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ABSTRACT 

A model of the chemostat involving two populations of microorganisms competing for 

two complementary, growth-limiting substrates is considered. Instead of assuming the 

familiar Michaelis-Menten kinetics for nutrient uptake, a general class of functions is used 

which includes all monotone increasing uptake functions, but which also allows uptake 

functions that describe inhibition by the substrate at high concentrations. Graphical 

techniques are developed to analyze the model. In the case of monotone kinetics the results 

are similar to those of Hsu, Cheng, and Hubbell [16], who study this problem assuming 

Michaelis-Menten kinetics. For monotone kinetics, all dynamics are trivial in the sense that 

all solutions approach equilibria. However, when at least one of the competitors is 

inhibited by high concentrations of the substrate, one can easily construct examples for 

wMch there is a stable periodic solution. Surprisingly, if the substrates are inhibitory at 

high concentrations, there are examples for which coexistence is possible but neither 

competitor can survive in the absence of its rival. 

1. INTRODUCTION 

The classical theory of ecological competition and predator-prey relation- 
ships was originated by Lotka [20] and Volterra [36]. This approach is 
appealing because of its generality and its simplicity. The competition 
equations studied are basically an extension of the logistic model of single- 
species growth that dates back to Verhulst [35]. The classical theory is an 
attempt to describe population dynamics without being specific about which 
resources are limiting and how these limiting resources are utilized by the 
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different competitors. These models are usually phenomenological rather 
than predictive, since it is very difficult to measure the critical parameters 

used in the theory independently of actually observing the populations in 
competition. One way to overcome these defects is to develop a more 
mechanistic, resource-based theory of ecological interactions, and such an 
approach is currently being taken by many researchers. Some of the pioneer- 
ing work can be attributed to Monod [24] and Holling [15]. Though this 
approach may result in mathematical models that are less general and more 
difficult to analyze, the resulting models are often predictive, since parame- 
ters can frequently be measured independently of the competition (see e.g. 
Hansen and Hubbell [13]). Mathematical modeling of population interac- 
tions in a chemostat is certainly an example of this resource-based approach 
and is the approach taken in this paper. 

When there is competition for two or more resources, it becomes neces- 
sary to consider how the resources, once consumed, interact to promote 
growth. Leon and Tumpson [19] and Rapport [27] use consumer needs to 
provide a criterion to classify resources. They classify resources as perfectly 
complementary, perfectly substitutable, or imperfectly substitutable. 

Perfectly complementary resources are sources of different essential sub- 
stances which must be taken together because each substance fulfils a 
different function with respect to growth. For example, a carbon source and 
a nitrogen source might be complementary for a bacterium. Perfectly sub- 
stitutable resources, on the other hand, are alternative sources of an essential 
substance or of essential substances that fulfil the same function. The 
intermediate case is called imperfectly substitutable. 

In this paper we shall restrict our attention exclusively to two perfectly 
complementary resources S and R. In this context we shall say that a 
population is S-limited (R-limited) if its per capita consumption rate of R 
(S) is independent of the concentration of R (S) and depends only on the 
concentration of S (R). 

Models of microbial growth on perfectly complementary resources (with 
experimental justification) have been published in [4, 28, 301. Leon and 
Tumpson [19] seem to be the first to have modeled exploitative competition 
for perfectly complementary resources. They assume that each competitor’s 
functional response is a strictly monotone function of resource concentra- 
tion. In the two-resource, two-competitor case they derive conditions for the 
existence of a locally asymptotically stable interior critical point and hence 
conditions for the coexistence of two competitors. 

Hsu, Cheng, and Hubbell [16] derive a model for exploitative competition 
in a chemostat between two populations for two perfectly complementary 
resources. They assume that consumption of the resources follows Holling 
Type II, or equivalently Michaelis-Menten kinetics, generalized to the two- 
resource situation. They give a complete global analysis of their model. They 
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conclude that “each of the four outcomes of classical Lotka-Volterra two- 
species competition theory has multiple mechanistic origins in terms of 
consumer resource interactions.” They also give biological conditions based 
on parameters in their model that predict the competitive outcome. Their 
results are also summarized in a survey paper by Waltman et al. [37]. For 
other related work see [4, 11, 26, 341. 

The content of this paper is organized as follows. In Section 2 we consider 
the model of Hsu et al. [16]. We point out that their derivation and their 
arguments apply for any functional responses that are strictly monotone 
functions of resource concentration. We also give an alternative method of 
obtaining their results which we shall find useful in Section 3. 

In Section 3, we modify the model considered in Section 2 by allowing a 
more general class of functions to describe consumption and conversion 
rates, as was done in Butler and Wolkowin [9] and Wolkowicz [38]. Again 
this class will allow us to consider substrates that are growth-limiting at low 
concentrations as well as at overly high concentrations. Inhibition of growth 
by high concentrations of substrate is particularly important when micro- 
organisms are used for biological waste decomposition or for water purifica- 
tion (see [l, 2, 5, 6, 391). After presenting some preliminary results, we 
develop graphical criteria that characterize the set of critical points and show 
under what circumstances the model permits trivial dynamics only. These 
graphical criteria are based on the methods developed in Section 2 as well as 
some concepts from linear progr amming. Surprisingly enough, using these 
graphical criteria, we are able to show that the model predicts that there are 
cases in which in the absence of a rival each population definitely dies out, 
whereas when both competitors are present there is a possibility of coexis- 
tence. Thus, in some sense the rivals are cooperating. We then show by 
means of an example that even if we allow only one resource to be inhibitory 
to only one of the competitors at high concentrations, the model permits an 
orbitally asymptotically stable periodic orbit. Hence the model predicts that 
under certain conditions coexistence of the competitors with concentrations 
in sustained oscillation is possible. In this same example, there is also an 
unstable periodic orbit associated with a locally asymptotically stable critical 
point. Thus, there can be initial-condition-dependent regions of coexistence. 
In each case, the existence of the periodic orbit is obtained through a Hopf 
bifurcation. Since the analysis of stability involves computations that would 
be extremely tedious, they were done using the symbol manipulation lan- 
guage REDUCE 2. The algorithm used is based on the work of Marsden and 
McCracken [22]. The REDUCE 2 program is general enough to be adapted for 
use to determine whether or not there is a Hopf bifurcation and, if there is, 
to determine the stability of the bifurcating periodic orbit, in the case of 
most systems of two-first-order, autonomous, ordinary differential equa- 
tions. The program and an explanation of how to adapt it can be found in 
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Appendix 3 of Wolkowicz [38] along with the program results. We sum- 

marize the key steps in the bifurcation analyses for our examples in Appen- 
dix 1 of this paper. To illustrate the examples we use computer graphics to 
generate phase-plane portraits. The equations are solved numerically by 

means of the IMSL double-precision algorithm DGEAR. 

We conclude the paper with a discussion in which we summarize the 
results and then discuss the difference in dynamics between monotone and 
nonmonotone kinetics. 

Some auxiliary results appear in Appendix 2 of this paper. The linear 
analysis is standard and can be found in Appendix 2 of Wolkowin [38]. 

2. THE MODEL-MONOTONE KINETICS 

We consider the following model of exploitative competition in a chem- 
ostat between two populations of microorganisms for two purely comple- 
mentary resources: 

(2.1) 

X~(r)=xi(f)[-~++(S(r)~R(f))]~ i =1,2, 

s(0) = so > 0, R(0) = R, > 0, xi(O) = xi0 > 0, i =1,2, 

where 

.hi(S(t),R(t)) =min(p,(S(‘),qi(R(‘))), i =1,2. 

Here, S(t) and R(t) denote the concentrations of the two nonreproduc- 
ing, complementary resources at time t, and xi (1) denotes the concentration 
of the ith population of microorganisms at time t. The function pi( S( t)) 
[ qi( R ( t))] represents the per capita growth rate of the i th population when 
resource S is limiting [resource R is limiting], and so h( S( r) , R( r)) is the 
function that represents the rate of conversion of nutrient to biomass for the 
ith population. We take the minimum here because the resources are purely 

complementary. We are therefore assuming that growth rates adjust instan- 
taneously to changes in the resource concentration. The consumption rate of 
nutrient is also assumed to be proportional to the rate of conversion to 
biomass. Thus, fi( S, R)/ysi [ fi (S, R)/y,,] represents the consumption rate 
of resource S [resource R] by the ith species, where ysi and yRi are the 

growth yield factors. It is assumed that the yield factor ysi has the same 
value whether S is the rate-limiting nutrient or not. The same is assumed for 
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yRi. If only one feed bottle is used, then So and R” denote the concentra- 
tions of resources S and R respectively in the feed bottle, and D denotes the 
input rate from the feed bottle containing the resources to the growth 
chamber, as well as the washout rate of nutrients, microorganisms, and 
by-products from the growth chamber to the collection vessel. Thus the 
volume in the growth chamber remains constant. Here we are assuming, 
therefore, that the input rate of resource and the dilution rate are constant 
and that there is perfect mixing in the growth vessel, so that nutrient and 
microorganisms are removed in proportion to their concentration. We are 
also assuming that individual death rates of either population are insignifi- 

cant compared to the dilution rate D. 
If the experimenter prefers to use two separate feed bottles, each contain- 

ing only one resource, and input from each feed bottle to the growth 
chamber at different rates, say rate D, from the bottle containing resource S 
and rate DR from the bottle containing resource R, then D = D, + DR, 
So = (s’D,)/(D, + DR), and R” = (~“DR)/(Ds + DR), where So and E” 
represent the concentrations of resources S and R, respectively, in each 
separate feed bottle. Here, D still represents the dilution rate. 

