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1 INTRODUCTION

First, the global dynamics of a basic model of the chemostat in which n populations of
microorganisms compete exploitatively for a single, essential, nonreproducing, growth-
W limiting nutrient, supplied at a constant input rate is discussed. What is known in the
case that the species specific death rates are assumed to be negligible compared to the
dilution rate, is summarized. Then, an open problem in the case that these death rates
are not necessarily insignificant is described.

Next, the differences in the predictions of different models of population growth
with regard to the effect of enrichment of the environment are investigated. A problem
with the classical model proposed by Verhulst (1838) and with the generalized Gause type
models for population growth, with regard to such predictions, is pointed out. Then the
predictions of two other models of population growth, each based in a chemostat are
considered. The first chemostat model is simply the case n = 1 of the competition
model already described, that is the case of growth of a single population on a single
nutrient that is considered to be limiting. In the second chemostat model, it is assumed
that there are two noninhibitory, perfectly substitutable resources that are limiting. Our
results show that under certain conditions, the two models make very different predictions
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390 Wolkowicz et al.

concerning the outcome of population growth under enrichment by increasing the input
concentration of one of the resources, making a case that when a madel is to be valid
over a range of the operating parameters, predictions of models assuming single resource
limitation could be misleading. These results seem to have important implications for
the use of models in resource management.

2 THE n-SPECIES COMPETITION MODEL

In this section we consider the following model of microbial competition in a chemostat.

- x.-(t)m(s(t)),

S'(t) = (5"-3-3‘(0)0—;1 ,
i (2.1)
zi(t) = ) (-Di+p(SQE)), i=1,.,n,

where S(0) 2 0, 2;(0) > 0, i =1,...,n and §° D, D;, and y; are positive constants.

In these equations, as in Wolkowicz and Lu (1992), it is assumed for convenience
that the volume of the culture vessel is one cubic unit. The culture vessel is also assumed
to be well-stirred, so that spatial variation need not be considered and nutrients, microor-
ganisms and byproducts are removed in proportion to their concentrations. S(t) denotes
the concentration of the substrate at time ¢; z;(t) denotes the concentration of the ith
population of microorganisms at time ¢; S? denotes the concentration of substrate in the
feed bottle. All other nutrients are assumed to be supplied at such quantities that this is
the only nutrient that limits growth. p;(S(t))/y; denotes the uptake rate of substrate of
the ith population. We assume that p;(S) represents the per-capita growth rate of the
ith population so that y; is a growth yield constant. D denotes the input rate from the
feed bottle containing the substrate and the washout rate of substrate, microrganisms,
and byproducts from the growth chamber and so constant volume is maintained. Each
D; = D + ¢, where ¢; > 0 can be interpreted as the species specific death rate of species
z;. The analysis of the model requires only that D; > 0 and so ¢ < 0 is also allowed.
This leaves the D; open to other interpretations.

For general background on model (2.1), in the case of both monotone and non-
monotone response functions, the reader is referred to Wolkowicz and Lu (1992) and
the references given therein. Keeping in mind that certain substrates are growth-limiting
when their concentrations are low, as well as growth-inhibiting when their concentrations
are sufficiently high, whereas other substrates only limit growth when their concentra-
tions are low, we make the same assumptions as in Butler and Wolkowicz (1985) and
Wolkowicz and Lu (1992) on the form of the response functions p;, 4 = 1,2,....n in
model (2.1):

Di: R+ - R+, (2'2)
p; is continuously differentiable, (2.3)
p:(0) =0, (2.4)

If
in
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and there exist uniquely defined, positive, extended real numbers, called break-even
concentrations, A; and yu;, with A; < y;, such that

p,-(S) <D; if Se€ (/\,',,u,'),
p,(S) >D; if S ¢ [/\,‘,,U.,'].

If p;(S) < D; for all § > 0, then A; = y; = +00. On the other hand, if p;(S) is monotone
increasing or if p;(S) > D; for all § > };, then y; = +oco0.
Assume that the populations are labelled so that

/\1(/\25"'5/\,,. (25)
Three prototypes of monotone response functions are:

1. Holling type I: pi(8) = :S;

2. Holling type IL: p;(S) = f‘%,

3. Holling type ITI:  py(S) = %5 ;

A prototype for a nonmonotone response function is:

4. inhibition: py(S) = '(T:g%.s-;-_S)
Forms (1)-(3) are also referred to as Lotka-Volterra, Michaelis-Menten, and sigmoidal
response functions, respectively. For a derivation of the model in the special case that
the response functions are Holling type II, the reader is referred to Waltman, Hubbell,
and Hsu (1980).

