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A chemostat model of a single species feeding on a limiting nutrient supplied at
a constant rate is proposed. The model incorporates a general nutrient uptake
function and a distributed delay. The delay indicates that the growth of the species
depends on the past concentration of nutrient. Using the average time delay as a
bifurcation parameter, it is proven that the model undergoes a sequence of Hopf
bifurcations. Stability criteria for the bifurcating periodic solutions are derived. It is
also found that the periodic solutions become unstable if the dilution rate is
increased. Computer simulations illustrate the results.  © 1996 Academic Press, Inc.

1. INTRODUCTION

The chemostat is an important laboratory apparatus used to culture
microorganisms. It is of both ecological and mathematical interest since it
is one of the few places where the mathematics is tractable, the parame-
ters are measurable, and the experiments are reasonable. For recent
development and mathematical analysis on chemostat models, we refer to

the book by Smith and Waltman [35].
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It is well known that time delays in ecological systems can have a
considerable influence on the qualitative behavior of these systems. Some
non-stationary phenomena, such as instabilities and periodic fluctuations,
can be explained by incorporating time delays in model systems (see Cooke
and Grossman [6], Cushing [11], Hale and Lunel [20], MacDonald [29],
May [31], and the references cited there). Discrete delay was first included
in a chemostat model by Finn and Wilson [14] in order to model sustained
oscillations that they observed in a yeast population in a chemostat.
Caperon [4], who observed oscillatory transients in experimental popula-
tions, incorporated both discrete delay and distributed delay in chemostat
models. Thingstad and Langeland [37] discussed in detail the stability
analysis and numerical solutions of one of Caperon’s models. Bush and
Cook [3] also studied a model of growth of one organism in the chemostat
with a discrete delay in the intrinsic growth rate of the microorganism. For
other early work, see for example, Cunningham and Maas [8], Cunningham
and Nisbet [9], and MacDonald [28]. We also refer to a survey paper by
MacDonald [30] regarding time delays in chemostat models.

Recently, Freedman et al. [15] extended the model of Bush and Cook to
a competition model with two microorganisms competing for the substrate.
They provided a careful analysis of the bifurcation of a planar periodic
orbit involving only the substrate and one population to a three-dimen-
sional periodic orbit involving the substrate and both competitor popula-
tions. Freedman et al. [16] also considered another delayed chemostat
model. For this model, recently Ellermeyer [12], Hsu et al. [22], and Zhao
[41] investigated the global asymptotic behavior of solutions, such as
convergence and persistence of one of the competitors. Global asymptotic
behavior of this model and a more general chemostat model with discrete
delays was studied by Wolkowicz and Xia [40]. For other related models,
we refer to Beretta et al. [2], Freedman and Xu [17] and Ruan [34].

It has been found that “continuously distributed” delay models are more
realistic (see Caswell [5]) and “‘continuously distributed” delays are more
accurate than instantaneous time lags (see Caperon [4]). In this paper, we
incorporate a distributed delay in a chemostat-type model of a single
species feeding on a limiting nutrient supplied at a constant rate. The
distributed delay is included since it is assumed that the growth of the
species depends on the past concentration of nutrient. A general function
is also used to describe the nutrient uptake. For both strong and weak
kernels, using the average time delay as a bifurcation parameter, we prove
that Hopf bifurcation occurs, i.e., a family of periodic solutions bifurcates
from the equilibrium when the bifurcation parameter passes through a
critical value.

In general, as pointed out by Cushing [10], it is quite difficult to
determine the stability of bifurcating periodic solutions for delay systems
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(and even for ordinary differential equations). However, there are a
number of papers dealing with the stability of bifurcating periodic solu-
tions for delay systems. We refer to Kazarinoff et al. [24], Huang et al. [23],
and the reference cited therein for discrete delay models and Beretta et al.
[1], Farkas [13], Gopalsamy and Aggarwala [19], and Stépan [36] for models
involving distributed delays. In the case of our model with the weak kernel,
by using the algorithm in Hassard et al. [21], we derive criteria to
determine the stability of the bifurcating periodic solutions. Computer
simulations illustrate the results.