We make the following assumptions concerning the functions p, and qi 
in our model: 

pt,q;:R+ -+R+; (2.4 

pi, q, are continuously differentiable; (2.3) 

pi(O) = O? qi(O) = O, (24 

that is, if there is no nutrient, there is no uptake. Due to the assumption 
(2.3), the functions fi(S, R) satisfy a Lips&k condition in S and R on any 
compact subset of R, xR,, and so we have uniqueness of initial-value 
problems and continuous dependence on initial conditions and parameters 
for the system (2.1). 

In this section we shall also assume that 

p:(S)>0 for S>O and q:(R)>0 for R>O, (2.5) 

that is, that the kinetics are strictly monotone. 
This is precisely model III of Leon and Tumpson [19], adapted to a 

chemostat in which individual death rates are assumed insignificant com- 
pared to the dilution rate. The model applies when the functions pi and q, 
assume the form of the usual prototypes for monotone functional responses, 
e.g. Holling Type I (or Lotka-Volterra kinetics), Holling Type II (or 
Michaelis-Menten kinetics) and Holling Type III (or multiple saturation 
dynamics). In the case that all the pi’s and qi ‘s satisfy Michaelis-Menten 
dynamics, the model is precisely the one studied by Hsu, Cheng, and 
Hubbell [16]. 
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By means of a linear analysis, Leon and Tumpson [19] proved that 
“Necessary and sufficient conditions for stable coexistence of two species 
engaged in exploitative competition for complementary resources” (at an 
asymptotically stable equilibrium) “are that each species must at equilibrium 
consume a greater fraction of the net rate of supply of its limiting resource 
than of the net rate of supply of its competitor’s limiting resource.” 

Hsu et al. [16], on the other hand, do a complete global analysis of the 
model. We summarize their results here. Although they assume the functions 
pi and qi , i = 1,2, all satisfy Michaelis-Menten kinetics, their proofs are also 
valid for strictly monotone functions. However, we give alternative proofs 
for some of their results. The methods we employ will be useful in a 
subsequent section where we relax the assumption (2.5) in order to allow 
resources that are inhibitory at high concentrations, as we did in [9]. Some of 
the ideas to be used in these proofs are similar to ones used in the proofs in 

191. 
We begin by stating some preliminary results. Just as in [9] (the proofs are 

similar as well), the system is as well behaved as one would expect from the 
biological problem. More precisely, solutions of (2.1) are positive and 
bounded. Furthermore, the polygonal set 

du= (S,R,x,,x,)ER4,:S+~+~=sO ( 
andR+z+-$=R’ (2.6) 

is a global attractor for (2.1), and on A solutions satisfy 

2 x!(t) 
r(t)+ c y,-=o, 

i-l ’ 

R’(t)+ c 
2 Xl(l)=0 

’ i=l YRi 

(2.7) 

At this point we introduce some useful notation: 

Pi( X,i) = D and qi( X,i) = D, i =1,2. (2.8) 

Thus X,. and XRi represent the breakeven concentrations for resource S and 
R respectively, when that resource is limiting. By the assumption (2.5), these 
concentrations are uniquely defined extended positive real numbers, pro- 
vided we assume that hsi = + cc if pi(S) < D for all S > 0 (similarly, 
hRi = + cc if qi(R) < D for all R > 0). 
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Following Hsu et al. [16], we define 

ci = YSi /YRi 7 i =1,2. 

7 

(2.9a) 

Since the units of l/y,, are (units of S consumed)/(unit of population i 

produced), Ci represents the invariant ratio in which R and S are consumed 
by population i. 

Let 

q= 
R” - XRi 

so - ASi ’ 
i =1,2, 

and 

T* = 
R” - A,, R" - A,, 

so - A,, 
and T*= 

so - A,, . 

(2.9b) 

(2.10) 

As Hsu et al. [16] explain, by comparing T, and Cj we can determine 
whether population i is S-limited or R-limited. Ti represents the ratio in 
which resources R and S are externally regenerated under steady-state 
consumption pressure from population i in the absence of its competitor. 
Therefore T > C, implies that population i is S-limited because S is 
regenerating at a steady-state rate slower than R with respect to the required 
consumption ratio of population i. Similarly T < C, implies that population 
i is R-limited. 

T* (T*) represents the ratio of the steady-state regeneration rate of R 
when xZ (x1) is alone to that of S when x1 (x2) is alone. 

To avoid critical points for which the associated matrix of the lineariza- 
tion (the Jacobian) has any real root equal to zero, if the parameters are 
finite, we assume that 

A,, and h,, are distinct from each other and from So, 

X,, and X,, are distinct from each other and from R”, 
(2.11) 

and 

T,, and T* are distinct from C, and C, . (2.12) 

To ensure that the critical points are all isolated we assume that 

C,#C,. (2.13) 

So that we can assume that the vector field is continuously differentiable at 
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and in some neighborhood of each critical point, we assume that 

-- 
if ( S, R , X1, II,) is a critical point, 

then pi(S) #q,(R), i=1,2. (2.14) 

This assumption implies that 

7; + ci, i =1,2. (2.15) 

Table 1 contains notation for the possible critical points of (2.1). In Table 
2 we summarize criteria that ensure that these critical points lie in the 
nonnegative cone, as well as criteria that guarantee their local asymptotic 
stability. The linear analysis is standard and can be found in Appendix A2.A 
of [38]. 

In Table 3 we provide a summary of all the possible biological outcomes 
along with the competition criteria that yield each outcome. To prove the 
results summarized in Table 3 we proceed as follows. First we note that since 

TABLE 1 

Notation for the Critical Point? of (2.1) 

Symbol Critical pointb 

50. R’ = (SO, P,O,O) 

%,. l =(~sl~~“-Cl(~o-~sl),Ysl(So-~sl),O) 

R”-h 
E 

l .in1 A,h,,.Y~l(R”-h,&) 
Cl 

4,,. l =(X,,.R’-C,(S’-X,,),O,y,,(S’-X,,)) 

E *.A,, 

YRlYS, - YSlYR2 

YRI(~~-~RZ)-YSI(S~-&) 

YRlYS2 - YSlYR2 

E AS29 x,1 =(x,Z,x,,,4,,2,) 

where ?I = y,, y,, 
Ys~(~~-~s~)-YR~(~~-~R~) 

YRlYS2 - YSlYR2 

i2 = YS2YR2 
YR~(~~-~R,)-Ys~(~~-~SZ)’ 

YRlYS2 - YSlYRZ 

aUnder the assumption (2.13), i.e. C, + C, 

bProvided it lies in Rt. 
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TABLE 2 

9 

Summary of the Local Stability Analysis of (2.1)= 

Critical point Criteria for existence 

Criteria for 

asymptotic stability 

Eso, R" Always exists 

A,, < So and T, ’ C, 

A,, < R”, A,, < So, ad T, < C, 

A,, < So and T, ’ C, 

A,, < R”, A,, -c So, and T2 -CC, 

&I’ h, and 'R, < x~, 
and 

i 

C,<T* <C, and A,,<S’ 

or 

C,>T*>C,and&,<S’ 

A,, i A,, and ‘RI ’ R2 

and 

C, < Tt -c C, and X,, < So 

or 

C, > T, b C, and h,, < So ! 

A,, > So or X,, > R” 

and 

X,. > So or AR2 > R” 

A,, < A,, or T* < C, 

hR, < ‘R2 

or 

T,>C, andX,,<S’ 

h,, > h,, or T* < C, 

xR, ’ ‘R2 

or 

T* > C, and A,, < So 

1 c, < c, 

1 G ’ c2 

‘Exploitative competition between two populations for two complementary resources; 

monotone functional responses. 

A is globally attracting and all solutions are bounded, the omega-limit set of 
any solution of (2.1) lies entirely in A. We shall show that the dynamics of 
(2.1) restricted to JI are trivial (i.e. all trajectories with initial conditions in 
A approach some equilibrium in the limit). Next we shall appeal to the 
local-analysis results and do a phase-plane analysis in (x1, xz) space to 
eliminate saddle connections, and hence shall show that all solutions of (2.1) 
asymptotically approach equilibria. Finally, we shall consider the location of 
the stable manifolds of certain critical points to show that no solution with 
initial conditions in the positive cone can converge to that critical point. 

That the dynamics of (2.1) restricted to JV are trivial follows from 
Hirsch’s results [14] on competitive systems adapted to monotone 
Lips&it&n functions rather than C1 functions, since (2.1) restricted to A is 
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TABLE 3 

Classification of Competitive Outcomes of (2.1)” 

Biological Outcome Competition criteria 

1. Both populations die out: 

(a) 2 population 1 dies out; 

(b) = population 2 dies out: 

Competitive-independent 

extinction. 

