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Abstract. A mathematical model of competition between two species for two growth-limiting,
essential (complementary) resources in the unstirred chemostat is considered. The existence of a
positive steady-state solution and some of its properties are established analytically. Techniques
include the maximum principle, the fixed point index, and numerical simulations. The simulations
also seem to indicate that there are regions in parameter space for which a globally stable positive
equilibrium occurs and that there are other regions for which the model admits bistability and even
multiple positive equilibria.
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1. Introduction. An apparatus called the chemostat, used for the continuous
culture of microorganisms, has played an important role in ecology. It has been
thought of as a lake in a laboratory. See [9, 25, 29] for a description of the apparatus
and the general theory.

In the basic set up, the culture vessel is assumed to be well stirred. One or
more populations of microorganisms grow and/or compete exploitatively for a single,
nonreproducing, growth-limiting nutrient that is supplied at a constant rate. The
contents of the culture vessel are removed at the same constant rate as the medium
containing the nutrient is supplied, and thus the volume of the culture vessel remains
constant. Species-specific parameters can be measured one species at a time, and
based on these parameters the theory predicts the qualitative outcome in advance of
actual competition. In particular, the theory predicts that the species with the lowest
break-even concentration excludes all other competitors (see [6, 14, 29]). Experiments
confirmed this prediction in the case of auxotrophic bacterial strains competing for
limiting tryptophan [11].

Mathematical analysis of chemostat models involving two limiting resources under
the assumption that the culture vessel is well stirred can be found, for example, in
[2, 3, 7, 13, 12, 17, 18, 19, 28]. When more than one resource is limiting, it is necessary
to consider how these resources promote growth. At one extreme are resources that
are sources of different essential substances that must be taken together, because each
substance fulfills different physiological needs with respect to growth, for example, a
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carbon source and a nitrogen source. Such resources are called complementary by
Leon and Tumpson [17], Rapport [22], and Baltzis and Fredrickson [4]; essential by
Tilman [28]; and heterologous by Harder and Dijkhuizen [12].

The model of exploitative competition for two essential resources in the well-
stirred case is given by

St = (S0 − S)D − 1
ys1

g1(S,R)u− 1
ys2

g2(S,R)v,

Rt = (R0 −R)D − 1
yr1

g1(S,R)u− 1
yr2

g2(S,R)v,

ut = [−D + g1(S,R)]u,

vt = [−D + g2(S,R)]v.

S(t), R(t) denote the nutrient concentrations at time t, and u(t) and v(t) denote the
biomass of each population in the culture vessel. S0 > 0 and R0 > 0 are constants
that represent the input concentrations of nutrients S and R, respectively, D is the
dilution rate, and ysi and yri , i = 1, 2, are the corresponding growth yield constants.
The response functions are denoted gi(S,R) = min(pi(S), qi(R)), i = 1, 2, where pi(S)
denotes the response function of the ith population when only resource S is limiting
and qi(R) denotes the response function of the ith population when only resource R is
limiting. We will consider the case that the Monod model for exploitative competition

for one resource is generalized to the two essential resources case, i.e., pi(S) =
msi

S

Ksi
+S ,

qi(R) =
mri

R

Kri
+R , i = 1, 2, where msi , mri , Ksi , Kri , are positive constants.

In this paper, we study the unstirred chemostat and consider two species’ compe-
tition for two, growth-limiting, nonreproducing essential resources. Motivated by the
work on the unstirred chemostat in the case of one limiting resource (see [5, 8, 15, 16,
20, 23, 24, 25, 26, 30, 31] ) and in the case of two limiting resources in [32], the model
takes the form of the following reaction-diffusion equations:

St = dSxx − 1
ys1

g1(S,R)u− 1
ys2

g2(S,R)v, 0 < x < 1, t > 0,

Rt = dRxx − 1
yr1

g1(S,R)u− 1
yr2

g2(S,R)v, 0 < x < 1, t > 0,

ut = duxx + g1(S,R)u, 0 < x < 1, t > 0,

vt = dvxx + g2(S,R)v, 0 < x < 1, t > 0,

with boundary conditions

Sx(0, t) = −S0, Rx(0, t) = −R0, ux(0, t) = 0, vx(0, t) = 0,

Sx(1, t) + γS(1, t) = 0, Rx(1, t) + γR(1, t) = 0,

ux(1, t) + γu(1, t) = 0, vx(1, t) + γv(1, t) = 0.

