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Abstract. Consider a simple modal of a fead web in a chemostat in-
volving three species competing for a single, nonreproducing, growth-
limiking nutrient in which one of the competitors also predates on one
of the other competitors. If it is assumed that the response functions
gatisfy the law of mass action, it is shown that under certain assump-
tions on the parameters, this model is equivalent to a special case of the
generalized asymmetric May-Leonard (Lotka-Volterra) model of three
species competition or to a Lotka Volterra model in which two of the
species compete, and two are involved in predator-prey interaction. In
both cagses there is a repelling heteroclinic cycle connecting the three
single species boundary equilibria, and a positive three species coewxis-
tence equilibrium that is globally asymptotically stable with respect to
the interior of the positive cone.

1 Introduection

Conaider the Gaunse-Lotka-Volterra model of three species competition:

21 (t) = iz (t)(1l — 21 (t) — aaza(t) — izs(t),
zp(t) = roxa(t)(1 = Fox1(t) — wa(t) — azzs(t)),
23(t) = razs(t)(l — ogx(t) — Bama(t) — z5(t)),

21(0) > 0, 22(0) > 0, #3(0) > 0,
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where 7, a; and [; i = 1,2,3, are all positive constants. Under the additional
assumption that

Oyl g, i=1,23 (1.2)

we shall refer to this model as the generalized asymmetric May-Leonard model
{(GAML). In the case that r; = =, i = 1,2,3, the madel is referred to as the
asymmetric May-Leonard model (AML) or the rock-paper-scissors game.

In model (1.1}, ¢ denctes time, and =;, i = 1,2, 3, denote some measure of
the size of the ith competitor population at time ¢, e.g., density or concentration.
The »y, 4 = 1,2,3, denote the intrinsic growth rates of each population and the
ey and 3, i=1,2,3, denote the competition coefficients. Condition (1.2) implies
that there exists a heterclinic cycle connecting the single apecies equilibria on the
boundary. In particular, let &;, i = 1,2,3, denote the single species equilibrium
on each r; axis, with only species z; present. Therefore, e = (1,0,0), es =
(0,1,0), and e3 = (0,0, 1). From results on two species competition (sec for example
Waltman [10]), it follows that (1.2) ensures that there is a heteroclinic orbit O3 on
the the 1 — x4 plane from ey to e;, a heteroclinic orbit 5 on the 7 — 25 plane
from ey to es, and a heteroclinic orbit ¢); on the the 12 — z5 plane from e; to e3.
Define

O£ closure of UYL, O;. (1.3)
That model (1.1} admits the heterocline eycle, @, when (1.2) holds was first proved
by May and Leonard [7] in the so-called symrnetric case, le., a; =a, f; =8, i =
1,2,3. In fact, they arpued that in the case that e+ > 2 and 0 < @ < 1 < 3,
@ attracts all solutions with positive initial conditions, except the unique interior
= equilibrium point P = m(l, 1,1) and its one dimensional stahle manifold. In
particular, they argued that and provided collaborating numerical simulations to
show that asymptotically, solutions move in population space from & neigbourhood
of e;, to a neighbourhood of es; to a neighourhood of eg, back toward e, and so
on, that the time spent in the vicinity of any one point is proportional to the total
time elapsed up to that state, and that the total time spent in completing one cycle
is proportional to the total length of time the system has been running.

Schuster, Sigmund and Wolf [B] considered the {AML) model and proved that

if in addition to (1.2), one assumes that

Bi=1=1—ay; 1<ij<3, (1.4)