(a) h,, > So or Xst > R” 

and 

(b) &a > So or h,, > R” 

2. Population 1 always wins. A,, < So and X,, < R” 

Population 2 dies out. and 

3. Population 2 always wins, 

Population 1 dies out. 

4. Populations 1 and 2 

coexist at a positive 

A,, < A,, and A,, < A,, 

:;t<h,,,h,,>h,, andT’>C,,Cz 
or 

A,, ’ As,, ilo < Aa, and T* <C,,C, 

or 

hs, > so 
or 

\h,, > R” 

A,. < So and h,, < R” 

and 

Asi < So and X,, < R”, i =1,2 

and 
equilibrium. X,, < A,,, A,, > A,,, and C, ’ T* ’ C, 

or 

A,, ’ A,,, A,, < A,,, andC,<T*<C, 

5. One population wins and As, < So and X,, < R”, i = 1,2 
the other dies out. and 
Initial concentrations X,, < A,,, A,, > Aa,, and C, < T* < C, 
determine the outcome. or 
Coexistence only for A,, ’ A,,, A,, < A.?,, andC,>T*>Ca 

solutions with initial 

conditions on the 

separatrix (a set of 

measure zero). 

aExploitative competition between two populations for two complementary resources; 

monotone functional responses. 
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equivalent to the system 

x2(f) x1(4 _--,R”_--- 

Ys2 YRl 

i =1,2, 

xiO ’ O9 i =1,2, z+z<R’, (2.16) 

coupled with 

Xl(l) X2(f) s(t) =s”---g-y--, Xl(f) 
s 

R(t)=R’- yR1 --g, (2.17) 

and (2.16) is a two-dimensional competitive system. Hirsch’s results for 
two-dimensional competitive systems depend on Kamke’s comparison theo- 
rem, which requires only monotone behavior with respect to the appropriate 
variables. Viewing the system this way, it is not surprising that the biological 
outcomes of the two-resource model can be compared with the outcomes of 
the classical model of Verhulst [35] for two-species competition with con- 
stant carrying capacity. These outcomes with corresponding com- 
petitive criteria are compared in Table 4.2 of Waltman, Hubbell, and Hsu 

t371. 
We use a more elementary approach, one similar to the approach used in 

[9], to show that the dynamics are trivial. This approach also gives more 
information about the behavior of solutions on the polygonal set A, and 
will be employed when we consider nonmonotone uptake functions in a later 
section. 

We shall require the following notation: 

Bi= {(S,R):S>Xsi and R>XRi}, i =1,2. (2.18) 

Q- ; I?,. (2.19) 
i-l 

K= ; Bi. (2.20) 
i=l 

Therefore, 

f,(S,R) >D if (S,R) EB,, 

h(S,R) <D if (S,R) EclB;, 

L(S,R) =D if (S, R) E aBi. 

Here Q can be thought of as an analogue of the Q defined in [9], and 
parts (i) and (ii) of the following lemma can be viewed as an analogue of 
Lemma 4.4 of [9]. The lemma is illustrated in Figure 1. 
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R 

f 

k 1’ I J c__---- 
f f 

I I 

f 

(a) S 

f 

I 

(b) S 

FIG. 1. Dynamics on X are trivial: (a) (A,, < As2 and h,, < A,,) or (A,, > A,, and 
A,, ’ his); (b) (A,, < A,, and A,, > X,,) or (h,, > X,, and X,, < A,,)- JQ; --- aK. 

LEMMA 2.1 

Let (S(r),R(t),x,(t),x,(t)) b e a solufion of (2.1) with initial condi- 

tions restricted to A. (Note that this still implies that xi0 > 0, i = 1,2.) 

(i) If there exists T > 0 with (S(T), R( T)) E 6’Q \ JK, then S’(T) > 0 
and R’(T) > 0. 

(ii) Zf there exists T>O wiih (S(T),R(T))E~Q~~K, then (S(T), 

~(~h(~h(~)) IS an equilibrium for (2.1) and so S’(T) = 0 = R’(T). 

(iii) Zf there exists T > 0 wirh (S(T), R(T)) E aK \ aQ, lhen S’(T) < 0 
and R’(T) < 0. 

(iv) Zfthereexisls~>O with(S(~),R(~))ERt\clQ, thenS’(~)>O 

and R’(T) > 0. 

(v) Zf there exisis T>O wiih (S(T),R(T))EK, then S’(T)<O and 

R’(T) < 0. 
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Proof. (i):If(S(r),R(r))E~Q\aK,thensincexj(t)=x,(t)[-D+ 
f,(S(t), R(t))], i =1,2, either x;(r) = 0 and X;(T) < 0 or x;(r) < 0 and 
xi (7) = 0. The result follows by (2.7). 

(ii): If (S(T),R(T))E~Q~~K, then x;(T)=x;(T)=~. By (2.7) and 
(2.13) it follows that S'(T) = R'(T) = 0 and we are at an equilibrium. 

(iii), (iv), and (v) are proved similarly. n 

The next lemma is the analogue of Lemma 4.5 of [9] and is also illustrated 
in Figure 1. It follows immediately from Lemma 2.1. 

LEMMA 2.2 

Let ( S( t) , R( t) , x1( t) , x2 ( t)) be a solution of (2.1) with initial condi- 
tions in .A. For all sufficiently large t precisely one of the following hol&: 

(4 (S(t),R(t))eW: \clQ, 
(ii) (S(t), W) E K, 
(iii) (S(t),R(t))~QlclK, or 

(iv) (S(t), R(t)) E aQ n aK. 

THEOREM 2.3 

The dynamics of (2.1) with initial conditions restricted to A are trivial. 

Proof. Let y(t>=(S(t),R(t),x,(t),x,(t)) beasolutionof(2.1)with 
initial conditions in A. Then for all sufficiently large t precisely one of the 
options of Lemma 2.2 holds. Recall that on _M 

x1(t) s(t)+- -= +x*(t) So 

YSl Ys2 ’ 
(2.21) 

x1(t) Nt)+J?R1+~= . x*(t) p 

If option (i) holds, i.e. ( S(t) , R( t)) E II!: \ cl Q for all large t, then 
x;(t) < 0 and x;(t) < 0 for all large t, since xl(t) = x,(l)[- D + 

f,(S(t), R(t))], x,(t) > 0 for all t a 0, and S(t) < min(A,,,X,,) and R(t) -C 
min(h,,, A,,) for all large t. Since solutions are bounded, the monotonicity 
of xi(t) and x2(t) for large t implies convergence, and hence by (2.21) S(t) 
and R(t) also converge. 

If option (ii) or (iii) holds the proof is similar. 
If option (iv) holds the result follows by Lemma 2.l(ii). w 

Next we consider the system (2.16)-(2.17). This system is equivalent to 
the system (2.1) with initial conditions restricted to A!. We do a phase-plane 
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1 
(b) xi 

FIG. 2. Competition-independent extinction. (a) X,, > So and h,, > R”, i = 1,2; each 

population dies out even in the absence of its competitor. (b) X,, > So or X,, > R”, i = 1 

or 2; X, < So and hRj < R”, j = 1 or 2, j # i; population x, dies out even in the absence 

of its competitor. 

analysis of (2.16) in (xi, x2) space based on the information summarized in 
Table 2 in order to show that no saddle connections are possible and hence 
the dynamics of (2.1) are trivial. 

If we allow Xsi > So or A,; > R” for i =l or 2, then there is no 
equilibrium for which the concentration of xi is positive and hence there is 
competition-independent extinction of xi. See Figure 2(a),(b). Figure 2(a) 
corresponds to the first biological outcome of Table 3. Figure 2(b) corre- 
sponds to the second and third biological outcomes. 

If we assume that A,; < S8 and XRi < RO, i =1,2, then (since we are 
assuming C, # C,) there are only four basic pictures [see Figure 3(a)-(d)]. 
On & Figure 3(a) corresponds to the second biological outcome of Table 3, 
Figure 3(b) to the third, Figure 3(c) to the fourth, and Figure 3(d) to the 
fifth. Clearly there are no saddle connections. We have therefore proved 
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x2 

I\_ 

(a) Xl 

x2 

i‘-:: 

@I x1 

‘t; x2k 
04 x1 W) x1 

FIG. 3. Phase portraits in (xi, x2) space for (2.1), assuming Xsi < So and A,, < R”, 

i = 1,2. (a) Population 1 always wins. (b) Population 2 always wins. (c) Populations 1 and 2 

coexist at a globally asymptotically stable interior equilibrium. (d) Initial concentrations 

determine the outcome: one population wins, the other dies out, except for solutions with 

initial conditions on the separatrix. 

THEOREM 2.4 

The dynamics of (2.1) are trivial. 

Finally we note that by considering the location of the stable manifolds of 
the critical points on aR$ it follows that for the particular parameter ranges 
described in Table 3, solutions of (2.1) (i.e. solutions with initial conditions 
in the positive cone) have the same type of asymptotic behavior as solutions 
with initial conditions in the relative interior of A. Hence we have shown 
that Table 3 applies globally. 