The boundary conditions are very intuitive. Readers may refer to [5, 16, 26] for
their derivation.

These equations can be simplified using the nondimensional variables and pa-

rameters defined as follows: S̄ = S
S0 , R̄ = R

R0 , α =
S0ys1

R0yr1
, β =

R0yr2

S0ys2
, ḡi(S̄, R̄) =

min(
msi

S̄

K̄si
+S̄

,
mri

R̄

K̄ri
+R̄

), i = 1, 2, ū = u
ys1S

0 , v̄ = v
yr2R

0 , where K̄si =
Ksi

S0 , K̄ri =
Kri

R0 ,

i = 1, 2. For more convenient notation, we drop the bars on the nondimensional



COMPETING FOR RESOURCES IN THE UNSTIRRED CHEMOSTAT 211

variables and parameters, yielding the following model:

St = dSxx − g1(S,R)u− βg2(S,R)v, 0 < x < 1, t > 0,

Rt = dRxx − αg1(S,R)u− g2(S,R)v, 0 < x < 1, t > 0,

ut = duxx + g1(S,R)u, 0 < x < 1, t > 0,

vt = dvxx + g2(S,R)v, 0 < x < 1, t > 0,

(1)

with boundary conditions

Sx(0, t) = −1, Rx(0, t) = −1, ux(0, t) = 0, vx(0, t) = 0,

Sx(1, t) + γS(1, t) = 0, Rx(1, t) + γR(1, t) = 0,

ux(1, t) + γu(1, t) = 0, vx(1, t) + γv(1, t) = 0,

and initial conditions

S(x, 0) = S0(x) ≥ 0, R(x, 0) = R0(x) ≥ 0, u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0.

Denote ϕ1 = S + u + βv, ϕ2 = R + αu + v, where ϕi, i = 1, 2, is the solution of

ϕit = dϕixx, 0 < x < 1, t > 0,

ϕix(0, t) = −1, ϕix(1, t) + γϕi(1, t) = 0,

ϕi(x, 0) = ϕi0(x).

Then u and v satisfy

ut = duxx + ug1(ϕ1 − u− βv, ϕ2 − αu− v), 0 < x < 1, t > 0,

vt = dvxx + vg2(ϕ1 − u− βv, ϕ2 − αu− v), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) + γu(1, t) = 0, t > 0,

vx(0, t) = 0, vx(1, t) + γv(1, t) = 0, t > 0.

(1′)

This paper is devoted to determining the positive solution of this two-species
model of exploitative competition for two essential resources in the unstirred chemo-
stat. Since the reaction terms are Lipschitz continuous, but not C1, many methods
used to analyze elliptic systems do not apply. This makes the analysis more diffi-
cult. Some methods used to prove the existence of the positive equilibrium in the
region D = {(λ̂1, λ̂2) : λ̂1 > 1, λ̂2 > 1} occupy a major portion of the paper, where

λ̂i, i = 1, 2, is defined in the next section. The main result is established in Theo-
rem 3. The other related results are also obtained in section 2. Extensive numerical
studies were run, and some conclusions are summarized in section 3. The simulations
convince us that much more complex dynamics can occur in region D.

The paper is organized as follows. In section 2, the existence of a positive steady-
state solution and some of its properties are established by using the maximum prin-
ciple and fixed point index theory, which is closely related to bounding the principal
eigenvalues of certain differential operators. Some results on extensive numerical stud-
ies are reported in section 3, complementing the mathematical results in section 2,
and a number of typical figures chosen from many simulations are also given in this
section.
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2. The positive steady-state solution. First, we consider the steady state of
system (1):

dSxx − g1(S,R)u− βg2(S,R)v = 0, 0 < x < 1,

dRxx − αg1(S,R)u− g2(S,R)v = 0, 0 < x < 1,

duxx + g1(S,R)u = 0, 0 < x < 1,

dvxx + g2(S,R)v = 0, 0 < x < 1,

(2)

with boundary conditions

Sx(0) = −1, Rx(0) = −1, ux(0) = 0, vx(0) = 0,

Sx(1) + γS(1) = 0, Rx(1) + γR(1) = 0, ux(1) + γu(1) = 0, vx(1) + γv(1) = 0.