Morita [33] investigated the destabilization of periodic solutions arising
in delay—diffusion equations. He showed that the stability regions of the
bifurcation parameter depends on other factors such as the diffusion
constant and the shape of the domain. One of his results indicates that the
periodic solution becomes unstable near the bifurcation point if the
diffusion coefficient is varied. See also Lin and Kahn [27] and Memory [32]
for related results. Following the idea and the procedure of Morita [33], we
find that for this chemostat model with a distributed delay, when one of
the parameters (washout rate) is varied the bifurcating periodic solution
loses its stability. The numerical simulation verifies our analysis.

The paper is organized as follows. The model is described in Section 2.
In Section 3, we study the existence of hifurcating periodic solutions. The
stability analysis is carried out in Section 4. In Section 5, we study the
destabilization of the bifurcating periodic solutions. A numerical example
is given in Section 6. Finally, a discussion is presented in Section 7.

2. THE MODEL

Let S(¢:) and x(¢z) denote the concentration of the nutrient and the
populations of microorganisms at time ¢. Our model is described by the
integrodifferential equations

ds

o = (87 =80)D —ax(n)p(S(1)),

i | (2.1)
x| -Duk [ F = a5 a],

where all of the parameters are nonnegative. S° denotes the input concen-
tration of nutrient. D is referred to as the dilution rate and D; denotes
the sum of the dilution rate and the death rate of the population of
microorganisms. The function p(S) describes the species specific growth
rate. The nutrient uptake rate is assumed to be proportional to the growth
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rate with constant of proportionality a, and so 1/a is referred to as the
growth yield constant. We assume throughout that p(S) satisfies the
following assumptions:

p(0) =0, p($)>0. and  limp(s) =m <= (22)

For example, these hypotheses are satisfied by the Michaelis—Menten
(Holling type I1) function

mS
P(S) =15

where m denotes the maximal growth rate of the species and k is called
the half-saturation constant.

The distributed delay term in system (2.1) models the situation that
where the past history of consumption is important, but nutrient consumed
either very recently or a long time ago has an insignificant effect on the
growth of the organism. The weight function F(s) is a nonnegative
bounded function defined on [0,%) which describes the influence of
nutrient experience on future growth of the organism. It is assumed in this
model that the presence of the distributed time delay does not affect the
equilibrium values, so we normalize the kernel so that

/OOOF(S) ds = 1. (2.4)

As in MacDonald [29], we define the average time lag as

(m>0,k>0), (2.3)

T = mesF(s) ds. (2.5)
In particular, the weak kernel
F(s) = ae™*’, a>0 (2.6)
and the strong kernel
F(s) =a’se”®, a>0 (2.7)

are often used (see Cushing [11]). The average time lags for the weak and
strong kernels are

1
T=— (2.8)
o
and
2
T=—, (2.9)
o

respectively.
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We consider system (2.1) under the initial value conditions
S(s) = ¢(s) >0, —w<s<0, x(0)=x,>0, (2.10)

where ¢(s) is a continuous function on (—cc, 0].
Note that E, = (S°,0) is always an equilibrium for system (2.1). There is
an interior equilibrium E* = (S§*, x*) with

_ D(5° - §%)

S*:le, *
p (D) X aD,

(2.11)

provided $* < S° and limg_, .. p(S) > D,.

3. EXISTENCE OF HOPF BIFURCATIONS

In this section we study the existence of bifurcating periodic solutions.
Let

u, =8 — 8%, u, =x — x*. (3.1)

System (2.1) can be written

du, . on " s
? = ax p(S ) —Dul_a(uz +Xx )p(ul+S )'
du, N t *
ar (u, +x )[_Dl + f_mF(t = 7)p(uy(7) + 8%)dr|,
or
du 0
= Lu(1) + fin('r)u(t + 1) dr + H(u), (3.2)
where
_ [ =D —ax*p'(S§*) —ap(S*)
I - ( ' ! ) (3.3)
0 0
k() = (x*p'(S*>F(—v) 0)’ 34
—ap'(S* )uu,
HOY = (5% yug 0P (= myus(r + myar ) THOT 39
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The characteristic equation of the linearized system is

D(A) = det[)\l —L- /_OOCGATK(T) dT}

=\ +[D+ax*p'(S*)| A+ aDlx*p’(S"‘)fO eMF(—7)dr.
(36)

If F(s) is a weak kernel, i.e., F(s) = ae %, a > 0, then (3.6) becomes a
third-order algebraic equation:

N+ [a+D+ax*p (S*)| A + a[D + ax*p/(S*)] A
+ aaD x*p'(S*) = 0.
Define
by =b(a)=a+D+ax*p'(S*) >0,
b, =b,(a) = a[D + ax*p'(S*)] > 0,
by = by(a) = aaD,x*p'(S§*) > 0.
Then the characteristic equation takes the form
A+ b A +b,A + by, =0, (3.7)
Let ¢,:(0,0) — R be a continuously differentiable function defined by
(@) = bi(a)by(a) — by(a). (3.8)

The Routh—Hurwitz criterion implies that the equilibrium (S*, x*) is

locally asymptotically stable if ¢,(«) > 0. If
aD,x*p/(S*)

=—————— — [D+a*p(5%)], 3.9

aO D + ax*p/(S*) [ ax p( )] ( )

then ¢,(ay) =0, and the characteristic equation has a pair of purely
imaginary roots A, , = +w,i, where o, = \/bz( a,) and a real root
Ay = —b(ay) <0.

After some calculations, it follows that

1 diy,

Wb+ by) da e’ (3.10)

d Re A
E[ e 1]a0_

where
diy

da )

= aD,x*p'(8*) — [D + ax*p'(5%)]°.
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The above analysis can be summarized as follows:

THEOREM 3.1. If () > 0, then the equilibrium (S*, x*) of system
(2.1) is locally asymptotically stable. If aD,x*p'(S*) — [D + ax*p'($*)]* #
0, then as « passes through the critical value ), there is a Hopf bifurcation at
the equilibrium (S*, x*).

If F(s) is a strong kernel, i.e., F(s) = a?se”**, a > 0, then the charac-
teristic equation is

X+ [D+ax*p' (S*)]r + aDlx”‘p’(S”‘)—z2 =0
(a+ )

Define

c,=c(a) =2a+ D+ ax*p'(5§*) >0,

c, =c,(a) =a’+2a[D + ax*p'(S*)] > 0,

¢3 = ¢(@) = a?[ D + ar*p(5%)] > 0,

¢y =c,(@) = a’aD,;x*p'(S*) > 0.
Then the characteristic equation can be rewritten

M+ B+ A+ +¢,=0. (3.11)

Define

P(@) = e @)eg(a) dy(@) — c5(@)’ — e (@) ey(@). (3.12)

The Routh—Hurwitz criterion implies that the equilibrium (§*, x*) of
system (2.1) is locally asymptotically stable if ,(a) > 0.

Let A; (i = 1,2,3,4) be the roots of the characteristic equation (3.11).
Then we have

Mt A+ A+ A= —cy,
AMAy + MA; + A A, + A A5+ A0, + AgA, = ¢y,
AMAA; + A A, + A A0, + M A0, = —cg,
MAAZA, = ¢y

(3.13)

If there exists «, € R such that ¢,(«,) = 0, then by the Routh—Hurwitz
criterion at least one root, say A, has real part equal to zero. From the
fourth equation of (3.13) it follows that Im A; = w, # 0, and hence there
is another root, say A,, such that A, = A,. Since ,(«) is a continuous
function of its roots, A, and A, are complex conjugate for « in an open
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interval including «,. Therefore, the equations in (3.13) have the following
form at «:
Ay + Ay = —cy,
@2 + AN, =,
L, (3.14)
wy(Ag + A) = —¢s,
Wi A, = c,.

If A; and A, are complex conjugate, from the first equation of (3.14) it
follows that 2Re A; = —c; < 0. If A; and A, are real, from the first and
fourth equations of (3.14) it follows that A, < 0 and A, < 0. Also, after
some calculations it follows that

2[cfc4 + (¢y¢p — 2c3)2] da

@

d Re A
da[ e 1]0(0_

Thus, we have the following result.

THEOREM 3.2. If ¢,(a) > 0, then the equilibrium (S*, x*) of system
(2.1) is locally asymptotically stable. If there exists ay € R such that ,(a,)
=0 and (di,/d )|, # 0, then as a passes through o, a Hopf bifurcation
occurs at (S*, x*).

4. STABILITY OF BIFURCATING PERIODIC SOLUTIONS

In this section, we study the stability of the bifurcating periodic solu-
tions. We suppose that the kernel is a weak kernel, i.e., F(s) = ae™*’,
a > 0. The case of the strong kernel can be discussed similarly.