This resource-based approach has advantages over the apparently simpler and
more general classical approach for modeling competition. Smale (1976) showed that the
equations used in the classical approach, to model competition, can be embedded in an
arbitrary system of one dimension higher and hence are compatible with any dynamical
behavior provided the number of species is more than three or four, and so do not say
much since they do not restrict the possible dynamics. This is not the case for resource-
based models of competition (see sections 2.1 and 2.2). Besides this, in the classical
models of competition, parameters describing the carrying capacity of the environment
as well as competition coefficients appear. It would be very difficult, if not impossible, to
measure these coefficients without growing the competitor populations together. Thus
these models tend not to be predictive. On the other hand, the parameters in model (2.1)
can be measured by growing each species alone in either batch or continuous culture, and
based on the relative sizes of the parameters in the model, the qualitative outcome of
mixed-growth competition can be predicted in advance. As well, the predictions can
be tested as the predictions in Hsu, Hubbell and Waltman (1976) and Hsu (1978) were
tested by Hansen and Hubbell (1980).
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2.1 Differential death rates insignificant: D; = D for all ¢

In this section we consider model (2.1) under the additional assumption that all of the
species specific death rates are insignificant compared to the dilution rate and can be
neglected. Thus, we assume that

D;=D forall :=1,2,...,n. (2.6)
We also make the following assumptions of a generic nature:

if A; (or ;) is finite, then pj(\) #0 (pi(w:) #0); 2.7
all A;,p; unless infinite, are distinct from each other and from S5°. (2.8)

Assuming that the populations are labelled so that
AM< A< <A <8<, v+1Lj<n, (2.9)
where 0 < v < n, define
Q=UMm). (If v=0, define Q=4.)
i=1

The following results are from Butler and Wolkowicz (1985), and the proofs can
be found there.

THEOREM 1 Assume that (2.2)-(2.4) and (2.6)-(2.9) hold. Let A denote the set of
left endpoints of components of Q, together with S° if S° ¢ Q. With the exception of a
set of initial conditions of Lebesque measure zero, all solutions of (2.1) satisfy

lim S(@) =7, 7€A, (2.10)
with the corresponding asymptotic behaviour:
if y=X  then tlilg zi(t) = 5(S° — N), tlilng(t) =0, j#4, (2.11)
if y=8° then tlirgoa:j(t) =0, j=1,2,...,n. (2.12)

Conversely, for each v € A, there is an open, nonempty set of initial conditions
for which the solutions of (2.1) satisfy (2.10)-(2.12).

The following Corollary is an immediate consequence of the above theorem.

COROLLARY 2 Assume that (2.2)-(2.4) and (2.6)—(2.9) hold. If Q is connected and
S° € Q, then all solutions of (2.1) satisfy, limseo 21(t) = y1(S°~A1) = 2}, lim oo zi(t) =
0, i=2,.,n, lim,_, S(t) = A1, that is the equilibrium solution E,, = (A1, 2},0,...,0)
is globally asymptotically stable with respect to solutions of (2.1) initiating in the interior
of the nonnegative cone in R**1,
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Note that if p;(S) is monotone increasing and A; < S or if A} < §° < g, then
Q is connected and Corollary 2 applies. In this case, all but one population washes out,
and the only surviving population, the one with the lowest break-even concentration,
approaches an equilibrium concentration.

To illustrate these results, consider the following (at least theoretical) application
to water purification motivated by the work of Yang and Humphrey (1975) and first
described in Butler and Wolkowicz (1985). Suppose that there is a single contaminant, say
phenol, in the water supply, and that S°, the input concentration of phenol is relatively
high. Suppose also that certain microorganisms feed on phenol in such a way that phenol
is growth-limiting at both high and low concentrations (e.g. Pseudomonas putida and
Trichosporon cutaneum). Let A denote an acceptable concentration of phenol in the
water supply and assume that A << S°. Suppose that microorganism 1 is harmless and
that A; < A, but u; << S° If the initial concentration of phenol in the water supply
is relatively high, and population 1 is used alone in an attempt to reduce the phenol
level, then it is likely that population 1 would wash out of the system and that the
concentration of phenol would approach the unacceptable level S°. On the other hand,
suppose that population n satisfies A < A, < §° < u,. If population n is used alone, S(¢)
would approach the value A, an improvement, but this is still unacceptable. However,
if populations 2,...,n — 1 could also be used, where the (), 4) intervals overlap in such
a way as to form a single component of (}, containing S°, then regardless of the initial
concentrations of the populations (as long as they are positive) lims o S(t) = A1 < 4, a
tolerable situation.