3. THE MODEL-GENERAL KINETICS 

In the previous section we restricted our attention to monotone kinetics. 
However, certain substrates may be growth-limiting at low concentrations as 
well as growth-inhibiting at high concentrations; for example, there is 
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inhibition of Nitrobacter by nitrite and of Nitrosomonas by ammonia [17]. 
Such inhibition results in nonmonotone uptake functions. For specific 
models of inhibitory kinetics the reader is referred to [l, 5, 391. Inhibition by 
high concentrations is often seen when microorganisms are used for biologi- 
cal waste decomposition or for water purification. 

We continue to study exploitative competition for two purely complemen- 
tary resources. We now allow the resources to be inhibitory at high con- 
centrations. We make the same basic assumptions we made for the model 
(2.1) of the previous section and use the same notation. In particular, as in 
the previous section, we assume that growth rates adjust instantaneously to 
changes in resource concentration, that the functions p,(S) [ qi (R)] repre- 
sent the per capita growth rate of the i th population when resource S 
[resource R] is limiting, and that resource consumption rates and growth 
rates are proportional. Recall that for complementary resources S and R, a 
population is considered S-limited if its per capita consumption rate is 
independent of the concentration of R and is considered R-limited if its per 
capita consumption rate is independent of the concentration of S. In the 
context of the model (3.1) below, a population can be limited by a resource 
either because that resource is in short supply or because it is overabundant. 

The model we study in this section is 

2Xi(t) 
R'(f) = [R”-R(r)]=gl yR; h(S(hR(t)), (3.1) 

x;(t) =x,(1)[--++(S(t),Rtt))], i =1,2, 

s(0) = So > 0, R(0) = R, > 0, 

q(o) = x;o > 0, i=1,2, 

where 

fi(S(t),R(t)) =min(pi(S(t)),qi(R(t))), i =1,2, 

and pi and qi satisfy the assumptions (2.2)-(2.4). It is the same as the model 
(2.1) with the important exception that we no longer require pi and qi to be 



PURE COMPETITION FOR COMPLEMENTARY RESOURCES 17 

monotone. Instead we make the following assumption: 

There exist uniquely defined extended positive real 
numbers XSi, hRi, psi, and pRi, i =1,2, with Xsi Q psi 
and XRi d psi such that 

R;(S) < D if SE [Xsi,Pszl, 
R,(S) > D if SE (Xsi,Psi), 
qi(R) < D if R e [XRi,CLRll, 
q,(R) > D if R E (A,,,cLR~). 

(3.2) 

We make the following generic assumptions: 

If XSi [XRi,~si,pRi] is finite, then 

At’Si) +O [dthRi) +O* PI(PSi) #OY d;!(PRi) Eel 

If the parameters are finite, we assume 

x,1, A,,? PSl? and psz are distinct from each other and from So, 

X/U, x R2, PRl, and pR2 are distinct from each other and from R”. 
-- 

(3.3) 

&fi={(SyR):X,i<S</~s; adh,i<R</LRi}, i =1,2. (3.6) 

If(S, R,Z,,F,)isacriticalpoint,thenp,(S) $S q,(x),i=1,2. 

We shall also require the following notation: 

(3.4a) 

(3.4b) 

(3.5) 

9= ;, Lq. (3.7) 
i-l 

2f= ; q. (3.8) 

i=l 

Therefore, 

f,(S,R) ‘D if (S,R) ES?;, 

f,(S,R) <D if (S,R) Ecl.GJi, 

L(S,R) =D if (S,R) ~a.%?~. 

Again, as one expects from the biology, solutions of (3.1) are positive and 
bounded. (The proof is similar to the proof of Theorem 3.1 in [9].) Also, the 
polygonal set 
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TABLE 4 

Notation for (3.1) 

c, = YS,/YR,, i =1,2 

T = R” - AR, R” 
’ SO- A,, ’ 

i =1,2, T* = -AR, 
SO - A,, 

T* = 
R'-hRl 

SO - A,, 

R”-p,- 
v:=L 

SO-lb,’ 
i=1,2, 

Vs=Ro-P~2 

SO-PSI ' 

V=R"-P~~ 

* so-/92 

u,= 
R'-XR, 

i =1,2, u*= R"-hR2 
u* = 

R'-XRI 

so-k ' so-F%1 ’ so-/b2 

R'-PR 
y=d 

R'-PRz 

SO-A,,' 

i=1,2, w*=- R” - PRl 

SO-h,, ' 
w*=p 

SO-As2 

is a global attractor for (3.1), and, as in Section 2, on M solutions satisfy 

s’(t) + c 2 x&J=, 
icl Ys 

R’(t)+ c 2 4w=o 
. i=l YRi 

(3 .lO) 

However, even if at high concentrations, only one resource is inhibitory to 

only one of the competitors, Lemma 2.2 need not hold, and the dynamics 
need not be trivial. For example, the existence of a nontrivial, orbitally 
asymptotically stable periodic orbit for the model (3.1) is possible. In this 
case the concentrations of the resources and of the competitors oscillate 
indefinitely. 

Before we consider examples that illustrate this oscillatory behavior, we 

give a table of useful notation (Table 4), a table of notation for the critical 
points (Table 5), and a table summarizing criteria for the existence and 
stability of these critical points (Table 6). We then give sufficient conditions 
that guarantee that the dynamics of (3.1) are trivial. 

To ensure that the vector field at, and in a neighborhood of, each critical 

point is C’, we make the assumption (3.5). In terms of the notation in Table 
4, that assumption implies that 

T, , W, , V, and LJ are all distinct from C, , i =1,2. (3.11) 

We also assume that 

Cl + G (3.12) 
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TABLE 5 

Notation for the Critical Points of (3.1) 

19 

Notation 

E PSI. l 

Critical point= 

= P~~,R’-C,(S’-~LS~),YS~(S’-ILS~),~) ( 

E 
l .PRl 

E PS2. l = ~S~,R’-C~(S’-BSZ)~O,~S~(S’-PSZ)) ( 

E 
l .@R2 

E Y,? = (Y, ?, xi+, $1 

where x: = ysl_yRl 
Y~~(S~-Y)-YRZ(R~-V) 

YRlYS, - YSlYR2 1 ’ 

x2* = k2YR2 
.F’RI(R~-~)-Ys~(S~-Y) 

YRlh2 - YSlYR2 ’ 

(Y,v) = (XSl>XR2)r (hS2~hRl), (klr ‘R,), (PiI, ARl), 

(hSl,BR2),(XS2,BRl),(~Sl~~RZ),(~S2,~Rl) 

‘Provided it lies in Rt. The points E,o+ Ro, Ex,,, , , E., hR,, EA,,, . and E. ,x,, as defined 

Table 1 are also critical points of (3.1) provided they lie in W:. 

and 

T,, T* , W,, W* , V,, V* , U,, and U * are distinct from 

C, and C,. 
(3.13) 

This ensures that the critical points are isolated and, together with the 
assumptions (3.3) and (3.4), ensures that for each critical point, none of the 
eigenvalues of the associated matrix of the linearization equals zero. 

Next we develop simple graphical criteria that, when satisfied, ensure that 
the dynamics are trivial. We adapt certain concepts and terminology fre- 
quently used in linear programming (see e.g. Luenberger [21]). We also apply 
the techniques used in Section 2. In particular, Lemma 2.1 (see below) also 
holds for the model (3.1) subject to considerations of feasibility, provided we 
replace Q by 9 and K by X. 

We shall refer to A? as the feasible region. 

DEFINITION 3.1 

We define the feasible region projected on (S, R) space, which we denote 
by 9, as the set 

(3.14) 
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TABLE 6 

Existence and Stability Criteria for Critical Points of (3.1) 

Criteria for 

Critical Point Criteria for existence asymptotic stability 

Always exists (A,, > so or A,, ’ R” 
or ps, < So or psi < R”) 

and 

A,. < so, TV > C, and w, < C, 

A,, < R”, A,, < So, and TI < C, 

and 

if psi i So then Ci < r/i 

X,, < So, T2 > C,, and w, < C2 

AR, < R”, A,, < So and T, < C, 

and 

if ps2 < So then C2 < C4 

llsl < so, vi < C,, and 4 ’ C, 

,.tRl < R”, A,, < So, and w, < C, 

and 

if psi < So then Ci < vi 

PS2<so,v2<C2,adU2'C2 

,LR~ i R”, A,, < So and W, < C, 

and 
if ps2 < So then Cs < V2 

(h,, z So or h,, > R” 

or 11s2 < So or pR2 < R”) 

&i < A,2 or h>k2 

or T* <Cl or W* > Cl 

h,l < h,?2 Or x,l ’ CR2 

or (C, < T, and hs2 < So) 

or X,, > So 

or (C, > V* and ps2 < So) 

A,, < Asi or As2 > PSI 
or T* < C, or W, > C2 

hR2chRl Or hR2'pRl 

or (C, < T * and Xsi < So) 

or h,, > So 

or (C, > V * and psi < So) 

Always unstable 

Always unstable 

Always unstable 

Always unstable 

C,>T*>C,and&,<S’ 
i 

h,,<&,<Psl and hR2<hR,<~R2Cl'C2 

and 

h,,<&,<Ps2 ~d~R,<~R2<~Rlcl-=c2 

and 

( 

C, < T* < C, and A,, < So 

or 

C, < T* < C, and X,, < So 

or 

C, > T+ > C, and X,, < So 
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TABLE 6 Continued 