We first transform system (3.2) into an operator equation of the form

du,

E =ALtt +Ful, (41)

where u = col(uy, u,), u, = u(t + 6), 6 € (—=,0], and the operators A4
and F are defined as

de(6)
Ap()=1{ do TR0 4
Lp(0) + [° K(7)¢p(7)dr, 6=0,
(8) —% < 9<0
Fe(0) = —ap' (™) ¢1(0) $,(0) (43)

p/(S*)qu(O)fgwae“TqSl(T) dr|’
where L and K are defined as in (3.3) and (3.4).
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Note that the operator 4 depends on the bifurcation parameter «. By
Theorem 3.1, a Hopf bifurcation occurs when « passes through «,. Set

m=a— a.

Then the Hopf bifurcation occurs when u = 0.
The adjoint operator A* of A is defined as

dp(d)
A*Y(8) = s '’

L' (0) + [°.KT(T)y(—7)dr, 5§ =0,
where LT and K7 are the transposes of the matrices L and K, respec-

tively. Note that 4 and A* can have complex eigenvectors. It is therefore
suitable to assume that ¢, :[0,%) — C2. Define the bilinear form:

G d) =0 (©(0) ~ [° [0 (6= 0)K(0)o(£) dé do.

To determine the Poincaré normal form of the operator 4, we need to
calculate the eigenvector g of A belonging to the eigenvalue i, and the
eigenvector g* of A* belonging to the eigenvalue —iw,. We find that

q(0) = (é)ei‘”“e, —»<0<0,
where
B _x*p’(S*)a(wO +ia)
a)o(a2 + wg)
and
q*(98) =E(é)ei”’°51 0<8<o,
where
c a[D + ax*p'(8*)] — wi —iwg[a + D + ax*p'(S*)]
B x*p'(S*) a '
_ 1
E= _ Op(SM)e
1+BC+ ————
(a+iwg)

We compute that
g*.q) =1, <{q*.q) =0.
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Using the same notation as Hassard et al. [21], we first construct the
coordinates to describe the centre manifold %, at u = 0 (a = «,). Let

z(1) = <q*,u,),

(4.4)
w(t,0) =u, — 2Re{z(t)q(6)}.
On the centre manifold &,, w(¢, ) = w(z(¢), Z(¢), ), where
z? z2 z3
w(z,z,0) = w20(0)7 +wy(0)zz + WOZ(G)? + Wi + .. (4.5)

z and z are local coordinates for the centre manifold &, in the direction
of ¢* and g*. Note that w is real if u, is real. We consider only real
solutions.

For solution u, € &, of (4.1), since u = 0.

(1) =iwpz(t) +(q*(0), F(w + 2Re{z(1)q(6)}))
= iwz(t) + [g7(0)] " F(w(z,2,0) + 2Re{z(1)q(0)}).
We rewrite this as
z=lwyz(t) +g(z,2), (4.6)
where
g(z.2) = [¢7(0)] ' F(w(z,2,0) + 2Re{z(1)q(0)}).  (47)
Using (4.1) and (4.5), we have
W=, —2q —2q
=Aw — 2Re{(q*(60), F(w + 2Re{z(1)q(6)}))q(6)}
+ F(w + 2Re{z(t)q(0)})
=Aw — 2Re{g(z,2)q(0)} + F(w + 2Re{z(t)q(0)}),
which can also be rewritten as
w=Aw + H(z,2,0), (4.8)
where
H(z,z,0) = —2Re{g(z,2)q(0)} + F(w + 2Re{z(t)q(0)}). (4.9)

We expand the function g(z, z) on the centre manifold &, in powers of z
and z:
2 z? z°z

z
g(z,2) :gzo? + 812z +g02? +g217 + o (4.10)
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The coefficients of (4.10) can be determined by comparing (4.10) with (4.7)
where w is replaced by its expansion (4.5). In order to determine the
coefficients w;;(6) of the expansion (4.5), we expand the function H(z, z, )
in powers of z and z on the manifold &,:

22 z2
H(z,z,0) = H20(9)? + H;,(0)zz + Hoz(e)? + -0 (4.11)

The argument of F is

w(0) + ze'“o? + ze~0b )

w+zq(0) +2q(0) = _ - :
(6) (9 (W(Z)(O) + zBe'“0? + zBe @0’

Thus
(8» —0<0<0
F(w + 2Re{z(1)q(0)}) = (fol)
, | 0 =0,
where

fo = —ap'(§*)(wP(0) +z +z)(w?(0) +zB + ZE),

&= xp/ (%) (wP(0) + 2B + El_?){foww(l)(s) ae® ds
+ﬁw§[(a —iwg)z + (a+ iwo)Z]}.
By (4.7), it follows that
§(2.%) = Efi(2.%) + ECR(z, ).

