
J. Math. Biol. (1995) 33:435-457 
• k P u r n l  o f  

Mathernatleal 
Mology 

© Springer-Verlag 1995 

An examination of the thresholds of enrichment: 
a resource-based growth model 

Mary M. Ballyk*, Gail S. K. Wolkowicz** 
Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, 
Canada L8S 4K1 

Received January 10, 1994; revised July 27, 1994 

Abstract. A model of single-species growth in the chemostat on two non- 
reproducing, growth-limiting, noninhibitory, perfectly substitutable resources 
is considered. The medium in the growth vessel is enriched by increasing the 
input concentration of one of the resources. Analytical methods are used to 
determine the effects of enrichment on the asymptotic behaviour of the model 
for different dilution rates. It is shown that there exists a threshold value for 
the dilution rate which depends on the maximal growth rate of the species on 
each of the resources. Provided the dilution rate is below the threshold, 
enrichment is beneficial in the sense that the carrying capacity of the environ- 
ment is increased, regardless of which resource is used to enrich the environ- 
ment. When the dilution rate is increased beyond the threshold, it becomes 
important to consider which resource is used for enrichment. For one 
of the resources it is shown that, while moderate enrichment can be 
beneficial, sufficient enrichment leads to the extinction of the microbial 
population. For  the other resource, enrichment leads from washout or 
initial condition dependent outcomes to survival, and is thus beneficial. 
There are important  implications of these results to the management of 
natural aquatic ecosystems. For  example, while enrichment may be 
beneficial to the microbial species during the summer months, it can lead 
to their decimation during spring run-off, when the natural dilution rate 
is higher. 
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1 Introduction 

In [17], Rosenzweig considers six mathematical models of predator-prey 
interaction. He shows that sufficient enrichment of the environment support- 
ing the prey species can cause destabilization of an otherwise stable coexist- 
ence equilibrium. Integrating his equations numerically and using a trunc- 
ation for the sake of biological reality, he obtains extinction of the predator 
population. Consequently, he issues the following warning. "Man must be 
very careful in attempting to enrich an ecosystem in order to increase its food 
yield. There is a real chance that such activity may result in decimation of the 
food species that are wanted in greater abundance." 

A number of authors have raised objections to Rosenzweig's results. 
Gilpin [8] and May [14] show that the destabilization of the coexistence 
equilibrium results in the birth of an asymptotically stable periodic orbit. 
Freedman [6] shows the destabilization of the equilibrium to be the result of 
a Hopf bifurcation. Rosenzweig [18, 19] points out that if the amplitude of the 
periodic orbit is sufficiently large, a random perturbation could result in the 
extinction of one or both populations when sections of it come close to the 
axes. 

McAllister, LeBrausseur and Parsons [13] suggest that Rosenzweig's 
results might have better been used to prompt questions concerning the 
critical values of enrichment and how they relate to the other parameters. 
They object to the extrapolation of Rosenzweig's mathematical results to 
natural ecosystems, providing experimental evidence that moderate enrich- 
ment can be beneficial. However, there is experimental evidence in support of 
Rosenzweig's results. (See, for example, [10, 12, 20].) 

In most of the work dealing with the paradox of enrichment, two-species 
models are considered. As a very incomplete sample, we mention 
[1, 4-8, 13, 14, 16, 17, 21, 27]. In this paper we deal with a single-species 
growth model, and show that enrichment of the system via an increase in the 
availability of a noninhibitory resource can lead to the extinction of the 
species. In so doing, we begin to answer some of the questions posed by 
McAllister et al. [13]. 

This paper is organized as follows. First, a resource-based model of 
single-species growth in the chemostat on two growth-limiting, nonreproduc- 
ing, noninhibitory, perfectly substitutable resources is described. Members of 
the microbial population are assumed to compete only by decreasing the 
common pool of resources, so that there is no mutual interference. All 
species-specific parameters of our model are considered fixed, while the 
quantities under the control of the experimenter are varied. For a given 
dilution rate, the environment is enriched by increasing the input concentra- 
tion of one of the resources. It is then shown that there exists a threshold value 
for the dilution rate which depends on the maximal growth rate of the species 
on each of the resources. Provided the dilution rate is below this thre- 
shold, enrichment is beneficial in the sense that the carrying capacity of the 
environment is increased, regardless of which resource is used to enrich the 
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environment. When the dilution rate is increased beyond the threshold, it 
becomes important to consider which resource is used for enrichment. For 
one of the resources it is shown that, while moderate enrichment can be 
beneficial, sufficient enrichment leads to the extinction of the microbial popu- 
lation. For  the other resource, enrichment leads from washout or initial 
condition dependent outcomes to survival, and is thus beneficial. We conclude 
the paper with a discussion in which we summarize and interpret our results, 
and indicate the implications for resource management. 

In a following paper [3] the thresholds established here are used to study 
the effects of enrichment on a resource-based predator-prey model. 

2 The model 

The model considered here is motivated by the example given by Wolkowicz, 
Ballyk and Daoussis in [26] and is an example of the one-species growth 
submodels treated by Ballyk and Wolkowicz in [2]. A more detailed descrip- 
tion can be found in [2]. 

