(t), xs(t), xI(t), y(t)) with xs(0) > 0 and (using the Barbălat Theorem
[2]), a sequence {tn} with tn → ∞ as n → ∞ for which x′

s(tn) = 0 for all n,
0 < limn→∞ xs(tn) = εs < min{x̄, γx̄

Ds+δx̄+γ }, and limn→∞ xI(tn) = εI ≥ x̄ − εs > 0.

Taking the limit as n → ∞ of both sides of the xs equation of system (2.1) evaluated
at tn, it follows that

0 = εs(−Ds + αs lim
n→∞S(tn)) + εI(−δεs + γ) ≥ −εsDs + εI(−δεs + γ) > 0,

a contradiction. To see this note that γεI

Ds+δεI
is an increasing function of εI and since

εI ≥ x̄ − εs,

γεI

Ds + δεI
≥ γ(x̄ − εs)

Ds + δ(x̄ − εs)
≥ γ(x̄ − εs)

Ds + δx̄
> εs,

since we assumed that εs < γx̄
Ds+δx̄+γ .

4. Again we prove this result for system (2.1). The proof for subsystem (2.2)
is similar. We argue using proof by contradiction. Since S0 < DI+γ

αI
, there exists

ε1 > 0 such that S0 < DI+γ−δε1
αI

. Suppose x∞
s ≤ ε1. Applying Lemma A.1 to the xI

equation of (2.1):

0 ≤ x∞
I (−DI + αIS

∞ + δx∞
s − γ) ≤ x∞

I

[−DI + αIS
0 + δε1 − γ

]
< 0,
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a contradiction, because xI is weakly persistent and the term in the square brackets is
negative. Hence xs∞ > ε1, independent of the initial conditions, and so xs is uniformly
weakly persistent. By Theorem A.2 part 1. with X = S as defined in Lemma 3.1,
X1 = {(S, xs, xI , y) ∈ S : xs > 0} and X2 = {(S, xs, xI , y) ∈ S : xs = 0}, it follows
that xs is uniformly strongly persistent.

5. First consider subsystem (2.2). Since S0 > Ds

αs
, select ε̄ > 0 such that

S0 − Ds

αs
− ε̄ > 0. We begin by showing that

(
αs

ηs
xs + αI

ηI
xI

)∞
> ε̃ where ε̃ =

min
{

ε̄D
4S0 , ε̄αsαI

4δηI
, ε̄αs

4δ

}
. Suppose not, i.e., assume that there is some solution of (2.2),

such that (
αs

ηs
xs +

αI

ηI
xI

)∞
≤ ε̃.(C.3)

Applying Lemma A.1 to the S equation of (2.2)

0 ≥ DS0 − DS∞ + lim inf
t→∞

[
−
(

αs

ηs
xs(t)S∞ +

αI

ηI
xI(t)S∞

)]
≥ DS0 − DS∞ − S0 lim sup

t→∞

[
αs

ηs
xs(t) +

αI

ηI
xI(t)

]
≥ (S0 − S∞)D − ε̃S0,

since S∞ ≤ S∞ ≤ S0 by Lemma 3.1. Therefore, S∞ ≥ S0 − ε̃S0

D , and so

S0 ≥ S∞ ≥ S∞ ≥ S0 − ε̃
S0

D
≥ S0 − ε̄

4
.

Therefore, there exists a t1 > 0 such that S(t) ∈ [S0 − ε̄
2 , S0 + ε̄

2 ] for all t > t1. From
the xs equation of (2.2):

x′
s(t) ≥ xs(t)

(
−Ds + αs(S0 − ε̄

2
) − δxI(t)

)
≥ xs(t)

(
−Ds + αs(S0 − ε̄

2
) − δ

(
ε̃ηI

αI
+ ε̃

))
≥ αsxs(t)

(
S0 − Ds

αs
− ε̄

)
> 0,(C.4)

for all t > t1. But this implies that for this solution xs(t) → ∞ as t → ∞, contra-
dicting (C.3). Therefore, (αs

ηs
xs + αI

ηI
xI)(t) or equivalently is (xs +xI)(t) is uniformly

weakly persistent. By Theorem A.2 part 1. with X = S(2.2), X1 = {(S, xs, xI) ∈
S(2.2) : xs > 0 or xI > 0} and X2 = {(S, xs, xI) ∈ S(2.2) : xs = 0, xI = 0}, it follows
that (xs + xI)(t) is uniformly strongly persistent. That xs(t) is uniformly strongly
persistent now follows by part 3.