then there exists an open sct of orbits in the interior of R} having O; as w limit set.
Hofbauer and Sigmund [3) provided conditions that allow one to decide whether the
{(GAML) model is permanent or the heteroclinic eyele is an attractor. In particular,
defining A; =1 —a; and B; = 3, — 1 for i = 1, 2, 3, they proved that the (GAML)
model is permanent if A, Az Ay > B;B3Bs, but that the heteroclinic cycle is an
attractor if 4y AsAa < By B35y, In Hofbauer and Sigmund ([6], section 15.3), the
Volterta-Liapunov Theorem provides sufficient conditions for the global asymptotic
stability of the interipr equilibrium. They also proved in [5] that if one rostricta
i =7, i=1,2,3, to obtain the (AML)} model, there arc no periodic orbits cxcept
in the case that A;AzA; = By B:B5, and that in this case there is a center, i.e.,
all orbits are periodic. Therefore, for the (AML) model either A) 43 Az = BBy Ba
and the interior equilibrium is globally asymptotically stable with respect to the
interior of the positive cone, or 4; 4245 < By By By and the heteroclinic cyele on
the boundary attracts almost all orbits, or A;4:4;5 = By B3B3, and thete iz a
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center. Chi, Hsu and Wu [3] also proved this result for the (AML) model using a
different method.

Zeeman and Zeeman [13] proved that for competitive Lotka-Volterra systems
(1.1), if an interior equilibrium P exists, and the carrying simplex of the system lics
to one side of its tangent hyperplane at P, then there is no nontrivial recurrence and
s0 Lhe giobal dynamics are known. They also gave algebraic criteria for verifying
this geometric condition and provided a computational algorithm.

Next, consider the following model of a food web in a chemostat:

§) = (89— 8()D— xy ()M (S(2)  zalt)pa(S(t))  zalt)pa(5(t))
m 2 75 ’

) = @) (—D +p1(5'(t))-—ma(t)—Q(m;(tD),

x(t} = 22(8) (-0 +p2(5(1)) (1.5)
23(t) = za(t) (=D +p3(5(1) + q(z2(t))) .
5(0) 2 0, 1(0) > 0, z2(0) = 0, z3(0) = 0,
§°>0,D>0p>0, i=123, and z>0.

As for model (1.1), in model (1.5), ¢ denotes time, and x;, ¢ = 1,2,3, denote
some measure of the size of the ith competitor population (in the culture vessel) at
time t. However, in model (1.5), population #3(t) is also a predator, predating on
population z;(t). Here S(t) denotes the concentration of the nutrient in the culture
vessel at time £. Parameter 57 denotes the concentration of the nutrient in the feed
vessel and D denotes the dilution rate. The species specific death rates are assumed
to be insignificant compared to the dilution rate and are ignored. "The culture vessel
is assumed to be well-stirred and for convenience its volume is assumed to be one
cubic unit. The functional response for each population #;{t) is assumed to satisfy
the law of mass action and so we define p;(5) =m;5, i =1,2,3, and g(z;) = nz1.
In addition we assume that growth rate is proportional to the consumption rate

and so the consumption rate of nutrient §{t) by population 4 is given by L(ni(ﬂl and

the consumption rate of z;(t) by za(t) is given by ﬂ”—‘z(ﬂl The positive coustants
1, 1=1,2,3, and 2 arc referred to as yield constants.

Model (1.5) is a special case of a more general model first studied in Daoussis
[4], where & globeal analysis was given. In Wolkewicz, Ballyk, and Daoussis [11],
this model was provided as an example of competitor-mediated competition, i.e.
a scenario in which introduction of a population that exploits common resources
promotes greater diveraity.

In the next section we perform a series of substitutions and transformations
on model (1.5) to show that under certain conditions it is equivalent to model
(1.1)-(1.2). Hence, under these conditions, we provide a new interpretation of the
May-Leonard three species competition mode] ag a simple food web in a chémostat
involving three species competing for a single, nonreproducing, growth-limiting nu-
trient in which one of the competitors also predates on one of the other competitors.
The global dynamies of model (2.1) are completely understood. We summarize this
in Section 3. However, the global dynamics of the (GAML) model are still not com-
pletely understood. Therefore, it is still useful to find new criteria that puarantee
that the interior equilibrinvm P of ((GAML) ia globally asymptotically stable. We
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do thiz in Section 4. We alzo provide an example for which the eriteria intro-
duced here can be used to show that P is globally asymptotically stable, but both
the Computational Theorem in [13] and the Volterra-Liapunov Theorem of [6] are
inconclusive.