2.2 Differential death rates significant: An open problem

In this section we summarize what is known about the dynamics of model (2.1} when
assumption (2.6) is relaxed.
Using a Lyapunov function of the form:

S -D)(S°—M),. 1 .. . "o
/,\1 Dy(S° =€) dé + Z(:m -z} - zi(In(z1) — In(27))) + Z_;in,

where «;, @ = 2,...,n are positive constants and 2} = Mf%l, Wolkowicz and Lu
(1992) proved the following result.

THEOREM 3 Assume (2.2)-(2.5) and A\ < S° < py. If it is possible to find constants
o; > 0 for each i > 2 satisfying \; < S° such that

(S)< a; < min ¢ X
omax gi(S) S e < i a(S) (2.13)

where
pi(S)(—D1 + pi(SH(S° - A1)

%8) =B "D + 798" =3)

and p; = min{y, S5°),

then all solutions of (2.1) satisfy limy,eo 21(t) = 2], limpozi(t) =0, i=2,3,...,n,
and limg o, S(t) = Ay, that is the equilibrium solution E\, = (M, 23,0,---,0) is globally
asymptotically stable with respect to solutions initiating in the interior of the nonnegative
cone in R™*L,
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In Wolkowicz and Lu (1992) it was also proved that if the response functions
were selected in any combination from the four prototypes, the prototypes for monotone
response functions: Holling type I, II, or III; or the prototype for nonmonotone response
functions: inhibition; described earlier, it is always possible to select constants a; sat-
isfying (2.13) and so provided that A\; < Ay < +-+ < Ay and A} < S° < yy, all but
one population washes out, and the only surviving population, the one with the lowest
break-even concentration, approaches an equilibrium concentration.

We conjecture that for general response functions that satisfy only (2.2)—(2.3),
Theorem 3 holds even if (2.13) is not satisfied and that Theorem 1 holds even if (2.6) is
not satisfied, but these remain open problems.

3 PREDICTIONS OF VARIOUS MODELS OF GROWTH WITH RE-
SPECT TO ENRICHMENT OF THE ENVIRONMENT

In this section we consider four different models of population growth and compare what
they say about enrichment of the environment.

3.1 Logistic growth — the Verhulst model
‘3 Verhulst (1838) proposed the following equation as a model of population growth.

i 2(t) =rz(®)(1 - EI(_(t—)) (3.1)

where z(0) > 0. Here, 7 denotes the intrinsic growth rate of the population and K denotes
i the carrying capacity of the environment. He assumed that a self-limiting process oper-
ates when a population  at time t becomes too large. This equation has become known
as the logistic equation for population growth. Provided that z(0) > 0, lim;. z(t) = K.
Thus, the carrying capacity is equal to the limiting value of the population size. Since
enrichment of the environment is interpreted as increasing the carrying capacity K, this
! model predicts that increasing the carrying capacity always results in an increase in the
i population size.

|

!

|

I

! 3.2 Growth on a renewable resource: the classical predator-
i

I prey model

1 A predator-prey model can be thought of as a model of growth of a population (the preda-

|

I

I

tor) on a renewable resource (the prey). In Rosenzweig (1971), mathematical models of
predator-prey interaction of the generalized Gause form

Z'(t) = z(t)g(z(t), K) — yp(z(t))
(3.2)

| Y@ = y(O(-s+a0)

where z(0) > 0 and y(0) > 0 were considered. In (3.2), z(t) denotes the size of the prey
population (density, biomass or concentration) at time ¢ and y(t) the size of the predator
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population. K denotes the carrying capacity of the environment, s the intrinsic death
rate of the predator, g(z, K) the per capita growth rate of the prey in the absence of
the predator (zg(z, K) is often modeled by logistic growth), p(z) the predator response
function (often modeled by Holling type I, II, or III), and g(z) the conversion rate of
prey to predator (also, often Holling type I, II, or III).

Using a local analysis, Rosenzweig showed that sufficient enrichment of the envi-
ronment supporting the prey species (that is increasing K sufficiently) can cause desta-
bilization of an otherwise stable coexistence equilibrium. Integrating the equations nu-
merically and using a truncation for the sake of biological reality, he obtained extinction
of the predator population. Consequently, he issued the following warning. “Man must
be very careful in attempting to enrich an ecosystem in order to increase its food yield.
There is a real chance that such activity may result in decimation of the food species
that are wanted in greater abundance.”