Now consider system (2.1) and assume that Dy

αy
> Ds

αs
. Without loss of generality,

assume that S0 >
Dy

αy
, since otherwise by Theorem 3.2 part 1., limt→∞ y(t) = 0

and the proof is similar to the proof for subsystem (2.2), taking X = S, X1 =
{(S, xs, xI , y) ∈ S : y ≥ 0 and, xs > 0 or xI > 0}, and X2 = {(S, xs, xI , y) ∈
S : xs = 0, xI = 0}. First we show that xs(t) is weakly persistent. If not, then by
Theorem 3.2 part 4., there is a solution with xs(0) > 0, for which xs(t) → 0 as t → ∞,
and hence by Theorem 3.2 part 4., xI(t) → 0 and y(t) → 0. Since S0 >

Dy

αy
, there
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exist ε > 0 such that S0 − Dy

αy
> ε. Since xs(t), xI(t) and y(t) → 0 as t → ∞, it

follows from the S(t) equation of (2.1) that S(t) > S0 − ε for all sufficiently large t,
and hence y′(t) > y(t)(−Dy +αy(S0− ε)). Thus y(t) is eventually growing faster than
exponentially, and hence y(t) → ∞ as t → ∞, a contradiction. Therefore, xs(t) is
weakly persistent.

We apply Theorem A.2 part 2. to prove that xs(t) is uniformly strongly persistent.
Define X = S, X2 = {(S, xs, xI , y) ∈ X : xs + xI = 0}, and X1 = X \ X2. Let
x(t) = (S(t), xs(t), xI(t), y(t)) denote a solution of (2.1). Define

Y2 = {x(0) ∈ X2 : x(t) ∈ X2, t > 0} = {x(0) ∈ X : xs(0) + xI(0) = 0}.
Since S0 > Ds

αs
, the union of omega limit sets of solutions starting in X2, denoted

by Ω2, is by standard results for growth in the chemostat [38], the set {E0, E1y},
if Dy

αy
< S0 or the set {E0}, if Dy

αy
≥ S0. Since xs(t) is weakly persistent, E0 and

E1y (when it exists) are weak repellers for X1. Therefore, (xs + xI)(t) is uniformly
strongly persistent. That xs(t) is uniformly strongly persistent now follows from part
3.

6. First consider subsystem (2.2). We apply Theorem A.2 part 2. Define
X = S(2.2), X2 = {(S, xs, xI) ∈ X : xI = 0}, and X1 = X \ X2. Let x(t) =
(S(t), xs(t), xI(t)) denote a solution of (2.2). Define

Y2 = {x(0) ∈ X2 : x(t) ∈ X2, t > 0} = {x(0) ∈ X : xI(0) = 0}.
Since S0 > λc > Ds

αs
implies that E1∗ exists, the union of omega limit sets of solutions

starting in Y2, denoted by Ω2, is by standard results for single population growth in
the chemostat [38], the set {E0∗ , E1∗}. We wish to show that if M1 = {E0∗} and
M2 = {E1∗}, then M = ∪2

i=1Mi is an isolated acyclic covering of Ω2 and that each
Mi, i = 1, 2 is a weak repeller for X1. Since xI(0) = 0 implies that xI(t) ≡ 0, from the
basic theory of the chemostat [38], E0∗ is globally asymptotically stable with respect
to solutions starting in Y2 if xs(0) = 0, and E1∗ is globally asymptotically stable with
respect to solutions in Y2 if xs(0) > 0. Therefore, M is an isolated acyclic covering of
Ω2. If for some solution xI(0) > 0, then xs(t) > 0 for all t > 0. Since S0 > λc > Ds

αS
,

by part 4., xs(t) is uniformly strongly persistent. Therefore M1 is a weak repeller for
X1. M2 is also a weak repeller for X1, since the third eigenvalue of the Jacobian of E1∗
of (2.2) is positive when S0 > λc, and so E1∗ is unstable with two dimensional stable
manifold given by W+(E1∗) = {(S, xs, xI) ∈ R

3 : S ≥ 0, xI = 0, xs > 0}. Therefore
X1 does not intersect W+(E1∗), and so M2 is a weak repeller for X1. Therefore, by
Theorem A.2 part 2., X2 is a uniform strong repeller for X1, and so xI(t) is also
uniformly strongly persistent.