Therefore,
H(z,%,0) = —2Re{[Ef}(z,2) + ECf¢(z,.7)]a(6) )

(8» w0 <9<0

f&(zyf)), "o
fi(z,2)

+
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Since
52f02(z’2)
_ = —2ap'(S*)B,
|: &ZZ z=z=0 ap( )
azfoz(z,z") 2x*p'(S*)Ba(a —iwg)
dz? R - a’+ wg ’
if we define

a2+wg

G- Bp/(S*)(a B Cx*a(a —iwg) )

a2+w§

Gl :Bp,(S*)(a — M)'

by (4.9), we obtain

3?H(z,%,0)
2= |

z=z=0

=2EGq(0) + 2EG,3(9)

(8), —0 < <0

+ —ap'($*)B (4.12)
2| x*p'($*)Ba(a—iwy) |, 6=0.
az + wé

Similarly, since

[ 9°fo(z,2) l

0z 0z

[azf&(z,z)

= —2ap'(S*)Re B,
dz 62 lsz ap( )

0z 90z ) 0z 0z
z=z=0

[aZf&(z,Z)l z[a%(z,z)l



798 RUAN AND WOLKOWICZ

we obtain
3*H(z,z,0)
0z 0z

Hllz[

z=z=0

= 2ap'(S*)Re B[ Eq(6) + EG(6)]

@y —w < <0
2( —ap’(S*)ReB)’ 0—0. (4.13)
0

On the other hand, on the centre manifold &, near the origin,
w(z,Z) =w,z+w,z. (4.14)
Using the expansion (4.5) to replace w, and w, and Eq. (4.6) to replace z

and z, we obtain a second expression for w. By comparison of this result
with (4.8), we can derive equations for the coefficients w; (). These are

(2iwg] — A)wy(0) = Hyy(6), (4.15)
—Awyy(0) = Hyy(6) (4.16)
and wy, = w,,. Define
wie (6
Wy(0) = fg)( ) , - < 6 <0.
wig'(6)

By substituting (4.2) and (4.12) into (4.15), when — < 6 < 0, it follows
that

d
2iw0 ~ g 0 (waam)
d )
0 2iwg — — wao(6)

(4.17)

2EGe'®’ + 2EG,e” 1“0’
2BEGe'“" + 2BEG e~ @0’
When 6 = 0, we obtain

2iwg + [D + ax*p'(S*)]  ap(S*) | [ wi(0)
0 2iw, || w(0)

o[ 0 oy(wB)| , _[(H50)
_f_m(x*p’(S*)ae“‘ 0)(W5%)(s))ds = (HZ%)(O)) (4.18)
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In order to obtain a continuous solution w(8) on (—o, 0], we consider
the above equations associated with the boundary condition
wh(o wd(0
im (2)( ) f;))( : . (4.19)
-0 | wy'(0) w5 (0)

N

The general solution of (4.17) is

|

wd( 9 ko) . ki) . k .
wi (0) 0 ! 2
where
2EG 2EG,
1= = L, 2= = ’
w 3w,
ll = le; l kZE

and /, and k, are determined by (4.19), i.e.,
ko =wig(0) — (ki + ky), ly =wi(0) = (I, +1).