A number of authors have raised objections to Rosenzweig’s results. Gilpin (1972)
and May (1972) showed that the destabilization of the coexistence equilibrium can result
in the birth of an asymptotically stable periodic orbit. Freedman (1976) showed the
destabilization of the equilibrium to be the result of a Hopf bifurcation. Therefore,
deterministically, no population is driven to extinction by enrichment of the environment.
All solutions approach either the coexistence equilibrium or a surrounding periodic orbit
that lies entirely in the interior of the nonnegative cone in R2. Rosenzweig (1972a, 1972b)
argued however, that if the amplitude of the periodic orbit is sufficiently large, a random
perturbation could result in the extinction of one or both populations when sections of it
come close to the axes. Wolkowicz (1988) proved that depending on the parameters and
choice of response functions, the Hopf bifurcation can be either subcritical or supercritical,
and pointed out that when it is subcritical there is a parameter range in which there are
at least two nontrivial periodic orbits surrounding the interior equilibrium. In this case,
there is an asymptotically stable periodic orbit surrounding the coexistence equilibrium
before and after its destabilization. It is an unstable periodic orbit that lives between the
stable periodic orbit and the stable equilibrium that disappears when there is sufficient
enrichment to destabilize the equilibrium by means of a subcritical Hopf bifurcation. .

McAllister, LeBrasseur, and Parsons (1972) object to the extrapolation of Rosen-
zweig’s mathematical results to natural ecosystems, providing experimental evidence that
moderate enrichment can be beneficial. However, there is experimental evidence in sup-
port of Rosenzweig's results. (See, for example, [ Huffaker, Shea, and Herman (1963),
Luckinbill (1973), Schaffer and Rosenzweig (1978)].) Both sets of experiments are consis-
tent with the predictions of the model discussed in section (3.4). As well, McAllister et
al. suggest that Rosenzweig’s results might have better been used to prompt questions
concerning the critical values of enrichment and how they relate to the other parameters.
The model discussed in section (3.4) addresses such issues.
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3.3 The single resource growth model in a chemostat
Consider a model of single species growth in a chemostat, that is model (2.1) in the case
that n = 1. Omitting subscripts, since there is no ambiguity, the model becomes:
t
St = (S°—-S@)D - z( )p;S(t)),
(3.3)
() = z(®)(-D +p(5(1)),
where S(0) > 0, z(0) > 0, and §°, D, D, and y are positive constants.
Using a Lyapunov function of the form:
/S (»(§) — D)
x o p(®)

where z* = yD(S° — )\)/D, the following result can easily be proved using the LaSalle
(1960) extension theorem.

d¢ + %(w —z* — z*(In(z) — In(z*))),

THEOREM 4 Consider model (3.3). Assume (2.2)-(2.4) and either
(i) p(S) < D forall0 < S < 8S° or
(i) there exists A > 0 such that p(S) < D if 0< S < X and p(S) > D if A < S < §°.

If (i) holds, then the washout equilibirium, E, = (S°,0), is globally asymptotically stable
with respect to all solutions initiating in the the nonnegative cone in R2. If (ii) holds,
then the survival equilibrium, Ey = (A, z*), is globally asymptotically stable with respect
to all solutions initiating in the interior of the nonnegative cone in R2.

Since the equilibrium F) is globally asymptotically stable, as in (3.1), it makes
sense to identify the carrying capacity of the environment with the equilibrium concen-
tration of the population, that is z*, and enrichment of the environment with an increase
in the input concentration of resource S, that is $°. This model predicts that if p(S) < D
for all S > 0, then enriching the environment will not make any difference to the asymp-
totic outcome. The population will eventually die out. On the other hand, it predicts
that if p(S) > D for some S > 0, then increasing S° above A would prevent extinction of
the population and once S° > ), (since z* increases linearly as S° increases), it predicts
that the carrying capacity of the environment increases linearly with enrichment.

3.4 The two resource growth model in a chemostat

The work summarized in this section is taken from Ballyk and Wolkowicz (1995) and
more details as well as the proofs of all of the results can be found there.