We consider a model of single-species growth in the chemostat on two 
essential, nonreproducing resources. With two resources available it is impor- 
tant to consider how the resources, once consumed, are used by the consumer 
for growth. Rapport [15] and Le6n and Tumpson [11] classify resources in 
terms of consumer needs. This classification yields a spectrum of resource 
types. For example, perfectly substitutable resources are alternate sources of 
the same essential nutrient. In this case, the rates of consumption of the 
different resources can be substituted in a fixed ratio in order to maintain 
a given rate of growth. An example for a bacterium would be two carbon 
sources or two nitrogen sources. We will assume that the resources, denoted 
S and R, are perfectly substitutable for species x. 

The function ~ ( S ,  R) will represent the rate of consumption of resource 
S per unit biomass of population x as a function of the concentrations of 
resources S and R in the growth vessel. We assume that the conversion of nutrient 
to biomass of population x is proportional to the amount of nutrient consumed. 
Thus, ~(S,  R) represents the rate of conversion of nutrient S to biomass of 
population x with corresponding growth yield constant ~. The relationship 
between the function ~(S, R) and the constant t/is similarly defined. 

For the purposes of this paper we restrict our attention to the response 
functions in Waltman, Hubbell and Hsu [24]. They are a generalization of the 
familiar Michaelis-Menten prototype of functional response to a single re- 
source, and are given by 

S~(S, R) = 
msKRS 

KsKR + KRS + KsR ' 

mRKsR 
(1) 

~(S, R) = 
KsKR + KRS + KsR 
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Thus, the resources are noninhibitory, as the consumption of each resource is 
a strictly monotone increasing function of the concentration of that resource. 
However, increasing the amount of one resource consumed results in a reduc- 
tion in the amount  of the other resource consumed. In Holling terminology, 
the handling time devoted to the processing of a unit of one resource is time no 
longer available for the processing of the other resource. Here, ms is the 
maximal growth rate of species x on resource S in the absence of resource R, 
and K s  is the corresponding half-saturation constant. The constants mR and 
KR are similarly defined. 

The function ~(S, R) will represent the rate of conversion of nutrient to 
biomass of population x as a function of the concentrations of resources S and 
R in the culture vessel. Since resources S and R are perfectly substitutable, the 
rate of conversion of nutrient to biomass of population x is made up of 
a contribution from the consumption of nutrient S as well as a contribution 
from the consumption of resources R. Therefore, 

m s K R S  + m R K s R  
(¢(S, R) = (2) 

K s K R  + K R S  + K s R  

The model is now given by the following system of differential equations: 

S'(t) = (S ° - S( t ) )D - x ( t )~  Sf(S(t) ,  R( t ) )  , 

R'( t )  = (R ° - R ( t ) )D  - x ( t ) ~ ( S ( t ) ,  R(t))  , (3) 

x'( t)  = x( t ) (  - D + ff(S(t), R(t) )  , 

S(0) > 0, R(0) > 0, x(0) >_- 0 .  

We identify (S, R, x)-space with Ra+ = {(S, R, x): S, R, x > 0}. We have 
assumed for convenience that the volume of the culture vessel is one cubic 
unit. The culture vessel is also assumed to be well-stirred, so that spatial 
variation need not be considered and nutrients, microorganisms and byprod- 
ucts are removed in proportion to their concentrations. If only one feed bottle 
is used, S ° and R ° are the concentrations of resources S and R, respectively, in 
the feed vessel. The constant D is the input rate from the feed vessel to the 
culture vessel, as well as the washout rate from the culture vessel to the 
receptacle. Thus constant volume is maintained and the species specific death 
rate is assumed to be  insignificant in comparision to the dilution rate. 

We will assume that resource S is superior to resource R in the sense that 

ms > mR • (4) 

When the inequality in (4) is strict, the partial derivatives of N(S, R) satisfy the 
following conditions: 
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a 
~--~f#(S, R) > 0 for all (S, R ) s i n t R ~ ,  

0-~c~(S, R) > 0 R > 0, < < S c, (5) for all 0 S 

~-~fg(S, R) < 0 for all R > 0, S > S c, 

where S c = mRKs/ (ms  -- mR) is related to mR in the following manner: 

f9(S c, R) = mR for all R > 0.  (6) 

Note that if ms = mR, then we define S c = oo. 
Thus, when both resources are in relatively short supply, increasing the 

concentration of either resource is beneficial. Once resource S is plentiful 
enough that mR would be exceeded by consuming only resource S, the 
presence of resource R could actually become detrimental. However, 

lim f#(S, R) = mR for each fixed S > 0 ,  (7) 
R + o o  

so that the presence of resource R would never be detrimental enough to 
decrease f#(S, R) below mR. Since an abundance of S and no R would be 
optimal for the growth of population x, ms can never be exceeded, so that 

lim f#(S, R) = ms for each fixed R > 0.  
S ~ o o  

Define 

(KsO if m s > D ,  (KRD if m R > D  

otherwise, and P = otherwise , 

where 2 is obtained by solving the equation fq(S, 0) = D when ms > D and p is 
obtained by solving the equation ~(0, R ) =  D when mR > D. Thus ), and 
# represent the breakeven concentrations for resources S and R, respectively, 
when none of the other resource is available. 

Note that if the dilution rate is slow enough so that 2 < S ° (# < R°), then 
species x could survive on resource S (respectively, R) alone and the higher S ° 
(respectively, R°), the better. (See, for example, [231.) In this respect, neither 
resource is inherently detrimental. 