To find w§)(0) and w3(0), we substitute (4.20) into Eq. (4.18) to obtain
W

4

2iwg + [D + ax*p'(S*)]  ap(S*) W(0)
2x*p'(S*)a(a — 2iw,) _ = , (4.21)
- 2 2 20w, wi3(0) %
a® + 4w
where
c% = Hig,
>X< !/ *
N x*p'(§*)a
Wq
(BEG + 3BEG,)(a — 2iw,)
X
a? + 4w§
BEG(a —iwy) + 1BEG,(a + iw,)
a? + wo
Define
aD x*p' (S*)a(a — 2iw,)

A = 2iwg[2iwy + D + ax*p/(5%)] a? + 4o
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Then we find that

2iwycy) — ap(S*)cR)

D) =
wie (0) A ,
*"(S*)a(a — 2iw
[2iwg + D + ax*p'(§*)]|c%) + P a2)+(4w2 o) sy
w(0) = :
A
Similarly, by Eq. (4.18),
(1)
OV _ (P (P o (P2 ) gions (4.22)
Wll)(O) 9o q q> '
where
2ap'(S*)(Re B)E
P = L, q, = p1B,
Wy
P2 = D1 ‘12=P2§v
Do = ngl)(o) —(p1+p,), qdo = wﬁ)(O) — (91 +q,)-
To find w{}(0) and w{%(0), we substitute (4.22) into (4.16) to obtain
D +ax*p'(S*) ap(S*))[wi(0)
—x*p'(S*) 0 w?(0)
H{(0)
= H(Z)(O) . '(S*) (pitps) + a—iw, atiwg
11 x°p P17TDP2) Thha 2+w0 Pzaa2+w§
H{(0)
k0 *
HE(0) + 2aD,ax*p'(S*)(Re B)
= W,
a—inE_ a+lw0_ i
X J— JRE—
a? + wé ! a? + wz Ei ( ' )
(e
@
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where

ciy = Hip(0),

4aD,ax*p' (S*)(Re B) | IM(E(a — iw,)) . ImE

@) — @
ci? = Hi?(0) + ® 22 + w2 o
0 0

Solving for w{(0) and w{?(0), it follows that

. cf?
wi(0) = - o (5%)"
[D + ax*p'(§*)]c? + x*p'(8*)c
w@(0) =

aD,x*p'(S*)
Now we consider F(w(z, z,0) + 2 Re{z(¢)g(0)}). Since
w(z,z,0) + 2Re{z(t)q(0)}
Z2 22
= Wzo(o)? +wy(0)2zZ + Woz(o)? + - +2Re{z(1)q(0)}
(B (w8O)_ [#80)
T o) 2 Tl [T (v
+ -+ +2Re{z(1)q(0)},

22
2

we find

2 52

z z
i - —ap'(s*)[w5%>(o>7 +W(0)Z + wH(0) S + (2 +3)

z? 72 _
[WE%)(0)7 + w@(0)2z + w522>(0)? + (zB + zB)

2 52

Z z —
= x*p/(S*)[wg%f(O); + w(0)22 + wd(0) 5 + (2B + 7B)

72 7?2
TH(0) S + F0)2 + T(0)

+%w§(z(a —iwy) +Z(a+ iwo))l,
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where
-~ 0 as
w(0) = f ae™wi(s) ds

J° ae ke + kpe 10 + (wH(0) — (ky + ky))e? ] ds

o —iwg atimg
=
1 2
a2+w§ a2+w§
a— 2iw,

+(w%)(0) — (k, + kz))m ,

- 0
wd(0) = j; aew(s) ds

0 ‘ .
f ae‘”[ple“"“ + pye o + wiH(0) — (p, +p2)] ds

a
P Y [Pl(a —iwg) +py(a+ “"0)] +wH(0) = (py +p2),
Wy (0) =f ae‘”w(l)(s) ds.
Thus,

g(z.2) = [q7(0)]"F(w(z,2,0) + 2Re{z(1)q(0)})

fo
= (E,EC) fo) (4.23)
= E(fs + Cf¢).

Comparison of the coefficients of (4.10) and (4.23) yields

8x = -2EG,
g = —ZEap’(S*)Re B,
Cx*a(a + iwg)

80 =2p (S*)EB| —a + T ol
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Bwi(0) W%)(O)
2 2

8a = ZEP,(S*){_ (l)(O)B + w(z)(O)l

co| BFBO)  w(0) a(a+iv)

+
* 2 2 A+ o
a(a —iwg) ~
(2)(0)—2 + Bw{)(0) | .
W
Therefore, we can compute the following parameters:
[ , 1 2 82
c1(0) = Z_wo(gzogll —2lgul" - §|goz| ) + P
Re ¢,(0)
H2 = " Re X(ap)
Im ¢,(0) + ppIm Xy(ag)
Ty = — ,

Wy

B, = 2Re ¢,(0),

2w o — ag )
T=—(1+m7¢8"+0(e"), g? + O0(a — ay)”.