It follows that S + u + βv = z, R + αu + v = z, where z = z(x) = 1+γ
γ − x. Then u

and v satisfy

duxx + ug1(z − u− βv, z − αu− v) = 0, 0 < x < 1,

dvxx + vg2(z − u− βv, z − αu− v) = 0, 0 < x < 1,

ux(0) = 0, ux(1) + γu(1) = 0,

vx(0) = 0, vx(1) + γv(1) = 0.

(3)

Let λi be the principal eigenvalue and let φi(x) > 0 on [0, 1], i = 1, 2, be the
corresponding eigenfunction, normalized as maxx∈[0,1] φi(x) = 1, of the following
problem:

dφixx + λiφigi(z, z) = 0, 0 < x < 1, φix(0) = 0, φix(1) + γφi(1) = 0.(4)

Let U(x) be the solution of

dUxx + Ug1(z − U, z − αU) = 0, 0 < x < 1,

Ux(0) = 0, Ux(1) + γU(1) = 0,
(5)

and let U(x, t) be the solution of

Ut = dUxx + Ug1(ϕ1 − U,ϕ2 − αU), 0 < x < 1, t > 0,

Ux(0, t) = 0, Ux(1, t) + γU(1, t) = 0,

U(x, 0) = U0(x) ≥ 0.

(6)

From Lemmas 2.2–2.4 and Theorem 2.5 in [32] we have the following lemma.
Lemma 1. If λ1 < 1, then there exists a unique positive solution U(x) of (5),

satisfying 0 < U < min{1, 1
α}z on [0, 1]. If λ1 ≥ 1, the only nonnegative solution of

(5) is U = 0. Furthermore, limt→∞ U(x, t) = U(x) if λ1 < 1, and limt→∞ U(x, t) = 0
if λ1 > 1.

Remark 1. If λ2 < 1, a similar result holds for V (x), where V (x) is the unique
positive solution of

dVxx + V g2(z − βV, z − V ) = 0, 0 < x < 1,

Vx(0) = 0, Vx(1) + γV (1) = 0.
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Since we are only concerned with the nonnegative steady-state solutions of (3),
there is no loss of generality if we redefine

pi(S) =

{
msi

S

Ksi
+S , S ≥ 0,

0, S < 0,
qi(R) =

{
mri

R

Kri
+R , R ≥ 0,

0, R < 0.

Lemma 2. Suppose (u, v) is the nonnegative solution of (3). Then (i) u > 0 or
u ≡ 0, and v > 0 or v ≡ 0; (ii) u+ βv < z, αu+ v < z; (iii) u ≤ U, v ≤ V. Moreover,
u < U or u ≡ U, and v < V or v ≡ V.

Proof. (i) This part can be proved by the maximum principle, in the usual way,
and the details are omitted here.

(ii) Define w = u + βv − z. Note that by (3) it follows that

dwxx + ug1(−w, z − αu− v) + βvg2(−w, z − αu− v) = 0,

wx(0) = 1 and wx(1) + γw(1) = 0.

First we show that w ≤ 0 on [0, 1]. Suppose not. If w(1) > 0, then wx(1) < 0.
Therefore, there exists a ∈ [0, 1) so that for all x ∈ (a, 1], w(x) > 0, and either a = 0
or w(a) = 0. But then for all x ∈ [a, 1], wxx = 0 and so wx(x) = wx(1) < 0, i.e., w(x)
is decreasing there. Since wx(0) = 1 > 0, a �= 0. But a > 0 is also impossible since
then w(a) = 0, w(x) is decreasing in [a, 1], and w(1) > 0. Therefore, w(1) ≤ 0. Next,
assume there exists x̄ ∈ [0, 1) with w(x̄) > 0. Then there exist δ1 ≥ 0 and δ2 > 0 such
that w(x) > 0 for all x ∈ (x̄− δ1, x̄+ δ2) ⊂ (0, 1), w(x̄+ δ2) = 0, and either x̄− δ1 = 0
or w(x̄ − δ1) = 0. But then for all x ∈ [x̄ − δ1, x̄ + δ2], wxx(x) = 0 and so wx(x) is
constant. Since w(x̄ + δ2) = 0, it follows that wx(x̄ + δ2) ≤ 0, and so w(x) is non-
increasing on [x̄− δ1, x̄+ δ2]. Then x̄− δ1 �= 0, since wx(0) = 1, and so w(x̄− δ1) = 0.
Therefore, w(x) ≡ 0 on [x̄− δ1, x̄ + δ2], a contradiction. Hence, u + βv ≤ z on [0, 1].
That αu + v ≤ z follows similarly. It is easy to see that u + βv �≡ z, αu + v �≡ z;
otherwise we have duxx = 0, dvxx = 0, with the usual boundary condition, which
gives u ≡ 0, v ≡ 0, a contradiction. Let w1 = z − u − βv, w2 = z − αu − v. Then
wi ≥ 0, �≡ 0, and w1 satisfies