For system (3), the coordinate plane in which species x is absent is 
invariant. If S(f) = 0 (respectively, R(~-) = 0) for some f, then S'(~-) = S°D > 0 
(respectively, R'(f) = R°D > 0). From this, and the uniqueness of initial value 
problems, it follows that intR~ is positively invariant for solutions of (3). 
Further, by considering z(t) = ¢S(t) + tlR(t ) + x(t) it follows from (3) that the 
simplex 

= {(S, R, x)en3+: ¢S + t l R  + x = ~S ° + t l R  °} (8) 

is a global attractor. Thus, all solutions are positive and bounded. 
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Define a survival equilibrium of (3) to be a solution/~ = (S, R, ~) of the 
system 

xSP(S, R) = {(S ° - S)D , (9) 

x ~ ( S ,  R) = tl(R ° - R)D , (10) 

f#(S, R) = D,  (11) 

with S >  0,/~ => 0 and 2 > 0. 
First consider the case where the dilution rate, D, is relatively small. 

Lemma 2.1. Consider (3). Suppose that ms >= D, mR >= D, and N(S  °, R °) > D. 
(a) There exists a unique survival equilibrium if, and ft, is globally asymp- 

totically stable with respect to all solutions for which S(O) ~ O, R(O) > O, and 
x(O) > O. 

(b) 
f#(~J°, R °) > D for  any S° > S ° , (12) 

and 

f#(S °, R°)  > D for  any 4 ° > R °. (13) 

(c) The species component of  the survival equilibrium, 2, is a strictly increas- 
ing function o f  both S ° and R °. 

Proof  Since f#(S °, R °) > D implies that at least one of the inequalities, 
ms > D or mR > D, must be strict, without loss of generality, assume ms > D, 
mR > D, and ms > mR. 

(a) Lemma 2.1 is Theorem 3.9(a) of [-2] and a proof can be found there. 
(b) (12) follows immediately by (5). If S ° < S c, then (13) follows imme- 

diately from (5). If S ° > S c, since mR > D, the result follows from (5)-(7). 
(c) Note that 2 < S t, with equality if and only if mR = D. By (5), 

Therefore, 
D = f#(,i, 0) < fq(2, R) < f#(S, R) for any S > 2 .  

N(S, R) = D implies that S _< 2 < S c , (14) 

with S = 2 = S c if and only if mR = D. 

First we prove that 2 is a strictly increasing function of R °. The proof to 
show that 2 is a strictly increasing function of S ° is similar. For S ° = S, and 
R ° = R ,  satisfying f#(S,, R,)  > D, let /~, = (S,, R, ,  2,) denote the unique 

o o o survival equilibrium, and for S ° = S, and R ° = Rt = R ,  + e for an arbitrary 
> 0, let/~t = (St, R,, 2t) denote the unique survival equilibrium (guaranteed 

by parts (a) and (b)). It suffices to show that 2~ > 2, .  Suppose instead that 

Then /~t < / ~ ,  is impossible, since (11) implies that fg(S, ,Rt)= 
D = c~(S,, R,), and so by (14) and (5), if /~t < / ~ , ,  then St > S,. But 
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then, by (10), r/(R, - / ~ , ) D  = ~ , ~ ( S , ,  R, )  > Y~(S~, R.) = q(R2 - / ~ . ) D  > 
q(R, - / ~ , ) O ,  a contradiction. 

/~. > / ~ ,  is also impossible, since then (11), (14), and (5) imply that S~ < S,.  
But then, by (9), ~(S, - S,)D < ~(S, - g.)D = ~.Se(S~, R.) < 2,5e(S~, Re) < 
2 ,  5e(S,, R , )  = ~(S, - S,)D, with at least one strict inequality yielding a con- 
tradiction, unless mR = D and hence, by (9), and (14) ~. = ~ , , / ~  = / ~ , ,  and 
S~ = S, .  But then, by (10), r/(R2 - / ~ , ) D  > ~/(R, - / ~ , ) D  = X,N(S, ,  R, )  = 
2~N(S~, R~) = q(R2 - /~¢)D = r/(R2 - / ~ , ) D ,  again a contradiction. 

Therefore, ~, < 2 .  is impossible and the result follows. [] 

Thus, if ms > D, mR > D, and ~q(S °, R °) > D, enrichment by increasing 
either S ° or R ° cannot destroy the global stability of the unique survival 
equilibrium, E. Also, identifying the carrying capacity of the environment with 
the species component of the survival equilibrium, )~, it follows that the 
carrying capacity is always an increasing function of both S ° and R °. Thus, 
provided the dilution rate is sufficiently slow, enrichment using either resource 
is always beneficial. 

We now consider what happens when the dilution rate D is increased so 
that ms > D > mR. For mathematical convenience only, we define 

KRD 
= - -  < 0 ; (15) 

mR -- D 

6 is not intended to denote a resource concentration. Note that 

KsD KsmR 
). = - -  > - -  = S c . ( 1 6 )  

ms - D ms -- mR 

Setting ~(S, R) = D and solving for R we obtain 

~(S, ~p(S)) -- V for all S >_- 2 ,  
where 

q~(S) = ~(2 - S) for all S > 2 .  (17) 

Then the curve q~(S) gives the concentrations of S and R at which the biomass 
of population x in the culture vessel is neither increasing nor decreasing. 