Wy M2

We obtain

c,(0) = i@lame B)G — a’p'(S*)(Re B)?

l a(a+ lwo)
p(S”‘)B2 —a + ax*C—————
a® + wg
- BwS(0) w(z)( )
+ Bp(8%) | —a| —3 wiY(0) B + wi?(0)
T BWR(0)  wR(0) a(a+iwg)
2 2 a’ + a)g
—iw,
(2)(0)¥ + B~(1)(O)]}
a, +

Now we can state the main result of this section.
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THEOREM 4.1.  The direction of the Hopf bifurcation described in Theorem
3.1 is determined by the sign of p,: if p, >0 (< 0), then the bifurcating
periodic solutions exist for « > «a (a < ag). The periodic solutions are stable
(unstable) if B, < 0 (> 0). The period of the bifurcating periodic solutions of
system (2.1) increases (decreases) if T, > 0 (< 0).

5. DESTABILIZATION OF THE PERIODIC SOLUTIONS

By Theorem 3.1, under certain assumptions system (2.1) has a periodic
solution bifurcating from the equilibrium E* = (S*, x*) when o passes
through a critical value «,. Let ¢ be a measure of the amplitude of the
periodic solution p(¢; €), e = max,|l p(¢; &)l According to Hassard er al.
[21], there is an open interval (0, &,) such that for any . = a — «, in the
interval

o= lajo<® < p(ep) |
M )

there is a unique ¢ € (0, &,) for which w(e) = u. For u € J,, the period
T(w) and the Floquet characteristic exponent B(uw) of the periodic
solution p(¢; ¢) are

2
T(p)= w_o(l + T,e* + 0(&")), (5.1)
B(r) =B,e2+ 0(e*), (5.2)
where

p(e) = pe?+ 0(e*), (5.3)

o(&) = 0, + w,e? + 0(&), (5.4)

e2= 4 0(my). (55)

M2

By Theorem 4.1, if B, < 0, then the periodic solution p(¢; &) is stable. In
order to study the change of stability of p(¢; ) as D is varied, we write the
linearized system of (3.2) around p(z; £) as

dz
- = “Ex(0) +fu(wl(e), p(i )z, (5.6)
where

E=(’3 8). (5.7)
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Define

[lanlr1e(=7) = (L = E)$(0) + [K(r)d() dr,

where L and K are defined as in (3.3) and (3.4), and E is defined by (5.7).
Define two vectors ¢, and ¢ by

(10 = [ Lan()] | = 0 (5.9)

and ’
(—iwo - /:e—fwo"[dn(a)]T)go* = 0. (5.9)

After adopting new variables

s=w(e)t,w(s) =z(%) =z(1),

system (5.6) can be written as

d
() Zw(s) = —Ew(s) +[u(#(2): Vs a1 €)Wy (5:10)

where
y(s, &) =p($;a),

Wsym(e)(9)=W(S+(u(g)0), m<0§0
Let
E=&%, (ie,D=2¢’D,) (5.11)

for some matrix E, (for some constant D,). Now Eq. (5.10) has the same
form as the one that appears in Morita [33]. Applying the results in [33] it
follows that for D = £2D,, the exponents of (5.10) have the form

vy=1v(e,D,) = v,(D,) e’ + y(&,D,) &%, y(0,-) =0, (5.12)
where vy, = v,(D,) satisfies
v5 + 2Re{(E, 4y, £5°) — Bi}vs +[(E &, fo*)lz
— 2Re(By(E, &y, ¢5)} =0, (5.13)
and

dA
B, = iw, — uyRe—(0), (5.14)
du

where u, and w, are defined in (5.3) and (5.4). {, and {;* are defined by
(5.8) and (5.9).
Thus we have the following result.
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THEOREM 5.1.  Under the hypotheses of Theorems 3.1 and 4.1, if D =
&’D, and Eq. (5.13) has a positive root v.,, then there exists an & > 0 such
that for each & < (0, ), u = w(e) the periodic solution in system (2.1) is
unstable.