A model of single-species growth in the chemostat on two essential, nonrepro-
ducing, noninhibitory resources is considered here. With two resources available, it is
important to consider how the resources, once consumed, are used by the consumer for
growth. Tilman (1982) classifies resources is terms of the shape of the resource depen-
dent growth isoclines, that is the curves representing the amounts of the two resources
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required to yield a given reproductive rate. On the other hand, Rapport (1971) and Leén
and Tumpson (1975) classify resources in terms of consumer needs. It is this latter clas-
sification that we adopt in this section. This classification yields a spectrum of resource
types. At one extreme are the perfectly substitutable resources. These are resources that
are alternate sources of the same essential nutrient. In this case, the rates of consumption
of the different resources can be substituted in a fixed ratio in order to maintain a given
rate of growth. An example for a bacterium would be two carbon sources or two nitrogen
sources. At the other extreme are the complementary resources. In this section, it is
assumed that the resources, denoted S and R, are perfectly substitutable for species z.
The model is then given by the following system of differential equations:

S(t) = (5°~5(t)D - 2(t):S(S(t), R(t)),

13
R(t) = (R°—R(t))D—x<t>%n<s<t>,R<t>>, (3.4)
2() = at)(=D+6(S@), RW®)),

where S(0) > 0, R(0) > 0, z(0) > 0, and S° R°, D, and 7 are positive constants.

For convenience it is assumed that the volume of the culture vessel is one cubic
unit. The culture vessel is also assumed to be well-stirred, so that spatial variation
need not be considered and nutrients, microorganisms and byproducts are removed in
proportion to their concentrations. z(¢) denotes the population density at time ¢. If
only one feed bottle is used, S° and R° denote the concentrations of resources S and R,
respectively, in the feed vessel. All other nutrients are assumed to be supplied at such
quantities that these are the only nutrients that limit growth. The constant D is the
input rate from the feed vessel to the culture vessel, as well as the washout rate from
the culture vessel to the receptacle. Thus constant volume is maintained and the species
specific death rate is assumed to be insignificant in comparison to the dilution rate.

The function %S(S’, R) denotes the rate of consumption of resource S per unit
biomass of population z as a function of the concentrations of resources S and R in
the growth vessel. The conversion of nutrient to biomass of population z is assumed
to be proportional to the amount of nutrient consumed. Thus, S(S, R) represents the
rate of conversion of nutrient S to biomass of population £ with corresponding growth
yield constant £. The relationship between the function R(S, R) and the constant 7 is
similarly defined.

For the purposes of this paper we restrict our attention to the response functions in
Waltman, Hubbell, and Hsu (1980). They are a generalization of the familiar Michaelis-
Menten prototype of functional response to a single resource, and are given by

_ msI(RS

S(S’R) - KsKp+ KrS+ KsR'
mRI(sR

R(S,R) KsKr+ KrS + KsR'

Thus, the resources are noninhibitory, since the consumption of each resource is a strictly
monotone increasing function of the concentration of that resource. However, increasing
the amount of one resource consumed results in a reduction in the amount of the other
resource consumed. In Holling terminology, the handling time devoted to the processing
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of a unit of one resource is time no longer available for the processing of the other resource.
Here, mg is the maximal growth rate of species « on resource S in the absence of resource
R, and K is the corresponding half-saturation constant. The constants mg and Ky are
similarly defined.

The function G(S, R) denotes the rate of conversion of nutrient to biomass of
population z as a function of the concentrations of resources S and R in the culture
vessel. Since resources S and R are perfectly substitutable, the rate of conversion of
nutrient to biomass of population z is made up of a contribution from the consumption
of nutrient S as well as a contribution from the consumption of resources R. Therefore,

msKrS+mrKsR

G(8. R) = KsKr+ KrS+ KsR'

Resource S is assumed to be superior to resource R in the sense that
mg > mp.

Define

KgD s
and u={mf-3 if mg > D,

mg—D

o0 otherwise, o0 otherwise,

) = { HKsDf mg > D,
where A is obtained by solving the equation G(S,0) = D when mg > D and u is obtained
by solving the equation G(0, R) = D when mg > D. Thus A and p represent the break-
even concentrations for resources S and R, respectively, when none of the other resource
is available.

It is important to note that neither resource is inherently detrimental. Resources
S and R are alternate sources of the same essential nutrient. Therefore, at least one of
these resources must be supplied in sufficient amounts in order for the species to survive.
Even if only one of the resources (S or R) is supplied, species z would survive provided the
dilution rate is sufficiently slow, that is A < S° or g < R°. Then species = could survive
on resource S or resource R alone. When either resource is absent, the model actually
reduces to model (3.3) with S(S, R) = &(S,0) = p(S) or R(S, R)) = R(0, R)), that is
Holling type II response functions. In this one-resource case, as we saw in section 3.3,
the carrying capacity of the environment (given by the species component of the survival
equilibrium) is an increasing function of the input concentration of that resource, thus,
the higher the input concentration the better.