2 Transforming (1.5) into (1.1)-(1.2)

In this section we perform a series of substitutions and transformations that
convert model (1.5) into a model of the form (1.1)-(1.2).

First let
T o S z;i(t) . z3(t)
tztﬂ; S(t) = — 2L i(E ==y E B T :.-.3_-
(j Su 1 I (_) niSD’ t ]-a 2; Ea(i') 1?1502"

(5@ = 20 im0 s gm@ - L), o,

Fa)
A=—,1=1,2,3 &=
ny
and assume that v = 1.
‘Then, omitting the bars to simplify notation, the sca.led version of model (1.5)

can be written as follows:

SO = 1-50) -2t 32 - zp30 - 215,
() = z(t) (—1 + %’) - ”—35@) . (2.1)

zp(t) = Wm(1+%?)

z3(t) (—i + %) + le(t)) :

5(0) 2 0, 21(0) > 0, z4(0) > 0, z3(0) > 0.

Note that X;, i =1,2,3, and 4 are ealled the break-even concentrutions of nutrient
and prey, respectively.
Adding the four equations in (2.1), it follows that

3 3
(S’(t) + Ez;(t)) =1- (S(t) + z:c,-(t)) :
i=1 .

i=1

z3(t)

Therefore,

3
(S(t) + Zx,—(t)) =e* (—1 + 5(0) + im;(ﬂ)) +1

i=1 =],

It is clear that for model (2.1), the positive cone is positively invariant, and so it
follows that the simplex \

& 2 {(8,21,23,7a) : S+Zﬂ:¢-1 220, i=1,23)

i=1

is globally attracting.
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Remark 2.1 It is useful to note that the restriction that the initial concen-
tration of the nutrient in model (2.1) must be nonnegative is only imposed for
biological realism, and does not affect the ssymptotic outcome of the solutions. If
5(0) < 0 bug z;(0) > 0, i = 1,2, 3, then it still follows that x;(t} > 0, £=1,2,3 for
all positive time, and so if 5(0) < 0, then S(t) increases, z;(t), ¢ = 1,2 decrease,
and z3(t) eventually decreases until at some finite time T > 0, S(T) = 0. Then
5(t) will be positive for all t > T.

Setting 5(t) = 1 — Ele,—(t), we can eliminate the S/ equation in (2.1) to

obtain:
4o = mo (525020 (L),
o = (152 -00 20 _50), (22)

a0 = w0 (5 (1) 050 8)

a
£1(0) > 0, 72(0) >0, 23(0) > 0, S(t)=1=)_ zil?)

i=1

where, it follows from Remark 2.1 that there is no restrietion on the s1g;n of 5(t), and
henee it is not necessary to assume that 3 ._; z;(O) < 1. Bven if o, 2:(0) > 1,
there exists T > 0 such that 3°°_, #;(T) = 1 and T m) <lforallt>T.

In order to obtain the same form as (1.1), we let

o Xy ,
= — . (=123,
=1 =1,
Qmitting the hats for convenience of notation, and factoring
1-X
Ti é T.;: i‘=112:31 (23)

from the ith equation, the model can be rewritten:

:E'l(t) = 1"1271(t) (1 - Il(t) - —'—'i : ifﬂ:z(t) — ———(1 _ﬁa‘?’)—(ill;_ 6) Ig(t)) ]
Zh(t) = romalt) (1 T Alml(t) z3(t) — i: 3(t)) , (2.4)
z3(t) = r3xs(t) (1 - (_6('\11—)_(6)\3_))\3—)2?1('7) - %mz(t) - ﬂ?ﬂ(i)) :

3
1(0) > 0, 2(0) > 0, 23(0) >0, §() =1— > (1 — A)m:(t).
=1
Again we emphasize that there is no restriction on the sign of 5(0). This is a
classical Lotka-Volterra model. For our analogy, we require more assumptions on
the parameters in order to control the sign and relative magnitudes of the coeffi-
cients, Assume that the species are labelled so that

0<h <l izl (2.5)
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Under this assumption, Butler and Wolkowicz, [1} proved that if 23 does not con-
sume %1 (i.€., n =0 or equivalently § = oa), but instead consumes only 5, then z;
would be the sole survivor in a contest apainst 7o or agalnst both zs and 74 and
in the absence of T;, 22 would survive and drive 23 to extinction. In this sense
) is the strongest competitor for resource §, and 3 is the weakest competitor for
resource 5.