Criteria for 

Critical Point Criteria for existence, asymptotic stability 

21 

A,, < PSI < Ps2 ami AR, < AR2 < PRl 

and 

i 

C,<U*<C2and~s,<So 

or 

c,>u*>cs andps,<So 1 

A,, < Bs2 <PSI and hR2 < ‘RI < P.QZ 

and 

( 

c, i u* < C, and ps2 < So 
or 

c, > I/* > C, and paa < So i 

A,, < A,, i A,, and AR, < pR2 < pR1 

and 

i 

c,<w*-=C2andX,,<So 

or 

c, > w* > C, and X,, < So 1 

A,, < As2 < BSl andX R2<~Rli~R2 

and 

( 

c, < w, < C, and X,, < So 
or 

a 

a 

a 

a 

c, > w, > C, and X,, < So 1 

X,, < psi < ps2 and X,, < pR2 < pR,Always unstableb 

and 

i 

c, < v* < C, and psi < So 
or 

c, > v* > C, and pai < So 1 

&<PsziPsl adXR2 < pRl < pR2A1ways unstableb 

and 

C, < V* -c C, and ps2 < So 

or 

c, > v* > C, and ps2 < So 

aStability depends on the sign of the real part of the roots of the characteristic 

equation 

afi af2 p-[ x*--+x*- +x1*x2* ( afi ah afi ah 
1 ax, 2 ax2 1 ( --_-- =() 

ax, ax2 ax, ax, 1 
evaluated at the critical point. 

bBy phase-plane analysis in (S, R) space using Lemma 2.1. 
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9 is therefore the projection of JY on (S, R) space. Since we are 
assuming Ci#C,, for each pair (s^,k) with $20 and k>O there is at 
most one pair (n,, &) such that (i, k, Pi, &) E %. 

We point out here that if ( S( t) , R ( t) , x1 ( t) , x2 ( t)) is a solution of (3.1) 
with initial conditions in JZ, then (S(t), R( t)) E 9 for all t 2 0. Thus 
Lemma 2.1 only applies to points (S(r), R(r)) E 9, and therefore Figure 1 
(in Section 2) is actually only valid for points in 9. 

Again adopting the terminology of linear programming, we give 

DEFINITION 3.2 

A basic feasible solution of A is a point (S, R, x1, xq) E A! with at least 
two components equal to zero. 

DEFINITION 3.3 

A basic feasible solution of .F is a point (S, R) such that (S, R, x1, x2) is 
a basic feasible solution of JZ. 

We generate the C; = 6 possible basic feasible solutions of M and 
therefore of 9 in Appendix 2, and we summarize the results in Table 7. 

It is well known from the theory of linear programming that JZ is 
precisely the closed convex hull of the set of all basic feasible solutions of 
&, and so 9 is the closed convex hull of all basic feasible solutions of 9. 
See Figure 4 for examples of 9. 

It is interesting to note that the feasible region depends only on the yield 
factors ysi and yRi and the concentrations So and R” of S and R in the 
feed bottle. Since So and R” are easily controlled by the experimenter, the 
shape of the feasible region can be controlled, and as we shall see, this 

TABLE I 

Basic Feasible Solutions 

Basic feasible solutions 

of Jr of 9 

(SO, RO,O,O) (So, R”) 

(0, R” - C,S’, yslS”,O) (0, R” - C,S”) 

(So - R’/C,,O, y,wO) (So - R’/C,,O) 

(0, R” - C2S”,0, ~~2s’) (0, R” - C2S”) 

(So - R’/C,,O, yR2R”,0) (So - R’/C,,O) 

(0,&r, A)” (070) 

Criteria fol 

existence 

Always exists 

R”/So > C, 

R”/So < Cl 

R”/S” a C2 

R”/So < C2 

C, d R”/So d C2 

Or 

C2 Q R”/So < C, 

ar = YSlYR1(YS2S0 - YR~R~)/(YS~YR~ - YSIYR~~ A = YS~YR~(YRIR’ - 

.klso)/(YS2YR1 - yS, yR2). 
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R 

R 
Fi v (SO, RO) 

RO-C,SO 
F 

Fj 
RO - c,so 

23 

(b) ’ S 

R 

(cl O So-R”/Cj s 

FIG. 4. Examples of the feasible region projected on (S, R) Space 9: (a) C, < R”/.So 
CC,, i=l or 2, j=l or 2, i#i; (b) R’/S’>C,>C,, i=l or 2, i=l or 2, if j; 
(c) c, = P/SO < c,. 

implies that the experimenter has a lot of control over which critical points 
lie in the feasible region. 

Using this idea of the feasible region, we are able to determine graphically 
whether a critical point exists or not. In order to do this we need the 
following notation. For each i = 1,2, that portion of 89 which corresponds 
to the portion of CALM along which xi = 0 we call F;. We also define 

LEMMA 3.4 

(i) The set of all critical points in Cp + 4 is the set of all points in A for which 
the projection onto (S, R) space belongs to the set (&4$ n F2) U( ai?& f~ F,)U 

{(SO, R’)} u 9. 
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(ii) The set of all interior critical points in Rt is the set of all points in .A 

for which the projection onto (S, R) space belongs to the set 9. 
(iii) The set of all boundary critical points in W”, is the set of all points in A 

for which the projection onto (S, R) space belongs to the set 

Proof. The proof is obvious (and the result holds even if C, = C,, in 
which case more than one point of A may correspond to a point in g and 
so the critical points will not be isolated). n 

The application of Lemma 3.4 is illustrated in Figure 5. Although in 
Table 6 we see that there are seventeen possible critical points, from this 
lemma it follows that for any particular example there can be no more than 

R 1 
I 
I 
I 
I 
I 

! 

& 
(a) S (W S 

Fi (SO, RO) 

S (d) S 

R”) 
R”) 

FIG. 5. Examples of the graphical method of determining critical points. 0 denotes a 
critical point. Dashed lines: aq; dot-dash lines: aq. 
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nine critical points [see Figure 5(d)] and even as few as one critical point (see 
Figure 5(c)]. 

We are now ready to give a sufficient condition that ensures that the 
dynamics of (3.1) are trivial. 

THEOREM 3.5 

If 

then the dynamics of (3.1) are trivial. 

[See Figure 5(a), (b), and (c) for examples of when this theorem applies. 
Note also that at most two of the for points in the braces in (3.16) can 

intersect 9 in any particular example.] 

Proof. By the generic assumptions (3.3)-(3.5) and (3.11)-(3.13) it fol- 
lows that the critical points are isolated, the vector field is C’ at and in a 
neighborhood of each critical point, and the matrix of the linearization 
associated with each critical point never has an eigenvalue equal to zero. 

First we show that the dynamics of (3.1) restricted to A are trivial. Note 
that (3.1) restricted to A is equivalent to the two-dimensional system 
(2.16)-(2.17). The hypothesis (3.16) implies that the only candidates for 
interior critical points are of the form 

(3.17) 

where i, j, k, I = 1 or 2 and i # j, k # 1. In this case Lemma 2.1 can be used 
to show that Lemma 2.2 holds provided we replace Q and K by 9 and 2 
respectively. That the dynamics of (3.1) restricted to A are trivial now 
follows by a proof similar to the proof of Theorem 2.3. 

To show that the dynamics of (3.1) are trivial, since JZ is globally 
attracting and all solutions are bounded, it suffices to show that the phase 
portrait of the system (2.16) [in (xi, x2) space] contains no saddle connec- 
tions. If 9 = 0, i.e. there are no interior critical points of (2.16) then clearly 
there can be no saddle connections, since a saddle connection must contain a 
critical point in its interior. If Y # 0, then the only interior critical points of 
(3.1) are of the form in (3.17) and hence the system (2.16) can have at most 
two interior critical points. By index theory, if both interior critical points of 
(2.16) are saddle points (or if there is a unique interior critical point, and it is 
a saddle point), then there are no saddle connections. To prove that the 
dynamics on A are trivial we showed that the competitor concentrations 
converge monotonely. The same method can be used to show that if we 
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reverse time, competitor concentrations either converge monotonely or leave 
R:. Therefore, under the assumption (3.16), no interior critical point of 
(2.16) is a spiral. Since solutions in (x1, x2) space are eventually monotone 
both in positive and in negative time, by the Poincare-Bendixson theorem 
and the generic nature of the critical points, there cannot be a unique 
unstable or a stable node inside a saddle connection, and by index theory 
there cannot be precisely two nodes inside a saddle connection. Thus there 
can be no interior critical point inside a saddle connection of (2.16), and so 
there can be no saddle connections. Therefore the dynamics of (3.1) are 
trivial. W 

As an immediate consequence of the previous two theorems we obtain the 
following result concerning the extinction of both competitors. The corollary 
is illustrated in Figure 6. 

FIG. 6. Examples of competition-independent extinction. Dashed lines: aq; dot-dash 

lines: &472. 
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COROLLARY 3.6 

If 

(i) g =0, 
(ii) &4?~~F,=0, and 

(iii) a.GqnFF,=O, 

then the critical point Esa, R o is globally asymptotically stable for (3.1). 
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Proof. By Lemma 3.4, E~o,~ 0 is the only critical point of (3.1). The 
result is immediate from Theorem 3.5 and the fact that all solutions are 

bounded. n 

Other immediate consequences of Lemma 3.4 and Theorem 3.5 are the 
following results concerning competition-independent extinction. 