Define a survival equilibrium of (3.4) to be a solution E = (5, R, Z) of the system

zS(S,R) = €£(S°—-S)D,

ZR(S,R) = n(R° - R)D,
G(S,R) = D

3

with $ >0, R>0and Z > 0.
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Consider three cases:
I the dilution rate, D, is relatively slow, that is mg > D and mz > D;
II the dilution rate, D, is relatively fast, that is mg < mg < D;
III the dilution rate, D, takes an intermediate speed, that is mg < D < mg.

CASE I: mg > D and mg > D.
It can be shown that,

1. A survival equilibrium exists if and only if G(S°, R°) > D.

2. If G(S° R°) > D, then there exists a unique survival equilibrium E, and it is
globally asymptotically stable with respect to solutions satisfying z(0) > 0.

3. If G(S° R°) < D, then the washout equilibrium E, = (5°, R°) is globally asymp-
totically stable.

In this case, it can also be shown that if G(S° R°) < D, then increasing the
concentration of either S° or R° sufficiently will reverse the inequality and result in the
survival of the species. Also, if G(S°, R°) > D, enrichment by increasing either S° or R°
cannot destroy the global stability of the unique survival equilibrium, E.

As well, identifying the carrying capacity of the environment with the species
component of the survival equilibrium, Z, it follows that the carrying capacity is always
an increasing function of S° and of R°. Thus, enrichment using either resource is always
beneficial if the dilution rate is sufficiently slow.

CASEIl: mgp <mg<D.

In this case it can be shown that, the washout equilibrium E, = (5°, R°) is always
globally asymptotically stable, regardless of the concentrations of S°® and R°. Thus,
enrichment using either resource cannot prevent the extinction of the species and is a
waste of time and effort.

CASE III: mp < D < mg.
Fix S° > A, since otherwise it can be shown that there is no way to avoid extinc-
tion, no matter what the concentration of R°. For mathematical convenience only, define

6= —ﬂ—— < 0. This parameter é is not intended to denote a resource concentration.
Also, deﬁne

é
==(A=5°),
Ry =30~ 5"
(\//\[mRng - msI(R] vV S"mRng )2 i 7] msKg 4
R‘g = msI(R/\ f mRKS (Sa - /\)
RS otherwise,
where z = £/7.
Note that, since z2— S, 5 > 1is decreasing in S° for §° > A, if -2’;':’;5-1—{3 > 1, then R =
R§ for all S° > A, However if -"—5—5- < 1, then deﬁne S¢ = (—imeKs __} )\ Clearly

rKs—nmsK,

S" > A. In this case, if A < S° < g'u then R§ = R}, but if S"£> S7, then R§ > RS.
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In Ballyk and Wolkowicz (1995) the following statements were proved.

1. If 0 < R° < R}, then there exists a unique survival equilibrium E of (3.4), and E
is globally asymptotically stable with respect to all solutions satisfying 2(0) > 0.

2. If RY < R° < RS, then there exist precisely two survival equilibria for system
(3.4). One survival equilibrium is locally asymptotically stable and the other is
unstable. The asymptotic behaviour of solutions is initial condition dependent. Any
solution either approaches the washout equilibrium, E,, or approaches a survival
equilibrium.

3. If R° > R}, then no survival equilibrium exists, and the washout equilibrium, E,
is globally asymptotically stable.

In this case we will identify the carrying capacity of the environment with the
species component of the locally asymptotically stable survival equilibrium, when one
exists. The question that remains, is how the species component of the asymptotically
stable survival equilibrium is affected by an increase in the input concentration of re-
sources S or R.

Fixing R° and enriching the environment by increasing S° is always beneficial.

This can be seen by viewing R as a function of S°. Fix S° > A and R° > R3(S°).
Then, there is either washout or initial condition dependent outcomes. Since R{(S°) is an
increasing function of S° and limge_,, R$(S°) = oo, for sufficiently large $°, R9(S°) > R°.
1 Once the system enters this regime, there exists a unique survival equilibrium E and E is
t globally asymptotically stable with respect to all solutions satisfying S(0) > 0, R(0) >0
il and z(0) > 0. The species component of this equilibrium and hence the carrying capacity
i of the environment can also be shown to be an increasing function of S°.
‘ On the other hand, increasing R° may or may not be beneficial. In this case, there
‘ may be one or two critical values of R°, R{ < R}. When 0 < R° < RY, there exists a
i unique survival equilibrium that is globally asymptotically stable. For R} < R° < R} the
; { species survives or washes out depending on the initial conditions. Increasing R° beyond
N RS leads to extinction.