It follows from (2.5) that »; > 0, = 1,2,3, and so it makes sense Lo interpret
cach r; s the intrinsic growth rate of the 4th species.

If we now allow =3 to congume both & and 7, and in addition we assume that

0 > Ag, (25)

80 thal as > 0, then model (2.2) has been transformed into the form of model (1.1),
the Gause-Lotka-Volterra model of three species competition, with

1-Az 1—Ag o (1= A6 — Aa}

I TTIo UT T 0o a) -
_(1—)\3)()\1'1-(5) _.]'_Al , _1—.«\2
ﬂl - d(].—'.xl) 1 162 = ].—Azj :ﬂ:i = 1_)‘31 (2‘8)

where oy > 0and 5; >0, 1=1,2,3.
By (2.5), it is clear that o; < 1, i=1,2, and 5 > 1,i = 2, 9. However, f; > 1,
if, and only if, we also sssume that

A(l = Ag)
e e 2.
0« = | (2.9)
and &g < 1, if, and only if, in addition to (2.5), we assume that
Az(l — M)

Note that if (2.5) holds, then (2.9) implies (2.10).

Therefore, model (2.4) is in the form of model (1.1), If (2.5)-(2.9) hold, then
(1.2) also holds and there is a heteroclinic ¢ycle on the boundary, connecting
the three singles species equilibria, e;, e3, and g3. Thus we have shown that if
¥ = 7% =1, then we have transformed model (1.5), a model of three species com-
petition in a chemostat for a single, nonreproducing, growth-limiting nutrient in
which one of the competitors, z3, also predates on one of the other competitors,
z1, into the form of & generalized asymmetric May-Leonard model (1.1)-(1.2) of
three species competition. On the other hand, if the inequality in (2.6) is reversed,
then model (2.4) is of the same form as model (1.1), but ay is negative. The clas-
gical interpretation would be that instead of three species competition, 21 and =z,

compete, but z; predates on 4.

3 Dynamies of the chemostat model (2.1)
Let the equilibria of model (2.1) be denoted:
Ep £ (1,0,0,0); Ex, 2 (A, 1—A1,0,0); Ex; 2 (22, 0,1 — Az, 0)
By £ (2,0,0,1= s}, E* £(87,2,0,z3); E2 (1, 52,23),

where )
Al'\a ' ’ o g
S* = N = —_— '* = —_ —_—
AAg +0(dg — Ay’ a1 =91 A3 ) # =01+ Ar )
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Azy. . »)\1 - Ay
II_J(I_A_); Ig—l'a\g—i\g( ), 5( 1+ )
3

Criteria for the existence and for the stability of the cquilibria of model (2.1)
are summarized in Table 3.1.

Table 3.1 Equilibria - Existence and Stability for (2.1)
(assuming Ay < Ay, 7 =2,3)
‘ Existence! Globally Asymptotically Stablef
{assuming the equilibrium exists)
Ey always Mzl i=1,2,3
EM Ar =1 S = A
Eyg Ay <l never
E, Az <1 never
E Ay = 5" < A Moo S
E A < Az < Az and 5" = Ag whenever it exists

¥ An equilibrium i assumed to exist if, and only if, all of its compo-
nents are nonnegative.

! Global asymptotical stability is with respect to solutions initiating
in the interior of the positive cone.

Note that under the assumption that A; < A;, 7 = 2,3, it follows that 0 <
5% = 1, and that one of the equilibria, Fy, Ey,, E, or E iz plobally asymptotically
stable, This can be proved using the Lispunov functions summarized in Table 3.2
and the slightly modified version of the LaSalle Invariance Principle in Wolkowicz
and Lu {12]. The proofs of the global asymptotic stability of the equilibria were
first given in [4].