−dw1xx + ug1(w1, w2) + βvg2(w1, w2) = 0,

w1x(0) = −1, w1x(1) + γw1(1) = 0,

which leads to

−dw1xx + w1

(
ms1

u

Ks1+w1
+

ms2
βv

Ks2+w1

)
≥ 0,

w1x(0) = −1, w1x(1) + γw1(1) = 0.

If w1(x0) = 0 for some point x0 ∈ [0, 1], by applying the strong maximum principle
(see [21]) we obtain a contradiction. Hence w1 > 0 on [0, 1]. The proof that w2 > 0
on [0, 1] is similar.

(iii) It follows by the monotone method and the uniqueness of U that u ≤ U ≤
min{1, 1

α}z. By the Lipschitz continuity of g1(S,R), there exists a constant L > 0,

such that 0 ≤ g1(z−u, z−αu)− g1(z−U, z−αU) ≤ L(U −u). Let Û = U −u. Then
Û ≥ 0 satisfies

dÛxx + Û [g1(z − U, z − αU) − uL] ≤ 0, 0 < x < 1,

Ûx(0) = 0, Ûx(1) + γÛ(1) = 0.

If Û �≡ 0, then the maximum principle leads to Û > 0. Thus either u < U or u ≡ U .
The proof for v is similar.
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Remark 2. It follows from Lemmas 1 and 2 that, for λi ≥ 1, i = 1, 2, the only
nonnegative solution of (3) is (0, 0). In order to guarantee the existence of a positive
solution of (3), we must assume that λi < 1 for i = 1, 2.

Let λ̂i be the principal eigenvalues and let φ̂i(x) > 0, x ∈ [0, 1], i = 1, 2, be the
corresponding eigenfunctions of the problem

dφ̂1xx + λ̂1φ̂1g1(z − βV, z − V ) = 0, 0 < x < 1, φ̂1x(0) = 0, φ̂1x(1) + γφ̂1(1) = 0,

dφ̂2xx + λ̂2φ̂2g2(z − U, z − αU) = 0, 0 < x < 1, φ̂2x(0) = 0, φ̂2x(1) + γφ̂2(1) = 0.

Theorem 1. Suppose λ̂i < 1 for i = 1, 2. Then there exists a positive steady-state
solution (u, v) of (3) satisfying 0 < u(x) < U(x), 0 < v(x) < V (x) for x ∈ [0, 1].

Proof. It is easy to check that (U, V ) is the sup-solution of (3). Let (u, v) =

(δφ̂1, δφ̂2)(δ > 0). Then for δ sufficiently small, we have

duxx + ug1(z − u− βV, z − αu− V )

= [ug1(z − u− βV, z − αu− V ) − λ̂1ug1(z − βV, z − V )]

= u[(1 − λ̂1)g1(z − βV, z − V )

+ (g1(z − u− βV, z − αu− V ) − g1(z − βV, z − V ))] > 0.

Hence there exists a solution (u, v) of (3) satisfying (δφ̂1, δφ̂2) ≤ (u, v) ≤ (U, V ) for
small δ. By Lemma 2 we obtain the strict inequalities in Theorem 1.

Now we consider the special case that g1 = g2 = g, and we find that there exist
infinitely many positive solutions of (3).

Theorem 2. Suppose that λi < 1 for i = 1, 2 and g1 = g2 = g. Then there
exist infinitely many positive solutions (uρ, vρ) (ρ > 0) of (3) satisfying 0 < vρ ≤
min{ 1

ρ+β ,
1

αρ+1}z, uρ = ρvρ.