Now consider system (2.1) and assume in addition that Ds

αs
<

Dy

αy
, and xI(0) > 0

implies that limt→∞ y(t) = 0.
We apply Theorem A.2 part 2. Define X = S, X2 = {(S, xs, xI , y) ∈ X : xI = 0},

and X1 = X\X2. Let x(t) = (S(t), xs(t), xI(t), y(t)) denote a solution of (2.1). Define

Y2 = {x(0) ∈ X2 : x(t) ∈ X2, t > 0} = {x(0) ∈ X : xI(0) = 0}.
Since S0 > λc > Ds

αs
implies that E1x exists, the union of omega limit sets of solutions

starting in X2, denoted by Ω2, is by standard results for two population growth in the
chemostat [38], the set {E0, E1x, E1y}, if Dy

αy
< S0 or the set {E0, E1x}, if Dy

αy
≥ S0.

First assume that Dy

αy
< S0. We wish to show that if M1 = {E0}, M2 = {E1x},

and M3 = {E1y}, then M = ∪3
i=1Mi is an isolated acyclic covering of Ω2 and that
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each Mi, i = 1, 2, 3 is a weak repeller for X1. All three boundary equilibria E0, E1x,
and E1y, are unstable in this case with 1, 2, and 3 dimensional stable manifold,
respectively. Since xI(0) = 0 implies that xI(t) ≡ 0, from the basic theory of the
chemostat [38], the stable manifold of each of these equilibria is given by

W+(E0) = {(S, xs, xI , y) ∈ R
4 : S ≥ 0, xs = 0, xI = 0, y = 0}

W+(E1y) = {(S, xs, xI , y) ∈ R
4 : S ≥ 0, xs = 0, xI = 0, y > 0}

W+(E1x) = {(S, xs, xI , y) ∈ R
4 : S ≥ 0, xs > 0, xI = 0, y ≥ 0}.

Therefore, M is an isolated acyclic covering of Ω2. Any solution with xI(0) > 0 is
not in the stable manifold of any of these three equilibria. Using the Butler-McGehee
Theorem [28], each Mi is a weak repeller for X1. Therefore, X2 is a uniform strong
repeller for X1 and hence xI(t) is uniformly strongly persistent. That xs(t) is also
uniformly strongly persistent follows from part 2.

Now assume that Dy

αy
≥ S0. We wish to show that if M1 = {E0} and M2 = {E1x}

then M = ∪2
i=1Mi is an isolated acyclic covering of Ω2 and that each Mi, i = 1, 2 is

a weak repeller for X1. In this case, the stable manifold of each of these equilibria is
2 and 3 dimensional respectively, given by

W+(E0) = {(S, xs, xI , y) ∈ R
4 : S ≥ 0, : xs = 0, xI = 0, y ≥ 0}

W+(E1x) = {(S, xs, xI , y) ∈ R
4 : S ≥ 0, xs > 0, xI = 0, y ≥ 0}.

The remainder of the proof is similar to that given for subsystem (2.2).
7. Note that S∗ < S0 and S∗ < DI

αI
always holds whenever E2∗ exists. As well,

the fourth eigenvalue of the Jacobian of (2.1) evaluated at E2 is equal to −Dy +αyS∗,
and so is positive since S∗ >

Dy

αy
. Therefore, all four boundary equilibria E0, E1y, E1x,

and E2 are unstable in this case, with 1, 2, 3, and 3 dimensional table manifolds
respectively, given by

W+(E0) = {(S, xs, xI , y) ∈ R
4 : S ≥ 0, xs = 0, xI = 0, y = 0}

W+(E1y) = {(S, xs, xI , y) ∈ R
4 : S ≥ 0, xs = 0, xI = 0, y > 0}

W+(E1x) = {(S, xs, xI , y) ∈ R
4 : S ≥ 0, xs > 0, xI = 0, y ≥ 0}

W+(E2) = {(S, xs, xI , y) ∈ R
4 : S ≥ 0, xs ≥ 0, xI > 0, y = 0}.

Hence, if we define M1 = E0, M2 = E1y, M3 = E1x, and M4 = E2, then M = ∪4
i=1Mi

is an isolated covering for X2 = {(S, xs, xI , y) ∈ S : xI = 0 or y = 0}. Define
X1 = {(S, xs, xI , y) ∈ S : xI > 0 and y > 0}. Then, X1 ∪ X2 = S, and X1 is open
in S and forward invariant under the flow of system (2.1). Considering the stable
manifold of each equilibrium associated with each Mi, it is clear using the Butler-
McGehee Theorem [28], that each Mi is a weak repeller for X1 and the covering M
is acyclic. Therefore, by Theorem A.2 part 2., it follows that X2 is a uniform strong
repeller for X1. Hence xI(t) and y(t) are uniformly strongly persistent for system
(2.1). Therefore, by part 2., xs(t) is also uniformly strongly persistent for system
(2.1).
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