Table 3.2 Summary of meunov functions for (2.1)
V= V(S :.'[71,1?2,:33)
Ey |V = 3—1—111(3)+I1+I2+$3
V= __(E)_ + L Is L"'Ai')
E, |V=5- )\1 Alln(A )+ x = (1= A1) — (1= M) In g5
V= DA g (2ah) (-1 4+ 2 4 15
B [ V=8— 8 — S I(Z) T Sym 5@ - 7] — 7 10(E)) + 22

MES. -l-:rz(—i—sn_.;\‘) .
v =5— A= MIn(£) + i (@ — % — T: 1n(2))

V = —-5&—‘2(5— )\2)2

[na]]

Remark 3.1 In fact, one can also prove that if instead, we assume that'As <
Aj, 3 = 1,3 and A2 < 1, then E,, is globally asymptotically stahle, or that it
Aa < Ay 7=12and Az < 1, then E), is globally asymptotically stable. Hence,
model (2.1) only admits very simple dynamies. In particular, there is always s
single, globally asymptotically stable equilibriutn point that attracts all solutions
with positive initial conditions.
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4 Implicetions for the dynamics of model (1.1)

Solving (2.7)-(2.8) for the A;, i =1,2,3, and ¢ in terms of oy,i = 1,2,3 and
By, is equivalent to solving the linear system of equations:

-y 1 0 0 At 1=
0 —ag 1 0 A | | I—ae

0 0 1 ¥y (¥glky — 1 Ag - 0

— k) 5 0 0 ,51 - a (] 0

We obtain the unique solution:

{f1 — mez)(l — ayog)

Al = ,
araz(l — B — eozog + arog)

A = AL — 20z — o10d03 + og = @af) + med + ofadag
(1l — Fh — eq ooy + @100)

_ (1 = ayagog)(l = ayom)

T 1- 1 - eionos +ogan’

_ 1- [ 1}

C1-81 - mmos+aios’

Provided e, and B, i = 1,2,3, are chosen so that f = L, G = 2L,
Ar>0,i=1,2.3, and § > 0, the results in the previons section hold, and so model
(1.1) has zimple dynamics, i.e. there is always a globally asymptotically stable
equilibrium that attracts all solutions with positive initial conditions. This is true,
even if some or all of the r;, o;, /3; are negative.

To determine which equilibrium is globally asymptotically stable, use Table
3.1 and Remark 3.1 at the end of the previous section, and note that £, in (2.1)
corresponds to the single species survival equilibria, e;, 1 = 1,2,3, [or system
(1.1), Ep corresponds to the washout equilibrium, ep £ (0,0,0), E= corresponds
to the two species survival equilibrium e* £ (3,0, 23%), and E corresponds to the
equilibrium with all three components positive, £ £ (%1, %2, %3).

In order to have a globally attracting equilibrium in the interior of the positive
cone with a repelling heteroclinic cycle on the boundary of the positive cone, select
0< o <l, i=1,2,3. Then, provided that in addition,

A=l +a1a2(1 — Etg) 4 Bty (4.1)

so that the denominators are all positive, it follows that A, > O end 0 < Az < 4.
For A; > (, one must also assume that the numerator in the expression for As above
is also positive, i.e.,

&=

1

Az

]

ag(?ﬂh + a0ty — 1 — oyovp — ﬂ.’%ﬁgtx‘;;) A A
£ A

1—0o2 (42)

Note that,
By =1 and Oy — fm = (1 —maz)(l — moenog) = 0,

since 0 < o; < 1, i =1, 2, . Therefore, it iz always possible to select f;, i =1,2,3,
so that Gz = -:1+1’ By = &ln, and max(l,Bn) < /1 < Op, and hence (1.2) holds.
If
B = op(2 = ajonea) £ fe,
then
.-\1=A2=)\3=S.=1,
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and if
B1 < Berir,
then
Mol aed <l
Note that,
Berit — Bm = 02 (1= a1ai)£1a—2 212203 > 0,