We begin by examining the existence of equilibria of system (3) when 
ms > D > m~. The wahsout equilibrium, E ° = (S °, R °, 0), always exists. 
A standard linear analysis shows that E ° is unstable whenever ~(S °, R °) > D 
and is locally asymptotically stable whenever ~(S °, R °) < D. Any other criti- 
cal points of (3) must be survival equilibria. Note that if a survival equilibrium 
of the form/~ = (S,/~, 2) exists, then, by (9), (10), (11), (17), and the positivity 
constraint on 2, 

). < S <  S ° . (18) 

The following theorem examines the existence of survival equilibria as a func- 
tion of R °, the input concentration of resource R. Clearly S ° > 2 is a necessary 
condition for the existence of a survival equilibrium. 
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Theorem 2.2. Consider system (3). Assume ms > D > m R and f ix  S ° > 2. Define 

6 
R ]  = ¢p(S °)  = - ; (2  - S°) ,  

A 

f _Ro 6 ( x / A [ m . K s z  - m s K . ]  - ~ ) 2  ..- ~lmsKR S ° 
R~ = msKR-------Jz ~J ~ ~ (S ~ 2 2) < 1 , 

otherwise , 

where z = ~/tl. 
(a) I fO <= R ° < R~, then there exists a unique survival equilibrium E of(3). 
(b) I f  R ° > R~, then no survival equilibrium exists. 
(c) I f  R] < R ° < R~, then there exist precisely two survival equilibria for 

system (3). 

Proof  Note that  ~/msKR S ° 
- -  - -  < 1 implies that mRKsz -- msKR > 0, so 

~. mRKs (S ° - ).) 
that  R~ is well-defined. If R ° -- 0, then it follows immediately from (3) that the 
unique survival equilibrium is given by/~  = (2, 0, ~(S ° - 2)). 

If an equilibrium of the fo rm/ ]  -- (S, R, ~) exists for R ° > 0, then it follows 
from (11) t ha t /~  -- ~0(g), where q0(S) is as in (17). From (9) and (10), define 

xs(S)  - S)D SP(S, qffS)) and XR(S, n °) ~- tl(R° q~(S))D 

for R ° > 0. Note that  xs(S) = XR(S, R °) where, by (18), 2 < S < S °. By (1), (16), 
and (17), xs(S) -- xe(S, R °) if and only if 

f (S, R °) & [R ° - cp(S)] S - ¢ ~ tuRKs(s° - S)(2 - S) ~ g(S) .  
tl ). msK R 

By (15) and (17), f ( S ,  R °) and g(S) are parabolas opening downward for each 
R ° > 0. Fixing R ° and setting f (S ,  R °) = 0 we find that S = 0 or 

S = S(R °) ~ ~(~5 - R°) .  

Note that  S(0) = 2, ~(R °) > 0 and $(R °) < S ° if and only if R ° < R~, and 
g(S) > 0 for all S ~ [2, S°]. Therefore, to each R ° ~ (0, R~) there corresponds 
a unique S ~  ( ) ,S  °) such that  f (S,  R °) = g(S). This proves (a). 

Consider R ° = R~. Not ing that  S(R~) = S °, we find that 

~mRKs 
f ( S , R ° l ) = g ( S ) w h e n e v e r S = S  ° or S =  )o, 

~mRKs -- tlmsKR 
where 

msKR S ° 
~mRKs 2 < S ° if and only if-~ m-----~(--~__ 2 ) _  < 1 

2 < ~rnRKs -- qmsKR 

Since 0 - ~ f ( S ,  R °) = S, parts (b) and (c) now follow. See Fig. 1. []  
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Fig. la,  b. Schematic diagram for Theorem 2.2: depicts interaction of 9(s) and f (S ,  R °) as 
R ° varies. 

tl msK~ S ° tl msKg S ° 
a ~ mRKs (S o _ 2) :> 1 b ~ m~Ks ( S° _ 2) < 1 

In each of a and b, the parabolas with roots 0 and 2 correspond to f (S,  0), i.e. R ° = 0 while 
the parabolas with roots 0 and S ° correspond to f (S,  R]), i.e. R ° = R~ 

ReMark:  Since  ( S ° / ( S ° - 2 ) ) >  1 is decreas ing  in  S ° for S ° > 2 ,  if 
r l m s K R / ~ m R K  s _~ 1, t h e n  R~ = R~ for all S ° > 2. 

Howeve r ,  if t l m s K R / ~ m R K s  < 1, t hen  define S~ = ( ~ m R K s / ( ~ m R K s -  
rlmsKR))2.  Clea r ly  S] > 2. In  this case, if 2 < S ° < S~, t hen  R~ = R~, b u t  if 
S ° > S] ,  t h e n  R~ > R~. 
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We now examine the global properties of system (3) when ms > D > mR. 
The following lemmas will be used in the proof of Theorem 2.5. Lemma 2.3 
gives conditions under which species x survives, while Lemma 2.4 gives 
conditions under which species x cannot avoid extinction. 

Lemma 2.3. Consider system (3). Suppose f~(S °, R °) > D and x(O) > O. Then 

lim infx(t) > 0 .  
t '-* O0 

Lemma 2.4. Consider system (3). I f  no survival equilibrium if, exists, then E ° is 
globaly asymptotically stable with respect to all solutions for which S(O) > O, 
R(O) >= O, and x(O) >= O. 

Lemmas 2.3 and 2.4 are Theorems 3.8 and 3.9(b), respectively, of [2] and their 
proofs can be found there. We now show that enriching the environment by 
increasing R ° leads to the extinction of the population when ms > D > mR. 