Proof. Set ω = u
v . Then ω satisfies

−dωxx − 2dvx
v

ωx = 0, ωx(0) = ωx(1) = 0.

By the maximum principle it follows that ω ≡ ρ, a positive constant, i.e., u = ρv.
Thus v satisfies

dvxx + vg(z − (ρ + β)v, z − (αρ + 1)v) = 0, vx(0) = 0, vx(1) + γvx(1) = 0.

For ρ > 0 fixed, arguing as for the existence of U or V, and noting that λ2 < 1,
it follows that there exists a unique positive solution of the above problem, say, vρ,
satisfying 0 < vρ ≤ min{ 1

ρ+β ,
1

αρ+1}z. Thus (uρ, vρ) (ρ > 0), where uρ = ρvρ, is the

positive solution of (3). This completes the proof.
Remark 3. Suppose that g1 ≤ g2, g1 �≡ g2 or g1 ≥ g2, g1 �≡ g2. Then there exists

no positive solution of (3). This conclusion is consistent with the analysis in [9] for
the pure and simple competition model. In fact, suppose u > 0, v > 0 satisfy (3).
We consider the first case, since the second case can be proved similarly. Denoting
ω = u

v , we have

−dωxx − 2dvx
v

ωx + ω[g2(z − u− βv, z − αu− v) − g1(z − u− βv, z − αu− v)] = 0,

ωx(0) = ωx(1) = 0.

Then ω = constant, and hence ω = 0, a contradiction.
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Theorem 3. Suppose λi < 1 and λ̂i > 1 for i = 1, 2. Then there exists a positive
solution (u, v) of (3).

Proof. Let CB [0, 1] = {u(x) ∈ C[0, 1] : ux(0) = 0, ux(1) + γu(1) = 0} be the
Banach space, with the usual maximum norm, denoted by ‖ · ‖, X = CB [0, 1] ×
CB [0, 1], K = C+

B [0, 1] × C+
B [0, 1], the positive cone of X. Let N = (−d∆)−1, the

inverse operator of −d∆ in CB [0, 1]. Then system (3) can be written as

u−N(ug1(z − u− βv, z − αu− v)) = 0,

v −N(vg2(z − u− βv, z − αu− v)) = 0.

Let T (u, v) = (N(ug1(z− u− βv, z−αu− v)), N(vg2(z− u− βv, z−αu− v))). Then
the fixed points of T in K are the corresponding nonnegative solutions of (3). Define
D = {(u, v) ∈ K : ‖u‖+ ‖v‖ ≤ R0}, where R0 = 2 max{1, 1

α ,
1
β }‖z‖, and let Ḋ denote

the interior of D in K. Since the proof is long, we divide it into three lemmas.
Lemma 3. For λ ≥ 1, the equation T (u, v) = λ(u, v) has no solution in K

satisfying ‖u‖ + ‖v‖ = R0.
Proof. Suppose (u, v) ∈ K satisfies T (u, v) = λ(u, v). Then we have

duxx + λ−1ug1(z − u− βv, z − αu− v) = 0,

dvxx + λ−1vg2(z − u− βv, z − αu− v) = 0,

with the boundary conditions as above. As in the proof of Lemma 2, it follows that
u+βv < z, αu+v < z. Thus u+v < max{1, 1

α ,
1
β }z. Hence there exists no fixed point

of T (u, v) = λ(u, v) in K satisfying ‖u‖ + ‖v‖ = R0.
Remark 4. It follows from Lemma 12.1 in [1] that indexK(T, Ḋ) = 1.
Let Pσ(0, 0) = {(u, v) ∈ K : ‖u‖ + ‖v‖ < σ} be the neighborhood of (0, 0) in K

with radius σ.
Lemma 4. For σ > 0 small enough, indexK(T, Pσ(0, 0)) = 0.
Proof. Given ε0 > 0 sufficiently small, noting the definition of U, V, we can take

0 < σ < σ0 � 1 such that σ
γ < min{U − ε0, V − ε0}. Denote S+

σ = {(u, v) ∈ K :

‖u‖ + ‖v‖ = σ
γ }. Thus ‖u‖ ≤ σz, ‖v‖ ≤ σz whenever (u, v) ∈ S+

σ .