COROLLARY 3.7 

Let (S(t),R(t),x,(t)(x,(t))) be a solution of (3.1). Zf giin.F=O, 

then lim,,, xi(t) = 0, i =1,2. 

COROLLARY 3.8 

Let (S(t),R(t),x,(t),x,(t)) b e a solution of (3.1). Assume i, j =1,2, 
i # j and xl0 = 0. (Therefore, xj( t) = 0 for all t.) If gi II 5 = 0, then 

lim I--r00 xi(t)=o. 

This leads to a surprising result that seems to indicate that at times, the 
competitors are actually cooperating. There are situations in which in the 
absence of a rival each population would die out, but when a rival is present 
there is a possibility of coexistence. This is demonstrated in the following 
example and illustrated in Figure 7. 

Example 3.9. Let 

A,, = 2, &,=3, lls1=5r cLs2=*, 

AR, = 4, A,, = 2, pR1=OO, PR2 = 9, 

so = 20, R” = 30, D=l, 

YSl = 2, Ys2=L YRl =l, YR2 =l. 

If x, is absent (i.e. xi0 = 0), then lim, _ m xj = 0, where i, j = 1,2 and i # j. 
This follows from Corollary 3.8 (see Figure S), since there are no critical 
points on the boundary except E~o,~o. However, the interior critical point 
E ~S2.~Rl is asymptotically stable (see Table 6), since 

l=C,<T,=g<C,=2, 

and so there are initial conditions for which there is coexistence. This 
coexistence must in some sense be due to cooperation. 
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RO) 

FIG. 

points. 

Resource S 

Cooperative coexistence. Dashed lines: &2$; dot-dash lines: aq; 0: critical 

I I I t I I I 

0 4 8 12 16 20 24 28 32 36 40 

Resource S 

FIG. 8. 9, 4, and 4 for Example 3.10. Solid lines: 8%; dashed lines: aa1; 

dot-dash lines: 199~; + : direction of vector field; 0: critical points. 

By Theorem 3.5 it follows that a necessary condition for (3.1) to have 
nontrivial dynamics is that there exists a critical point of the form given in 
(3.17), i.e. a critical point at which one competitor is S-limited and the other 
is R-limited, and one competitor is limited because a resource is in short 
supply whereas the other is limited because a resource is overabundant and 
thus inhibitory. 

We consider two examples that illustrate that (3.1) can have nontrivial 
dynamics. The functions in both examples are chosen purely for their 
mathematical convenience rather than for any biological significance. 
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In the first example, only one resource is inhibitory to only one popula- 
tion at high concentrations; namely, resource S is inhibitory to population 2 
at high concentrations. All the other kinetics are monotone with microbial 
responses modeled by Michaelis-Menten kinetics. 

Example 3.10. Let 

5.7 
PI(S) =8+s’ 

P2(S) =I+ 
(S-4)(6-S) (24A, -1)S2 +4S 

24( A,S2 + _i7iS + 1) = 24A,S2 + 14s + 24 ’ 

5.1R 
q2( R) = 8.2+ R ’ 

D=l, so = 40, R” = 30, 

YS, =I, Ys2 =17 YR1=2, YR2 =I. 

Here, 

A,, = 2, A,, = 4, A,, = 4, x,2 = 2, 

PSl=“, ccs2 = 6, pR1=*0, pR2=O". 

Thus we have the critical points shown in Table 8. 
In this example, as A, decreases through & the critical point Epsz,h,, 

changes its stability. For A, > A, EpSZIAR1 is asymptotically stable, whereas 

TABLE 8 

Results of Example 3.10 

Critical points 

E,o. @I = (40,30,0,0) 

Ex,,. l 
= (2,11,38,0) 

‘% s2.~nr = (4,4,20,16) 

E )&_hR, = (6,4,16,18) 

Local stability 

Unstable 

Asymptotically stable 

Unstable 

Asymptotically stable if A, > A, 

unstable if A, < A, 

Hopf bifurcation at A, = A. 
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for A, < & it is unstable. This change in stability occurs via a Hopf 
bifurcation. The resulting periodic orbits appear for values of A, < & and 
are orbitally asymptotically stable. 

The calculations to show that there is a Hopf bifurcation at A, = & and 

that the resulting periodic orbits exist for A, < & and are asymptotically 
stable are usually very tedious if done by hand. Instead they were done by 
means of the symbol manipulation language REDUCEZ according to the 
method described in Marsden and McCracken [22, Section 41. The computa- 
tions for Example 3.10 are summarized in Appendix l.A. 

The feasible set in (S, R) space, G?i, and .G& are shown in Figure 8. The 
next series of graphs are also in (S, R) space. In Figure 9 we show sample 
solutions for A, = 0.08 < &. The solutions in Figure 9 that are depicted by 
dotted lines were found by integrating backward in time, whereas all other 
solutions were integrated forward in time. However, all arrows indicate the 
evolution of solutions for positive time. In Figure 10 we focus on the critical 

point Q2. x,, and the asymptotically stable periodic orbit surrounding 
E ,,2rX~,, and we show two solutions, one winding in towards the periodic 
orbit from the outside and one winding out towards the periodic orbit from 
the inside. Figure 11 is in (xi, xz) space. Here again we focus on the critical 

Resource S 

FIG. 9. Sample trajectories of Example 3.10; A, = 0.08 < &. Dashed lines: a.@,; 
dot-dash lines: a.?&. 
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4.20- 
LI 

3.60! , , , , I , , ’ 
5.40 5.60 5.80 6.00 6.20 6.40 

Resource S 

FIG. 10. The stable periodic orbit of Example 3.10 in (S, R) space. 

point Eps2.,,, A,, and show the periodic orbit with trajectories winding toward 
it. 

It is interesting to note that in this example there is a range of choices of 
A, for which the critical point E,,,, . is asymptotically stable, and for these 
same parameters there is a stable periodic orbit. Therefore there are at least 
two distinct biological outcomes possible. 

That there is a Hopf bifurcation and that the bifurcating periodic orbit is 
asymptotically stable is actually independent of the choice of the functions 

p,(S) and q2(R) provided that for pi(S), A,, < 6 < pSl and for q2(R), 

N 18.30- 
X 

& 
C 
', 

E 17.85- 

s 

17.401 ( , , , 1 
15.350 15.800 16.250 16.700 

Competitor XI 

FIG. 11. The stable periodic orbit of Example 3.10 (x1, x2) space. 
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X,, < 4 < pRz, thus ensuring that EPSz.S2rXR1 is an equilibrium point and that 
the vector field in a neighborhood of E,,sz,h,, is analytic. This is because the 
Hopf bifurcation is a local phenomenon. However, it is interesting to note 
that in this example there are points at which the vector field is not 
differentiable. The choice of the functions p,(S) and q2( R) can affect how 
close a point at which the vector field is not differentiable is to an 
equilibrium point. This can influence the size of the parameter range A, < & 
for which a periodic orbit exists. In our example, as A, decreases, the 
amplitude of the bifurcating periodic orbit increases. As A, continues to 
decrease, the amplitude of the periodic orbit continues to increase, and it 
may approach a point where the vector field is not differentiable. If A, is 
decreased even more, the orbit could disappear. That this can actually 
happen is demonstrated in Figure 12. We keep everything the same as before 
(including A, = O.OS), except that we replace p,(S) by 

P,(S) = 1.004s 
0.008+ S 

For this choice of pi(S), E,,Sz,hA, is still a critical point. With the previous 

choice for pi(S) there is a periodic orbit (see Figures 9-11). However, for 
this choice of the function p,(S) there is a discontinuity in the vector field 
at (approximately) the point (6.0, 4.10914) and this is apparently close 

0 6 6 10 12 14 16 18 20 22 

Resource S 

FIG. 12. Discontinuity in the vector field-periodic orbit disappears. 
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enough to RPS..XRI so that there is no longer a periodic orbit for A, = 0.08. 
[Figure 12 is in (S, R) space. The initial conditions for the substrate are 
(6.05,4.05). Instead of cycling out to a periodic orbit, the solution escapes 
and converges to (2,11).] 

In the second example both resources are inhibitory to both populations 
at high concentrations. In this example we can adjust the parameters to 
obtain simultaneous Hopf bifurcations about two distinct interior equilibria, 
one supercritical and the other subcritical. Therefore there can be both stable 
and unstable periodic orbits. In this way we again show that there can be 
two independent regimes of coexistence for the same value of the bifurcation 
parameter. Also, as in Example 3.9 this example depicts a case where both 
competitors wash out when their rival is absent but can otherwise coexist 
given certain initial conditions. 

Example 3. I I. Let 

P,(S) =1+ 
(S-2)(8-S) 

16(0.0625S2 +O.l25S + 1) ’ 

P2(S) =1+ 
(S-4)(6-S) 

24( A,S* + 10s + 1) ’ 

41(R) =I+ 
(R-4)(6-R) 

24(0.75R2 + 7.625R + 1) ’ 

q*(R) =1+ 
(R-2)(8-R) 

16(0.125R2 + O.lR + 1) ’ 

D=l, So = 32, R” = 24, 

Ys1 =I, Ys2 =19 YRl = 2~ YR2 =l. 