Theorem 2.5. Consider system (3). Assume ms > D > ma and f ix  S ° > 2. Let  
R°x and R~ be defined as in Theorem 2.2. 

(a) I f  0 < R ° < R],  then there exists a unique survival equilibrium ff~ and 
ft, is globally asymptotically stable with respect to all solutions for which 
S(O) >= O, R(O) >__ O, and x(O) > O. 

(b) I f  R ° > R~, then E ° is globally asymptotically stable with respect to all 
solutions for which S(O) >= O, R(O) >= 0, and x(O) >= O. 

(c) I f  R] < R ° < R~, then the asymptotic behaviour of  system (3) is initial 
condition dependent. Any  solution either approaches E ° or approaches a survival 
equilibrium. 

Proof  (a) The existence and uniqueness of E is given by Theorem 2.2(a). We 
first note that, by (17), f9(S °, R~) = D. By (5) and (16), f¢(S °, R °) > D for all 
0 < R ° < R~, so that E ° is unstable. Also, by Lemma 2.3, liminft-~oo x(t) > 0. 

We restrict our attention to the globally attracting simplex s/¢ given 
in (8). Since ~ is positively invariant, let x(t) = ~(S ° - S(t)) + ~(R ° - R(t)) 
and consider the system 

1 
S'(t) = (S ° - S(t))D - -~ [~(S ° - S(t)) + tl(R ° - R(t))] 6P(S(t), R( t ) ) ,  

R'(t) = (R ° -- R(t))D -- 1_ [~( S° _ S(t)) + rl(n ° - R(t))] ~(S(t),  R(t)) , (19) 
rl 

S(0) -> 0, R(0) > 0, ~(S ° - S(0)) + t/(R ° - R(0)) >= 0 .  

Since 0 < R ° <  R~, there are precisely two equilibria for a system (19), 
E ° =  (S °, R °) and /~2= (S, R) where the superscript 2 indicates the two- 
dimensional system (19). Sample isoclines and a partial vector field for (19) are 
shown in Fig. 2(a). (A derivation of the form of the isoclines can be found in 
the Appendix.) Noting the direction that solutions must cross the isoclines we 
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conclude that no periodic orbits exist on J [ .  Since liminft_.~ x(t)> 0, it 
follows from the Poincar6-Bendixson Theorem that E z is globally asymp- 
totically stable for system (19) with respect to all solutions for which S(0) > 0 
R(0) > 0, and {(S ° - S(0)) + t/(R ° - R(0)) > 0. It follows from Theorem 1.5 of 
[22] that E = (S,/~, 2), where 2 = ~(S ° - S) + r/(R ° - / ~ ) ,  is in the omega 
limit set of any solution of (3) with S(0) > 0, R(0) > 0 r/, and x(0) > 0. Since 
E is locally asymptotically stable,/~ is the only point in the omega limit set and 
so it must be globally asymptotically stable for (3) with respect to all solutions 
for which S(0) > 0, R(0) > 0, and x(0) > 0. 

(b) The result follows from Theorem 2.2(b) and Lernma 2.4. 
(c) We again restrict our attention to J / a n d  consider system (19). Since 

R~ < R ° < R~, there are precisely three equilibria for system (19), two of 
which correspond to interior equilibria of system (3), by Theorem 2.2(c). The 
equilibria will be denoted E ° =  (S °, R °) and /~2 = (St, Ri), i =  1, 2. The 
isoclines, equilibria, and a partial vector field for (19) are shown in Fig. 2(b). 

R a 

S 

So 

Fig. 2. a Partial vector field for Theorem 2.5(a). b Partial vector field for Theorem 2.5(c). 
Vectors parallel to the S axis indicate the sign of S'(0 along the indicated line. Vectors 
parallel to the R axis indicate the sign of R'(t) along the indicated line 
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S 

SO 

Fig. 2 (continued) 

(The reader is again referred to the Appendix for a derivation of the form of 
the isoclines.) Noting the direction that solutions must cross the isoclines we 
conclude that there can be no periodic orbits. All solutions initiating off the 
stable manifold of /~g must eventually enter region, I, II or III. By the 
Poincar6-Bendixson Theorem, those entering regions II and III approach/~f 
while those entering region I approach E °. Thus t~12 and E ° are locally 
asymptotically stable while E,  2 is a saddle. It follows from Theorem 1.5 
of [22] that ($1, Rl ,  x l )  and (S °, R °, 0) are locally asymptotically stable 
while ($2, R2, x2) is unstable with two-dimensional stable manifold. (Here 
xi = ~(S ° - Si) + r/(R ° - Ri), i = l, 2.) Therefore, whether the species survives 
or washes out depends on the initial conditions when R~ < R ° < R~. [] 

We are now prepared to offer the following bifurcation analysis of system 
(3), for ms > D > mR and fixed S ° > 2, based on the parameter R °. In all of the 
bifurcation diagrams (see Figs. 3-5), the solid curves indicate asymptotic 
stability of the associated equilibria. There are two cases to consider. 
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Case 1: 
tl m s K R  S ° 