Let ψ = (2 + γ) − γx2. Then ψ > 0 on [0, 1] and satisfies

ψxx < 0, 0 < x < 1, ψx(0) = 0, ψx(1) + γψ(1) = 0.

Take p = (ψ,ψ)(∈ K). We show next (by contradiction) that for λ ≥ 0, (u, v) −
T (u, v) = λ(ψ,ψ) has no solution on S+

σ for small σ. Assume that this problem has a
solution (u, v) on S+

σ . Then (u, v) satisfies

duxx + ug1(z − u− βv, z − αu− v) = dλψxx, 0 < x < 1,

dvxx + vg2(z − u− βv, z − αu− v) = dλψxx, 0 < x < 1.

Hence by the definition of ψ, we have

duxx + ug1((1 − σβ)z − u, (1 − σ)z − αu) ≤ 0, 0 < x < 1,

dvxx + vg2((1 − σ)z − βv, (1 − σα)z − v) ≤ 0, 0 < x < 1.

Since λi < 1, we can take sufficiently small σ, say, σ < σ1 � 1, such that λ1(g1((1 −
σβ)z, (1 − σ)z)) < 1, λ2(g2((1 − σ)z, (1 − σα)z)) < 1, where λ1(g1((1 − σβ)z, (1 −
σ)z)), λ2(g2((1 − σ)z, (1 − σα)z)) are the principal eigenvalues of (4) with g1 and g2
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replaced by g1((1 − σβ)z, (1 − σ)z) and g2((1 − σ)z, (1 − σα)z), respectively. As in
the proof of Lemma 3.2 in [31] we can prove the existence and uniqueness of U∗, V ∗

of the following problem:

dU∗
xx + U∗g1((1 − σβ)z − U∗, (1 − σ)z − αU∗) = 0, 0 < x < 1,

dV ∗
xx + V ∗g2((1 − σ)z − βV ∗, (1 − σα)z − V ∗) = 0, 0 < x < 1,

with the usual boundary conditions. By an Lp estimate and the Sobolev embedding
theorem (see [27]), we proceed as in the proof of Theorem 2.5 in [32] to obtain

lim
σ→0

U∗ = U, lim
σ→0

V ∗ = V.

Thus there exists σ2 > 0, such that for σ < σ2, U
∗ > U − ε0, V

∗ > V − ε0. It follows
from the monotone method and the uniqueness of U∗, V ∗ that u ≥ U∗, v ≥ V ∗.
Now take σ < σ̄ = min{σ0, σ1, σ2}. Then for σ < σ̄, we have u > σ

γ , v > σ
γ , which

contradicts (u, v) ∈ S+
σ . Lemma 12.1 of [1] can be applied to complete the proof of

this lemma.
Let O+(U, 0) be a small neighborhood of (U, 0) in K. Then we have the following

lemma.
Lemma 5. Suppose that T has no fixed point in Ḋ. Then indexK(T,O+(U, 0)) = 1

if λ̂2 > 1, λ1 < 1.
Proof. Define T (θ)(u, v) = (N(ug1(z − u − θβv, z − αu − θv)), N(vg2(z − u −

θβv, z − αu− θv))). It follows from (u, v) = T (θ)(u, v) that

duxx + ug1(z − u− θβv, z − αu− θv) = 0,

dvxx + vg2(z − u− θβv, z − αu− θv) = 0.

If (u, v) is a fixed point of T (θ) on ∂O+(U, 0), the boundary of O+(U, 0) in K, it
is easy to see that u > 0, v ≥ 0. Furthermore, we have v > 0; otherwise we have
(u, v) = (U, 0), contradicting (u, v) ∈ ∂O+(U, 0). We claim that for θ ∈ [0, 1], T (θ)

has no fixed point on ∂O+(U, 0). Otherwise, for θ = 0, by noting λ̂2 > 1 and λ1 < 1,
we find u = U, v = 0, a contradiction; for θ > 0, this implies that (u, θv) > (0, 0) is a
fixed point of T in Ḋ, contradicting a hypothesis of this lemma. It follows from the
homotopy invariance of topological degree that

indexK(T,O+(U, 0)) = indexK(T (1), O+(U, 0)) = indexK(T (0), O+(U, 0)),(7)

where T (0)(u, v) = (N(ug1(z − u, z − αu)), N(vg2(z − u, z − αu))).
The fixed point (u, v) of T (0) in O+(U, 0) satisfies

duxx + ug1(z − u, z − αu) = 0, 0 < x < 1,

dvxx + vg2(z − u, z − αu) = 0, 0 < x < 1,
(8)

with the boundary conditions

ux(0) = 0, vx(0) = 0, ux(1) + γu(1) = 0, vx(1) + γv(1) = 0.