Here, 

A,, = 2, A,, = 4, &Z, = 4, &, = 2, 

clsi=8, PSZ = 6, pRl= 6, pR2 = 87 

and we have the critical points shown in Table 9. 
As in the previous example, the computations to show the existence of a 

Hopf bifurcation and the stability of bifurcating orbits were done using the 
REDUCEL program in Appendix 3.1 of [38]. Computations for this example 
are outlined in Appendix l.B and l.C. 

There is a simultaneous Hopf bifurcation of the critical points E,,rXRI 

ad E&z, PRI as A, passes through $. For EpSZIAR,, as in the previous 
example, the critical point loses stability as A, decreases through the critical 
value, and the bifurcating periodic orbit appears for values of A, < z and is 
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TABLE 9 

Results of Example 3.11 

Critical points 

Qo.~o = (32,24,0,0) 

%%?I = (4,4,16,12) 

E PSI,,,R, = 669 16,W 

Ei s2.,,l(, = (4,6,20,8) 

Local stability 

Asymptotically stable 

Unstable 

Unstable 

Asymptotically stable if A, < 5, 

unstable if A, > g, 

Hopf bifurcation at A, = {. 

E ,,S2,~R, = (6,4,12,14) Asymptotically stable if A, > 5, 

unstable if A, < s, 

Hopf bifurcation at A, = z. 

Resource S 

FIG. 13. 9, gl, and 4 for Example 3.11. Solid lines: as; dashed lines: M,; 

dot-dash lines; a.%‘,; arrow: direction of vector field; circles: critical points. 
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asymptotically stable. On the other hand Ex,,,W,, goes from unstable to 
asymptotically stable as A, decreases below {, and the associated periodic 
orbit is unstable and exists for A, < Q. From this we see that there is a range 
of parameters (A, < 3) for which there is an asymptotically stable interior 
critical point surrounded by an unstable periodic orbit and for the same 
value of A, an orbitally asymptotically stable periodic orbit. Thus there are 
at least two different possibilities for coexistence, and the outcome depends 
on the initial condition. This was not possible in the monotone-kinetics case. 

OYS I 

/ I 

0 2 a 4 6 a 10 
(a) 

Resource S 

(b) 

Resource S 

FIG. 14. Sample trajectories of Example 3.11; A, =l.l< f. Dashed lines: aGfl; 

dot-dash lines: a%?*. 
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3.30 3.70 4.10 4.50 4.90 

Resource S 

FIG. 15. The unstable periodic orbit of Example 3.11 in (S, R) space. 

Recall that in that case the dynamics are always trivial and there is at most 
one interior critical point, which is either globally asymptotically stable or 
unstable. 

The dynamics for this example are illustrated in Figures 13-18. The first 
series of graphs are in (S, R)-space. Figure 13 shows 9, .G$ and g2. Figure 
14 [(a) and (b)] depicts sample trajectories for A, = 1.1~ 3. (As for Figure 9, 
the dotted line was found by integrating backward in time. However, all 
arrows indicate evolution of solutions for positive time.) In Figure 15 (Figure 
17) we focus on the critical point Eh,,+,, (Eps2,x,,) and the associated 

9.00- 

cu 

x 
& 

6.60- 

C 
z 
Q 
E 

6.20- 

6 

7.00- 

7.40,, I 1, < , , I I, 1 I 

16.20 16.00 19.40 20.00 20.60 

Competitor X, 

FIG. 16. The unstable periodic orbit of Example 3.11 in (xl, x2) space 
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4 1 1 1 8 0 1 1 1 1 ’ 8 r 
I 

4.40- 

CC 4.20- 

I 
3.60~ , , , , 

5.30 5.50 
, ! , , 

5.70 5.90 
I 

6.10 6.30 6.50 

Resource S 

FIG. 17. The stable periodic orbit of Example 3.11 in (S, R) space. 

14.30- 

x” 

5 
C 
‘; 
a 13.70- 
E 

s 

13.1OT , 11.20 , , , , 11 .a0 , 12.40 r 
13.00 

Competitor X, 

FIG. 18. The stable periodic orbit of example 3.11 in (xl, x2) space. 

unstable (stable) periodic orbit in (S, R) space. Finally, in Figures 16 and 18 
we again focus on these same critical points, but this time in (x,, x2) space. 

4. DISCUSSION 

In this paper we showed that if one models exploitative competition for 
two complementary resources in a chemostat with microbial responses 
modeled by general monotone kinetics, one obtains the same qualitative 
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results as Hsu, Cheng, and Hubbell [16] did for microbial responses modeled 
by Holhng Type II dynamics. However, we use a different technique which 
can be applied with some success in the nonmonotone case. 

In the monotone case, we show that the dynamics are always trivial and 
that there are only five possible distinct biological outcomes. We summarize 
these results in Table 3 and in each case give criteria that guarantee each 
outcome. 

In the nonmonotone case, which can arise if a resource is inhibitory at 
high concentrations, we give graphical criteria for the existence of critical 
points. We give sufficient conditions, also graphical, which ensure that the 
dynamics of the model are trivial. However, we show that the model permits 
nontrivial periodic solutions which may be either unstable or orbitally 
asymptotically stable (see Examples 3.10 and 3.11). This is only possible, 
however, if there is an interior critical point at which each resource is 
limiting to a different competitor population and one resource is limiting 
because it is in short supply whereas the other is limiting because it is 
overabundant. We have therefore shown that sustained oscillations are 

possible in a chemostat with nonreproducing nutrients and constant nutrient 
input rate. It has already been shown in [7, 8, 18, 23, 291 for a reproducing 
resource (prey) and by Hale and Somolinos [12] for a periodically fluctuating 
nutrient, that oscillatory behavior in a chemostat is possible. 

It should be pointed out that the model with nonmonotone kinetics 
cannot be reduced to a competitive model in the sense of Hirsch [14], as it 
can be with monotone kinetics. In the nonmonotone case, under generic 
assumptions, up to nine distinct critical points are possible, whereas in the 
monotone case at most four distinct critical points are possible. This leads to 
a wealth of different possible biological outcomes even when the dynamics 
are trivial. There is actually the possibility that in the absence of its rival, a 
population dies out, whereas in the presence of its rival there is (depending 
on the initial conditions) a possibility of coexistence. Thus in some sense the 
competitors are cooperating (see Example 3.9). There is also another situa- 
tion in which the competitors clearly do not compete. This is in the case that 

the resources are both overabundant and hence inhibitory to both competi- 
tors. The fact that the other population is consuming resource can only be of 
help. 

An advantage of explicitly modeling the resources is that the model is 
predictive and the predictions are based on parameters that can be measured 
independently of competition, with each competitor limited by only one 
resource at a time. A disadvantage is that to simplify the mathematics 
certain assumptions were made that need not hold. For example, it was 
assumed that the individual death rates of each competitor population are 
insignificant compare to the washout rate. It might be appropriate in many 
cases to consider differential death rates. Also, most nutrients are probably 
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imperfectly substitutable rather than perfectly complementary. It might also 
be the case that the per capita growth rate is not proportional to the 
consumption rate, as in the models of Tilman [31-341 or that the mechanism 

for inhibition of complementary resources does not lead to a model in which 

~(S(t)),R(r)=min(p;(S(f)),qi(R(f))). 

In the context of simple enzyme-catalyzed reactions, a reaction can be 
considered to have two time-consuming parts. The first is the binding of the 
substrate with the enzyme, and the second is the actual reaction formation of 
the product. There is evidence, according to Dixon and Webb [lo] and 
Palmer [25], that inhibition by high substrate concentrations (in the context 
of enzyme-catalyzed reactions) in some cases may be due to the specificity of 

certain enzymes. Many enzymes have two or more groups, and in an 
effective enzyme-substrate molecule complex a single substrate molecule 
must be combined with all these groups. However, it might be the case that a 
substrate molecule combines with only one of these groups if the other 
groups are combined with other substrate molecules, thus forming an 
ineffective complex. In this case a reaction cannot take place until some of 
the substrate molecules dissociate away. When the substrate concentration is 
high, the chance of forming ineffective complexes increases. Thus the inhibi- 
tion can come into the enzyme-substrate complex formation only. 

The analogous concepts for microbial growth might be the search time 
and processing time for nutrient, and the analogous mechanism for inhibi- 
tion might be that at high resource concentrations the resource forms clumps 
too large for the microorganisms to handle. The microorganisms might have 
to wait until a clump dissociates in order to absorb it. If these mechanisms 
which affect only substrate-enzyme complex formation, or analogously search 
time, are responsible for the inhibition, then there is reason to assume that 
h( S( t) , R ( t)) = min( p, ( S( r)) , q, ( R ( t ))). However, if the reaction time, 
or analogously the processing time, is slowed by high concentration of 
substrate, a different model might have to be considered. There is also 
experimental evidence to indicate that some microorganisms employ such 
strategies as luxury consumption and that there is probably a time delay 
between absorption of nutrient and conversion to biomass. Neither of these 
possibilities is taken into account in our model. 