To see how the carrying capacity of the environment is affected by enrichment, we
consider two examples that indicate that moderate enrichment via an increase in R° can
0 be, but is not always, beneficial. Figures 3.1 and 3.2 are bifurcation diagrams for system
f (3.4) that exhibit the change in Z as a function of Re, for fixed S° > A. The solid curves
indicate that the associated equilibrium is asymptotically stable.

In Figure 3.1, the parameter values given in Wolkowicz, Ballyk, and Daoussis
(1995) were used. For these parameter values,

nmsKp _ §°

Emm ~ 032 < 1,

and so there are two critical values of R°: R{ = 0.5 and R} ~ 0.7066. For 0 < R° < R},
the species component of the locally asymptotically stable survival equilibrium, and hence
the carrying capacity of the environment is a decreasing function of R°. This indicates
that even moderate enrichment is detrimental to the species. That this is not always the
case, can be seen in the next example.

}.
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z

R

Re

Figure 3.1 Bifurcation diagram for system (3.4), taking ms > D > mpg and S° > A.
mg = 2.25, Kg =1.00, £ =70, mg =0.5, K =1.00,7=1,D=1,8°=1.

In Figure 3.2, parameter values that correspond to a facultatively chemolithotro-
phic Thiobacilus species that can grow heterotrophically on acetate (S), autotrophically
on thiosulfate (R), and mixotrophically on both were used. (See Gottschal and Thingstad
(1982).) Fixing D = 0.10h7}, so that ms > D > mg, it follows that A ~ 2.22uM. If
§° =20.00uM, then

nmsKgp S°

EmpKs (S°—A)
Therefore, as in the previous example, there are two critical values of R°: R{ ~ 53.33uM
and R} =~ 78.62uM. There exists R € (RS, RS) such that, for 0 < R° < R, the
species component of the locally asymptotically stable survival equilibrium is an increas-
ing function of R°. It is only when R° is increased beyond R’ that the species component
of this equilibrium begins to decrease until, for R° > R}, there is washout. Thus, in this
case, moderate enrichment using R° is beneficial, even though too much enrichment is
devastating.

More intuitively, since resource S is more nourishing than resource R in the sense
that the maximal growth rate on resource S, by assumption, is higher than on resource
R, resource R can be thought of as junk food. Even though resource R is adequately
sustaining when the dilution rate is sufficiently small, it is not nourishing enough when
the dilution rate is high, since the species cannot grow fast enough on it in this case.
Its presence also reduces the consumption of the more nourishing resource S, since the
species wastes time consuming R. Thus, moderate concentrations of resource R can be
beneficial, (see Figure 3.2), but sufficiently high concentrations can cause washout.

~ 048 < 1.
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Figure 3.2 Bifurcation diagram for system (3.4), taking mg > D> mpg and S° > A,
mg = 0.145h71, Kg = 1.00uM, € = 25.6 g dry wt/mol, my = 0.085h~%, Kp = 1.00uM,
7 = 6.40 g dry wt/mol, D = 0.10h7%, S° = 20.00uM.

We summarize the predictions of the model discussed in this section by considering
an application. According to Williams (1971), the chemostat provides a good laboratory
idealization of a natural lake system. The lake itself can be thought of as the culture
vessel and some population of microorganisms important for the health of the lake could
be considered the population z. Natural turnover provides the stirring. Rivers flow
in and out of the lake. Asume that two noninhibitory, perfectly substitutable, growth
limiting resources are being supplied by the inflowing river. The flow rate is modeled
using a constant dilution rate D, in model (3.4) rather than a time-dependent dilution
rate D(t). A time-dependent dilution rate may be more appropriate for species at higher
trophic levels, where seasonal fluctuations come into play. We feel that a bifurcation
approach using a constant dilution rate may actually be a better model for the lower-
level microbial species considered here. We are motivated by the shorter generation times
typical of such species. (For example, the generation time of species paramecium aurelia
considered by Luckinbill (1973), is approximately 0.26 days.) Usually the dilution rate
remains relatively constant within a season, and the time required for the chemostat to
equilibrate is relatively short compared to the length of a season. In order to manage the
microbial populations of aquatic systems, this model predicts that it may be necessary to
take into consideration when and how much to enrich and to be careful what resource to
use. In Canada, in the winter it is very cold. The lakes freeze and there is lots of snow.
Thus the chemostat could be thought of as being on hold. In the spring, the ice and snow
melt and it rains quite often. The chemostat could be thought of as starting up in the
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spring, and due to the spring run-off, the natural dilution rate is relative high. On the
other hand, in the summer it is much hotter and dryer and so the dilution rate is relatively
small. In the summer it may be that the natural dilution rate satisfies mg, mg > D,
so that enrichment with either resource is beneficial. However, since the natural dilution
rate is higher during spring run-off, success with enrichment with a particular resource
in the summer can lead to the false conclusion that enriching the environment next year
in the spring would be equally beneficial with disastrous consequences. In fact, if the
dilution rate is high enough in the spring so that mg > D > mpg, it becomes necessary
to consider which resource is used for enrichment. When the superior resource S is
used, that is the resource with the larger maximal growth rate, enrichment is always
beneficial. However, when the other resource, R, is used, moderate enrichment may or
may not be beneficial (see Figures 3.1 and 3.2), and increasing the nutrient input to
the system sufficiently could actually lead to total decimation of the population. As
well, in any season that mg > D > mp, success with moderate enrichment (see Figure
3.2) might suggest that more vigorous enrichment would be even more beneficial, again
leading to diastrous consequences. Note also (see Figures 3.1 and 3.2) that there is a
hysteresis effect. Once R is increased beyond Rj and the population starts to die out,
to remedy the situation, it may not be enough to decrease R° below R§, but rather it
might be necessary to decrease R° below R in order to enter the basin of attraction of
the aymptotically stable survival equilibrium.