~. t u R K s  (S ° - 2) - 

When R ° =  0 the survival equilibrium E =  ( ) , O , ¢ ( S  ° - 2 ) )  in the 
R = 0 plane is globally asymptotically stable. The critical point E °, corres- 
ponding to total washout, exists and is unstable. As R ° is increased, so that 
0 < R ° <  R], E enters the positive cone, maintaining its stability. When 
R ° = R], /~ and E ° coalesce (see Fig. l(a)) and the washout equilibrium is 
globally asymptotically stable. As R ° is increased above R], /~ leaves the 
nonnegative cone and loses its stability to E °, so that, for all R ° > R~, E ° is 
globally asymptotically stable. Thus there is a transcritical bifurcation at 
R ° = R]. See Fig. 3(a). 

tl m s K R  S ° 
C a s e  2 :  - -  < 1 . 

m R K s  (S ° - -  £) 

For  0 < R ° < R~, E ° and the survival equilibrium E1 behave as above. 
The second survival equilibrium,/~2, cannot exist in the nonnegative cone. 
(See Fig. 1 (b).) When R ° = R], E ° and/~2 coalesce. As R ° is increased, so that 
R~ < R ° < R~, /~2, a saddle, enters the positive cone while E ° and /~1 are 
locally asymptotically stable. Thus we have initial condition dependent out- 
comes with the stable manifold of/~z acting as the separatrix. When R ° = R~, 
/~1 and /~2 coalesce, resulting in a saddle-node. If R ° is increased so that 
R ° > R~,/~x and/~2 no longer exist and E ° is globally asymptotically stable. 
Thus there is a saddle-node bifurcation at R ° = R~. See Fig. 3(b). Note the 
hysteresis effect in Fig. 3(b). If the input concentration of resources R exceeds 
R~, the biomass in the culture vessel decreases. If the quantity of species is very 
low, the input concentration must be decreased below R] before extinction 
can be avoided. 

The question that remains is how the species component of the 
survival equilibria are affected by an increase in the input concentration of 
resource R. Figure 4 is the bifurcation diagram for system (3) exhibiting the 
change in 2 as a function of R °. In Fig. 4(a) we used the parameter values given 
in [26]: K s =  1 = K R ,  m s  = 2.25,  mR = 0.5, D = l ,  S ° = l , ~ = 7 0 , a n d r / =  1. 
Then 

rl m s K R  S ° 

m R K s  (S  ° - 3~) 
- -  ~ 0.32 < 1 . 

Thus there are two critical values of R°: R] = 0.5 and R~,~0.7066. 
For  0 N R ° < R ~ ,  the carrying capacity of the environment is a decreasing 
function of R °. For  R~ < R ° < R~, the species component of the locally 
asymptotically stable survival equilibrium is also a decreasing function of R °. 
This would indicate that even moderate enrichment is detrimental to the 
species. However, this is not always the case. 
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Fig. 3a, b. Bifurcation diagrams R ° vs S for system (3) where m s  > D > mR and S ° > 2. 

rl m s K R  S ° 17 m s K R  S ° 
a - - > I  b - - - - < 1 .  

t u R K  s (S  ° - -  2)  - ¢ t u R K  s (S  ° - 2) 

Note  that  values of  g satisfying g < 2 correspond to /~ < 0, while values of S satisfying 
S > S ° cor respond  to ff < 0 
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Fig. 4a, b. Bifurcation diagrams R ° vs 2 for system (3) where ms > D > m s and S ° > 2. 
a ms=2 .25 ,  K s = l . O 0 ,  ~ = 7 0 ,  mR=0.5, KR=I.00, ~ = l ,  D = l ,  S ° = 1 .  
b ms = 0.145 h- i Ks = 1.00 p.M, ~ = 25.5 gdrywt/mol, mR = 0.085 h- 1 KR = 1.00 #M, 
~? - 6.40 g dry wt/mol, D = 0.10 h- 1, So = 20.00 gM 

In Fig. 4(b) we used the fol lowing parameter values. The growth 
parameters  are ms = 0 .145h-1 ,  K s  = 1.00 gM,  ~ = 25.6 g d r y w t / m o l ,  
mR = 0.085h -1 ,  K R  = 1.00 gM, and t / =  0.640 g drywt /mol .  (These values 
correspond to a facultatively chemol i thotrophic  Thiobac i lus  sp. which can 
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grow heterotrophically on acetate (S), autotrophically on thiosulfate (R),  and 
mixotrophically on both. See [9].) Fixing D = 0.10h- 1, so that ms  > D > mR,  

we have 2 ~ 2.22 ~tM. If S ° = 20.00 ktM, then 

tl m s K •  S ° 
- -  - -  ,~ 0.48 < 1. 
t u R K s  (S ° - 2) 

Again, there are two critical values of R°: R~ ~ 53.33 }aM and R~ ~ 78.62 ktM. 
For  0 < R ° < R~, the carrying capacity of the environment is an increasing 
function of R °. Also, there exists/~° ~(R~, R~) such that, for R] < R ° </~°, the 
species component of the locally asymptotically stable survival equilibrium is 
an increasing function of R °. It is only when R ° is increased beyond R ° that 
the species component  of this equilibrium begins to decrease until, for 
R ° > R~, we have washout. Thus, in some cases, moderate enrichment can be 
beneficial. 