Also,
\ Brt = forie = (1 — anaa)(1 — czozo) > 0,
‘ s0 that

ﬂm < ﬂcrit < .GM
Note also, that if

+ gty < 2,
Oy O

then
ﬂcrit =1
Therefore, we have just proved,

Theorem 4.1 In medel (1.1)-(1.2), if

Qo <, i=1,2,3,

+orasas <2, and max(l, fm) < F1 < Berits
4 3Fa 1]

then there is a a repelling heteroclinic eycle on the boundary of the positive cone

and a unique positive equilibrium that is globally asymptotically stable with respect
to all orbits initiating in the interior of the positive cone.

EXAMPLE Selecting

9 =825
= 103 2= 91 3 121
6 10 _ 9
ﬁl—g, 62-?3 ﬁ?'_g‘
5 9
T1=§5 Tiz?s T3:1,
in model (1.1)-(1.2) corresponds to taking
3 T 1 3 . 2
A1=E,A2=E,A3—§,6—Z,S—3

in model {2.1). For these parameters, it follows from Theorem 4.1 that both models
(1.1) and (2.1) have a repelling heteroclinic eyele on the boundary and a globally
attracting equilibrium in the interior of the positive cone. It is interesting to note
that neither the Zeeman Computational Theorem (see [13] for more details and
proof), nor the Volterra-Lyapunov Stability Theorem (see ([6], Section 15.3) for
more details and a proof) can be used to show the global stability of the interior
equilibrium in this example. We provide the statements of both results here for the
readers’ convenience and demonstrate that a hypothesis fails in each case.
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We first introduce notation similar to that used in [13). Model (1.1) and.(2.1)
can be written in the form 2’ = y(h — Az) = vA(p — 7), where

&Iy T
T=| 2y |, b=|mr |, p=41,
I3 T3
x 0 0 rn Tim T
x=diag{z)=| 0 =T 0 |, A= roffle ro racm
0 0 =z T3 T3y T3

For an arbitrary n x n matrix M define the symetric matrix
1
M5 & E(M + M7y,
and
MR & Mnﬂ. + Mll - M?yl - Mlm
where M;; denotes the (n — 1) % (n — 1) submtrix of M obtained by deleting row {

and column 7 from M.
Then,

MS‘R A ( MS)R.

Theorem 4.2 (Computational Theorem ([13]), Theorem 6.7)) Given the com-
petitive system ' = yA(p — x), with ¢ unique interior equilibrium point P =
p=A"Tb e intRY. Let hT be o strictly positive left eigenvector of PA and let
H = ding(h). If all the eigenvalues of (AH )R are negative (positive), then P is
a global repellor (attractor).

. Verifying the hypotheses of the Computational Theorem using Maple, we‘_ﬁnd
(to 4 decimal places) that

i 8 3 9 3
3 3 2 20
0.9889
b=| 2|, A=| ¥ 2 8 py=at=| & [, =] 10875 |,
1.0
1 S :—.,
1.6667 1.429 1.1972
(an~1¥ = [ 14202 12255 11012 |, (AH'l)Sﬂz(g‘?ggg gégg)
11972 11012 0.9889 07T 0.

(AH~1)5® has a positive and a negative eigenvaluc and hence is neither positive
nor negative definite, and so the Computational Theorem is inconclusive,

Theorem 4.3 {Volierra-Liopunov Theorem [6]) If there exists a diagonal ma-
triz D with positive diagonal entries such that (DA)% is positive definite, then
P = p 1a o globally asymptotically stable equilibrium point of the compefitive system
2 = xA(p—x). . _

Recalling that the principal minors of a positive definite matrix must all be

strictly positive, since det Az = 0, by a similar arpument to that given in Lemma
7.2 and 7.3 of [13], no diagonal matrix D with positive diagonal entries exists such
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that (DA)S is positive definite, and so the Volterra-Liapunov Theorem cannot be
used to show the plobal stability of this interior equilibrium point.
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