6. AN EXAMPLE

Consider system (2.1) where p(S) takes the Michaelis—Menten form and
F(s) is the weak kernel. In particular, consider the following system:

“_ 0.08(3.66 — S(1)) — 4.25x(t)L,
dt 5.85 + S(¢)
dx : S(7) (&1)
= =x(t)[—0.66 + 3.45[_mae*ﬂ<f*7>m dr|.
By theorem 3.1, we can determine that
a,=0.1903,  w, = 0.2098. (6.2)
The positive equilibrium is
E* = (1.3839,0.2240). (6.3)

By the results in Section 4, it follows that
m, = —13.2535, B, = —1.3174, T, = 8.3164. (6.4)

These calculations prove that the equilibrium E* is stable when a > «
as is illustrated by the computer simulations (Figs. 1 and 2, o = 0.4645).
When « passes through the critical value «, = 0.1903, E* loses its
stability and a Hopf bifurcation occurs; i.e., a family of periodic solutions
bifurcate from E*. The individual periodic orbits are stable since B, < 0.
Choosing « = 0.1813, as predicted by the theory, Fig. 3 shows that there is
an orbitally stable limit cycle. Since w, <0, the bifurcating periodic
solutions exist at least for values of « slightly less than the critical value.
Recall that in (2.8), the average time delay is defined by 7' = 1/a. Note
that T increases when « decreases. For a slightly smaller value of «,
a = 0.1723, the orbitally stable periodic solution persists and is plotted in
Fig. 4. The period is approximately 35 (Fig. 5). Since 7, > 0, the period of
the periodic solutions increases as « decreases.

From Theorem 5.1, the periodic solution loses its stability if the dilution
rate D is varied. As we increase D from 0.08 to 0.14, the periodic solution
in Fig. 4 becomes unstable and the equilibrium E* regains its stability
(Fig. 6).



CHEMOSTAT MODEL WITH A DISTRIBUTED DELAY 807

= 0.6} ]

0.4 E

0.2F 4

00 0Ss 1 1..5 é 25
s
Fic. 1. The equilibrium E* = (1.3839,0.2240) of system (5.1) is asymptotically stable

when a > «y. Here a = 0.4645.
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FiG. 2. The trajectories of S and x with respect to time when « = 0.4645.
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Fic. 3. With « = 0.1813, there is an orbitally stable limit cycle attracting two trajectories.
One trajectory has initial values inside the limit cycle and near the equilibrium; the other has
initial values outside the limit cycle.
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Fic. 4. The bifurcating periodic orbit persists for values of « slightly less than «,. A
stable periodic orbit is plotted with « = 0.1723.
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Fic. 5. The oscillations of § and x versus time when « = 0.1723. The period is
approximately 35.
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Fic. 6. The bifurcating periodic solution becomes unstable when D = 0.14 and the
equilibrium regains its stability.
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7. DISCUSSION

We have studied a chemostat model of a single species with a dis-
tributed delay. Using the average time delay as a bifurcation parameter,
we have shown that a Hopf bifurcation occurs when this parameter passes
through a critical value; i.e., a family of periodic orbits bifurcates from the
positive equilibrium. The stability of the bifurcating periodic orbits is
discussed. We have also studied the destabilization of the periodic solu-
tions when the washout rate is varied.

If the kernel is a delta function of the form

F(s) =6(s—1), >0, (7.1)

where 7 is a constant, then system (2.1) reduces to the following model
with a discrete delay 7:

ds

— = (8= 8(1))D — ax(1) p(S(1)),

(7.2)
dx
E =x(t)[—D1 +p(S(f - T))]

It has been shown by Freedman et al. [15] that there is a critical value of
the discrete delay = at which Hopf bifurcation occurs. Our Theorem 3.1
corresponds to one of their results.

If the kernel is a delta function of the form

F(s) = 8(s), (7.3)

then system (2.1) becomes the system of ordinary differential equations

ds
= (8° = S(t))D — ax(t) p(S(1)),
(7.4)

dx
— = ([ =Dy + p(5(1))],

which has been investigated by many authors. By constructing a Liapunov
function (see Wolkowicz et al. [39]), it can be seen that if the positive
equilibrium of (7.4) exists, it is globally asymptotically stable. Thus our
result shows that delays can destabilize an otherwise stable equilibrium.
This phenomenon has been observed by many authors in other settings
(for example, see Cushing [11], Kuang [25], MacDonald [29]).

The stability of the bifurcating periodic orbits allows us to claim that for
the delayed chemostat model, even if the positive equilibrium is not stable,
all components may still coexist in an oscillatory mode.
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