We note that, when ms  > D > mR,  enriching the environment by increas- 
ing S °, the input concentration of resource S, is beneficial. This can be seen by 
viewing R~ as a function of S ° . Fix S ° >  2 and R ° >  R](S°). Then, by 
Theorem 2.5(b, c), we either have washout or initial condition dependent 

S~ 5~ 
tpn s K R 

Fig. 5. Bifurcation diagram S ° vs ~ for system (3) where ms > D > m R and ~ < 1 

( m R _ _ D ) K S R o ,  
S~R, = 1 ( m s - -  D)Ka  J 

2 [ m . g s z  - msKR] -- 

S k =  
m R l s z  
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outcomes. Since R](S ° ) is an increaisng function of S ° and 
limso_, o~ R](S  °) = Go, one eventually has R](S °) > R °. By Theorem 2.5(a) it 
follows that there exists a unique survival equilibrium E and/~ is globally 
asymptotically stable with respect to all solutions satisfying S(0)> 0, 
R(0) > 0, and x (0 )>  0. Once the system enters this regime, the carrying 
capacity of the environment is an increasing function of S °. (See Fig. 5). 

Finally, we note that if the dilution rate satisfies D > ms > mR, then E ° is 
globally asymptotically stable for system (3), regardless of the input concen- 
trations of the resources. This follows from equations (1), (2) and (11), and 
Lemma 2.4. 

3 Discussion 

In this paper we consider a resource-based model of single-species growth in 
the chemostat on two growth-limiting, nonreproducing, noninhibitory, per- 
fectly substitutable resources, S and R. We do not allow for mutual inter- 
ference, so that the members of the microbial population compete only by 
depleting the common pool of resources. Except for S ° and R °, the input 
concentrations of the resources, and D, the input and washout rate, all 
parameters of the model are fixed. Therefore, all species-specific parameters 
are fixed while the quantities under the control of the experimenter are varied. 

It is important to note that neither resource is inherently detrimental. 
Resources S and R are alternate sources of the same essential nutrient. 
Therefore, at least one of these resources must be supplied in sufficient 
amounts in order for the species to survive. Even if only one of the resources (S 
or R) is supplied, species x would survive provided the dilution rate is 
sufficiently slow. In fact, in this one-response case, the carrying capacity of the 
environment (given by the species component of the survival equilibrium) is 
an increasing function of the input concentration of that resource. 

If there are two perfectly substitutable resources, our results seem to 
indicate that using a model in which only one resource is assumed to be 
limiting can result in misleading predictions, if the model is to be robust 
enough to remain valid for reasonable ranges of the parameters. In the two 
resource case one must consider the relative values of  ms and mR, the maximal 
growth rates of species x on resources S and R respectively, and D. We assume 
that resource S is superior to resource R in the sense that ms > mR, so that 
there is a critical value, S c, for resource S. If the concentration of resource S is 
below this critical value, an increase in the concentration of either resource is 
beneficial. However, once the concentration of resource S is above this critical 
value, the presence of resource R actually can become detrimental. 

First, assume that the dilution rate does not exceed the maximal growth 
rate on either resource, so that mR > D, and equate enrichment of the environ- 
ment with an increase in the input concentration of one resource. In this case, 
~(S °, R °) > D is necessary and sufficient to ensure that a unique survival 
equilibrium exists and is globally asymptotically stable with respect to the 
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interior of (S, R, x)-space. Moreover, the carrying capcity of the environment 
is an increasing function of both input concentrations. Thus, provided the 
input rate is sufficiently slow, enriching the environment by increasing S ° or 
R ° is beneficial. 

If D is increased, so that m s  > D > mR,  the scenario changes dramatically. 
First, equate enrichment of the environment with an increase in the input 
concentration of resource R. In this case, we identify two critical values of R °, 
R~ __< R~, where 

rl m s K R  S ° 
R~ < R ~  if and only if - - < 1 .  

m R g s  (S ° - 2) 

When 0 < R ° < R~, there exists a unique survival equilibrium that is globally 
asymptotically stable. For  R~ < R ° < R~ the species survives or washes out 
depending on the initial conditions. Increasing R ° beyond R~ leads to extinc- 
tion. Thus we provide more support that Rosenzweig's [17] warning is valid. 
We give two examples which indicate that moderate enrichment via an 
increase in the input concentration of resource R can be, but is not always, 
beneficial in the sense that the carrying capacity of the environment is 
increased. However, enriching the environment by increasing the input con- 
centration of resource S is beneficial. If R ° > R~, increasing S ° leads from 
washout or initial condition dependent outcomes with washout possible to 
survival. Once the system enters this regime, the carrying capacity of the 
environment is an increasing function of S ° . 

Why should increasing the input concentration of resource R lead to 
extinction when m s  > D > mR? Consider all concentrations S, R of resources 
S and R satisfying N(S, R) = D. The concentration S o l  resource S is above the 
critical value S c. For  any fixed S > S c, the growth rate, ~q(S, R) is a decreasing 
function of resource R. One would expect that the faster resource R is 
depleted, the better. However, when R ° > R~, 

(R ° - / ~ ) D  ~ ( S , R )  

( s  ° - > " 

Thus, the ratio of the net supply rate of resource R to that of resource 
S exceeds the ratio of the consumption rate of resource R to that of resource S. 
As species x cannot deplete resource R quickly enough, no survival equilib- 
rium exists. 