Finally we would like to point out that just as in the single-resource case 
studied in [9], in the two-resource case the qualitative outcomes depend on 
the relative values of the breakeven concentrations and on the concentration 
of nutrient in the feed bottle. In the single-resource case, the qualitative 
outcome is independent of the growth yield factors. However, in the two- 
resource case the growth yield factors play a significant role in determining 
the qualitative outcome, since their ratios C, and C, play an important part 
in determining both the position of the feasible set and the local stability of 
critical points. 
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APPENDIX 1. BIFURCATION AND STABILITY ANALYSIS 

Since M is a global attractor for (3.1), it suffices to consider (3.1) 
restricted to JJ. That is, we solve for xi and x2 in terms of S and R and 
consider the resulting system of two differential equations in two unknowns 
R and S: 

* x,wi(s(OAN S’(r) -(SO-S(t))D- c 
YSVS, 

9 

i-l 

R’(t) _(Ro_R(t))~_ 5 xi(t)h(~~‘)‘R(t)), 
(A.1) 

i=l I 

where 

1 R"-R(t)_S'-S(t) 
x1(t) =x 

i Ys2 1 YR2 ’ 

SO-S(t) _R"-R(t) 

YRl 

and 

*=_L_- 1 

YS2 YRl YSlYR2 ’ 

-- 
It is then convenient to translate the critical point (S, R) of (A.l) to the 

origin by setting 

& = S(t) - s 

[,=R(t)-R. (A.2) 

A. BIFURCATION ANALYSIS FOR THE CRITICAL POINT EpS2,XR, = (6,4,16,18) 

OF EXAMPLE 3.10 

After the change of variables (A.2) the system [near (O,O)] is 

where 

z 
1 

= (26- (2) -(34- 61) 
-t, 

9 

z2 = 

(34; “) _(26- E2) 

(-:> ’ 
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and 

&+4 
rI(&,sJ =lO4+9& +4), 

L(&,L) =l+ 
(&+2)(-El) 

24A,( & + 6)’ + 14( & + 6) + 24 . 

The variational matrix at the critical point (0,O) is 

/ 

1 2 ~ -- 
24A,+3 5 

M= 1 1 I . ~ -- 
24A,+3 5 

The characteristic equation is 

(120A, +15)y2 + y(24A, -2)+l=O, 

and so 

-12A, +l 
Rey= 120A, +15 ’ 

Therefore, at the critical value A, = A: p & there is a pair of pure imaginary 
roots: * i/5. Since 

dRey 
&I 

=-s<o, 
Y-A: 25 

E PSZ.ARl is asymptotically stable for A, > A: and is unstable for A, < Af. 
To transform the variational matrix to canonical form 

(for A, = A:) the matrix of the transformation is 

v= 1 1 
[ 1 1 0 

and I/-‘= 0 1 
[ 1 1 -1 

Then C = T’MV. 
Applying the change of variables 

(;:)=v-1(::), 
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n; = &( 88q: + 29Oq:~j~ + 6607: + 2421,122 

+ 164Oqt~ + 407; + SOOnz, + 144017,) + H.O.T.‘s 

n; = &( - 87; + 3& - 152~: + ll& - 62~7)~ - 72Oq,) + H.O.T.‘s 

where H.O.T.‘s is an abbreviation for “higher-order terms.” Then the vague 
attractor condition given by the formula (4.2) on p. 126 of [22] becomes 

This implies that the bifurcating periodic orbits appear for values of A, -C A: 
and are orbitally asymptotically stable. 

B. BIFURCATION ANALYSIS OF THE CRITICAL POINT EpS2,XR, = (6,4,12,14) OF 

EXAMPLE 3.11 

After applying the change of coordinates (A.2) to (A.l) near the origin, 
the system becomes 

where 

z 
1 

= (20- 6,) -(26- 6,) 

(4) ’ 

and 

2, = 

(y &) -(2(-j- 6,) 

-f 

r;(Sl,S,> =l+ 
&(2- 62) 

18(5,+4)2+183([2+4)+24’ 

mJ*> =l+ 
(tl+N-tl) 

24[AI(&+6)2+10(~,+6)+1] ’ 

The variational matrix at the critical point (0,O) is 

M= 



PURE COMPETITION FOR COMPLEMENTARY RESOURCES 

The characteristic equation is 

43 

24A, - 21 7 
y2 + y2088A, +3538 + 187924, +31842 =” 

and so 

-24Ar + 27 
Re y = 4176Ar + 7076 . 

Therefore, at the critical value A, = A: = p there is a pair of pure imaginary 
roots: + i/87. Since 

dRey -12 

&I A,=Af 
=m<O, 

E esz.Am is asymptotically stable for A, > AT and is unstable for A, < A:. 
To transform the variational matrix to canonical form 

C- 

the matrix of the transformation is 

y= 1 1 
[ 1 1 0 

and V-r=: _;. 
[ 1 

Then C = V- ‘MV. 
Applying the change of variables. 

(;;) =v-l( ::), 
the transformed system becomes 

$= &(2148$ + 3348r/:q, + 98441: + 23601& 

+ 12164q,q, + 34811; + 556812, + 9744q,) + H.O.T.‘s 

V2 = &( 102Oq; +476& + 26167: + ‘268~; - 63291~2 - 974491) 

+ H.O.T.‘s 

Then V “’ (0) = - m R < 0. Therefore, the bifurcating periodic orbits ap- 
pear for values of A, < A: and are orbitally asymptotically stable. 
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C. BIFURCATION ANALYSIS FOR THE CRITICAL POINT E+,+,, = (4,6,20,8) 

FOR EXAMPLE 3.11 

After applying the change of variables (A.2) to (A.l) near the origin, the 
system becomes 

and 

z 

1 
= (18- S,> -(28- t,> 

-4, 

j? 
2 

= (28- -51) -(18- 42) 
-) , 

r;&r,) =I+ 
(52 +N- 62) 

18A,(&, +4)2+183(t2 +4)+24’ 

ml,&> =l+ 
51(2- 51) 

24(A,(&+4)2+10(&+4)+1) ’ 

The variational matrix at the critical point (0,O) is 

I 
2 4 - - 

48A, + 123 177 

M= 

2 2 . - 
48A, +123 -1 177 

The characteristic equation is 

-32A, + 36 4 
y2 + y 28324, + 7257 + 84964, + 21771 = ” 

and so 

16A, - 18 
Re Y = 2832 A, + 7257 . 

Therefore, at the critical value A, = A: = Q there is a pair of pure imaginary 
roots: * 2i/177. Since 

dRey 16 
dA, A,_Af==‘o’ 
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the critical point EpS21XR, is unstable for A, > A: and is asymptotically 
stable for A, < A:. 

To transform the variational matrix to canonical form 

c= 
0 i+i 

[ 1 -47 0 

the matrix of the transformation is 

Then C = V-‘MV. 
Applying the change of variables 

(;:)=v-l($ 

the transformed system becomes 

n; = &-( 23447; -2546,1&I, + 11532~: 

+ 1264q,$ - 9408q,n, - 5907; + 3540~; + 944071,) + H.O.T.‘s, 

n; = &( - 17OOn: + 1104n:q, - 7760~: 

+ 124~& + 2096~~ - 944011,) + H.0.T.‘s. 

men V “’ (0) = -t3LUZL 1392m~ > 0. Therefore the bifurcating periodic orbits appear 
for A, < A: and are unstable. 

APPENDIX 2. BASIC FEASIBLE SOLUTIONS OF J? 

We consider the following system of two linear equations in four un- 
knowns (S, R, x1 and x2): 

R+2+$=R”, 

S,R,Xi>,O, i =1,2. 

Since the rank of this system is 2, there are C; = 6 possible basic feasible 
solutions of JY and hence of 9’. We generate these solutions by the method 
of pivoting used in linear programming (see Luenberger [21, Chapter 31). 
(Recall that we are assuming C, # C,.) 
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We start with S and R in the basis: 

If R”/So 2 C,, then we replace S in the basis of tableau (I) by x1 [i.e. 
pivot on the S-x, element, l/y,,, of tableau (I)]: 

Corresponding basic 
feasible solution 
(0, RO - c,sO, y,,SO,O). 

t = YRlYS2 - YSlYR2 

YRlYR2h2 

If R”/So Q C,, then pivot on the R - x1 element of tableau (I). 

* = hlYR2 - YRlYS2 

hlYS2YR2 

If R”/So > C,, then pivot on the S - x2 element of tableau (I): 

*= 
Y.1 YR 2 - YS, YRl 

YSlYRlYR2 

If R”/So < C,, then pivot on the R - x2 element of tableau (I). 

* = YS2YRl - YSlYR2 

YSlYSZYRl 
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If C, Q R”/So Q C, or C1 2 R”/So 2 C,, then pivot on the R - x2 ele- 
ment of tableau (II) to obtain the basic feasible solution 

o,o, YSlYRl 
Y,,S' - YR,R' YRIR’ - ~~1s~ 
YszY,1- YSlYR2 

7 YS2YR2 
YS2YRl - YSlYR2 . 
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