The predictions of model (3.4) seem to provide more support that we should indeed
heed Rosenzweig’s (1971) warning. The results in this section may also help to explain
some of the effects of fertilizer runoff and industrial waste on the microbial populations
of certain lakes.

4 DISCUSSION

Perhaps motivated by the methods of Rosenzweig (1971), Brauer (1976) states that “en-
richment of the prey’s environment ... may be described mathematically by an increase
in the carrying capacity.” Our results indicate that this is not always the case and sug-
gest that models with the carrying capacity built in, like models (3.1) and (3.2), may be
misleading for answering questions related to the effect of enrichment of the environment
on the population size.

The results in section 3.4 also seem to indicate that construction of models assum-
ing that only one resource is limiting at a given time may also lead to misleading predic-
tions, especially if the model is to be robust enough to remain valid for reasonable ranges
of the parameters. The chemostat model (3.3), for growth on a single, noninhibitory,
limiting resource predicts that the outcome is always initial condition independent. If
the maximal growth rate of the species is slower than the dilution rate, then enrichment
is a waste of time since it cannot prevent extinction of the population. Otherwise, it is
always beneficial to enrich by increasing the input concentration of the limiting resource.
Raising the input concentration S° so that p(S°) > D prevents extinction, and once S is
above the break-even concentration, the population size increases linearly as a function
of S°. However, if there are two perfectly substitutable resources, model (3.4) predicts
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that one must consider the relative values of mg and mg, the maximal growth rates of 6
species x on resources S and R respectively, and dilution rate D. Assume that resource
S is superior to resource R in the sense that mg > mpg. In the case that mg < mg < D,
enrichment is a waste of time as in the single resource case. Also, in the case that mg > D
and mgr > D, as in the single resource model, the outcome is always initial condition
independent but to prevent extinction in this case, one only needs to increase S° or R°
so that G(S° R°) > D. The biggest difference comes in the case that mg < D < mg. 8
In this case the outcome can be initial condition dependent. There can be two survival
equilibria and one of them and the washout equilibrium can be asymptotically stable
for the same set of parameters. Enrichment by increasing S° can lead from washout, to 9
initial condition dependent outcomes, to a globally asymptotically stable survival equi-
i librium. Enrichment by increasing R° can lead from a globally asymptotically stable
i survival equilibrium, to initial condition dependent outcomes with washout a possibility, 10
; to definite washout.
1 For an analysis of models of competition in the multiple resource case the reader
] is referred to Butler and Wolkowicz (1987) and Ballyk and Wolkowicz (1993) and the
references contained in these papers. For a surprising example where competition seems [11
to promote greater diversity the reader is referred to Wolkowicz, Ballyk, and Daoussis
(1995). In Ballyk (1994), the thresholds described in section 3.4 of this paper are used to
study the effects of enrichment on a resource-based, predator-prey model. For analysis
of a model describing the effect of invasion of a predator on competitors in a chemostat [12
the reader is referred to Wolkowicz (1990) and the references within. For two recent
books that discuss various models of microbial interactions in the chemostat, the reader
is referred to Chen and Chen (1993) and Smith and Waltman (1995). (13
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