More intuitively, since resource S is more nourishing than resource R in 
the sense that the maximal growth rate on resource S, by assumption, is higher 
than on resource R, resource R can be thought of as junk food. Even though 
resource R is adequately sustaining when the dilution rate is sufficiently small, 
it is not nourishing enough when the dilution rate is high, since the species 
cannot grow fast enough on it in this case. Its presence also reduces the 
consumption of the more nourishing resource S, since the species wastes time 
consuming R. Thus, moderate concentrations of resource R can be beneficial 
(see Fig. 4(b)), but sufficiently high concentrations can cause washout. 
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Perhaps motivated by the methods of Rosenzweig [17], Brauer [4] states 
that "enrichment of the prey's environment . . .  may be described mathe- 
matically by an increase in the carrying capacity." For dilution rates below the 
threshold, the results of our resource-based study would support this relation- 
ship between enrichment of the prey's environment and the carrying capacity. 
However, for dilution rates above the threshold, the validity of this relationship 
depends on the resource used to enrich the environment. For the superior 
resource the relationship remains valid. (See Fig. 5.) However, it can only hold for 
moderate enrichment when the inferior resource is used. (See Figs. 4(a) and 4(b).) 

We stress that we have considered a constant dilution rate D, rather than 
a time-dependent dilution rate D(t). The latter may be more appropriate for 
species at higher trophic levels, where seasonal fluctuations come into play. 
We feel that a bifurcation approach using a constant dilution rate may 
actually be a better approximation for the lower-level microbial species 
considered here. We are motivated by the shorter generation times typical of 
such species. (For example, the generation time of the prey species paramecium 
aurelia considered by Luckinbill [12] is approximately 0.26 days.) Usually the 
dilution rate remains relatively constant within a season, and the time re- 
quired for the chemostat to equilibrate is relatively short compared to the 
length of a season. 

The importance of single-speecies microbial population dynamics to 
ecology is beautifully detailed by Williams [25]. In the same study he asserts 
that the chemostat provides a good laboratory idealization of nature. Our 
results may provide important implications for the management of aquatic 
systems. In managing the microbial populations of such systems, it may be 
necessary to take into consideration when and how much to enrich. In the 
summer it may be that the natural dilution rate satisfies ms, mR > D, so that 
enrichment with either resource xs beneficial. However, the natural dilution 
rate is higher during spring run-off. Success with enrichment in the summer 
can lead to the false conclusion that enriching the environment in the spring 
will be equally beneficial. In fact, if the dilution rate is high enough so that 
ms > D > mR, it becomes necessary to consider which resource is used for 
enrichment. When the superior resource is used, enrichment is beneficial. 
When the inferior resource is used, moderate enrichment can be beneficial, 
while increasing the nutrient input to the system sufficiently actually leads to 
washout. 

The results in this paper may also help to explain some of the effects of 
fertilizer runoff and industrial waste on the microbial populations of certain 
lakes. 

4 Appendix: the isoelines of (19) 

In this section we examine the general shape of the isoclines for system 
(19). First, consider the case R~ < R ° <  R~. Since [(~I/~)(msKR/mRKs)X 

(S°/(S ° - 2))] < 1 and m s >  D > mR, [(q/~)(msKR/(DKs))] < 1 and 
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[(C/r/) (mRKs/(DKR))] > 1. Setting S' = 0 in (19) and solving for R we obtain 

where 

S -~- a~S + b~} 
• ( S ) = K ,  - S - c e  ' 

rl msR ° } 
a ¢ = - { ~ - ~ s 2 + 2 + S  ° < 0 ,  

 _msK., _ 1 
ca,=S ° 1 ¢ DKsJ  > S°' 

be = S°2 > 0 ,  

and 

?( g ,  = 1 ~ D g s  ] > O . 

Similarly, setting R'  = 0 in (19) and solving for S we obtain 

R + azR + bz} 
Z(R)  = -R - -  £ ' 

mR S° } 
-- (-q-ff-K~R + 6 + R° ' bz = R°6 < O ' 

where 

> 0 .  

K > 0 ,  

cz R °(1 ~mRKs~-i = < 0  
tl DKR ] 

and 

Ks = 1 q DKR J 

Note  tha t  ~(0) = - KR and S(0) = - Ks.  
Both  ~(S) and 2;(R) are of the form 

x2 + ax + b 
f (x) = K X--C 

so that  bo th  functions have slant a sympto te  with positive slope. Fo r  each, the 
graph  is either convex for x < c and concave for x > c, as in Figure 6(a), or 
concave for x < c and convex for x > c, as in Figure 6(b). 

First, consider  ~(S). The  vertical a sympto te  occurs at S = c~ > S °. By 
T h e o r e m  2.2(c) the points/~2 = (Si,/i~), i = 1, 2, and (S °, R °) lie on q~(S). Since 
the E 2 lie on the line (p(S), given by (17), and R ° > ~o(S °) = R],  ~(S) must  be 
convex on the interval  ( - oo, c~) as in Fig. 6(a). Similarly, the curve S(R) 
must  be concave on the interval (cx, oo ), as in Fig. 6(a), where cz < 0. 
Therefore,  for R]  < R ° < R~ the isoclines of (19) are as in Fig. 2(b). 

Fo r  0 < R ° < R] ,  the precise shape of the isoclines cannot  be stated, since 
there is insufficient informat ion  to determine the concavity of  the correspond-  
ing functions ~(S) and 2;(R). There  are nine possible pairings, one of which is 
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X ~ C  

X ~ C  

Fig. 6a, b. Schematic diagram for the nullclines of system (19) 
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depic ted  in F igure  2(a). However ,  regardless of the concavity,  the 
a sympto t i c  behav iou r  of  system (3) for 0 < R ° < R] is de te rmined  as in 
Theo rem 2.5(a). 
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