Since λ1 < 1, we have u = U. Noting λ̂2 > 1, we determine that the principal
eigenvalue λ′

2 of the following problem is negative:

dφ′
xx + φ′g2(z − U, z − αU) = λ′

2φ
′, φ′

x(0) = 0, φ′
x(1) + γφ′(1) = 0.
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Substituting u = U into the second equation of (8), we have v = 0. Hence (U, 0) is
the unique fixed point of T (0) in O+(U, 0); thus

indexK(T (0), O+(U, 0)) = indexK(T (0), (U, 0)).(9)

Let I(θ) (θ ∈ [0, 1]) be defined by I(θ)(u, v) = (N(ug1(z − u, z − αu)), N(vg2(z −
(θU + (1 − θ)u), z − α(θU + (1 − θ)u)))). Then (u, v) = I(θ)(u, v) satisfies

duxx + ug1(z − u, z − αu) = 0, 0 < x < 1,

dvxx + vg2(z − (θU + (1 − θ)u), z − α(θU + (1 − θ)u)) = 0, 0 < x < 1,
(10)

with the usual boundary conditions. We claim that I(θ) has no fixed point on
∂O+(U, 0) in K. Otherwise, from the first equation of (10), we have u = U, and
substituting this into the second equation of (10), we find v = 0, so the only fixed
point of I(θ) on ∂O+(U, 0) is (U, 0), a contradiction. By the definition of I(θ), we
obtain

T (0) = I(0), I(1) = T1 × T2,(11)

where T1u = N(ug1(z − u, z − αu)), T2v = N(vg2(z −U, z − αU)), (T1 × T2)(u, v) =
(T1u, T2v). (u, v) = I(1)(u, v) satisfies

duxx + ug1(z − u, z − αu) = 0, 0 < x < 1,

dvxx + vg2(z − U, z − αU) = 0, 0 < x < 1.

It follows from (7)–(11) and the product theorem for fixed points (see [33]) that

indexK(T (0), (U, 0)) = indexK(I(0), (U, 0)) = indexK(I(1), (U, 0))

= indexCB
(T1, U) · indexC+

B
(T2, 0).

(12)

Since T2 is a linear compact operator and λ̂2 > 1, then T2 has no eigenvalue > 1 with
positive eigenfunction in C+

B . It follows from Lemma 13.1 of [1] that indexC+
B
(T2, 0) =

1.
We show next that indexCB

(T1, U) = 1. Let τ = 2 min{1, 1
α}‖z‖, Pτ = {u ∈ C+

B :

‖u‖ ≤ τ}, ∂Pτ = {u ∈ C+
B : ‖u‖ = τ}. For λ ≥ 1, if T1u = λu, dλuxx + ug1(z −

u, z − αu) = 0. Arguing as in the proof of Lemma 1, we have u ≤ min{1, 1
α}z < τ.

Hence for λ ≥ 1, T1u = λu has no solution on ∂Pτ . It follows from Lemma 12.1
of [1] that indexC+

B
(T1, Pτ ) = 1. Let 0 < τ0 ≤ 1

2 min[0,1]{U(x)}. Suppose that for

λ ≥ 0, p = ψ(x), such that u − T1u = λp has a solution u on ∂Pτ0 , where ψ(x) is
defined as in the proof of Lemma 4. Then, duxx + ug1(z − u, z − αu) = dλψxx ≤ 0.
Thus u is a sup-solution of (5). From the monotone method and the uniqueness of
U it follows that u ≥ U, a contradiction to ‖u‖ = τ0. Hence, indexC+

B
(T1, Pτ0) = 0.

Since u = U is the unique fixed point of T1 in Pτ\P̄τ0 , we obtain indexCB
(T1, U) =

indexC+
B
(T1, Pτ\P̄τ0) = indexC+

B
(T1, Pτ ) − indexC+

B
(T1, Pτ0) = 1.

Combining the above result with equations (7), (9), and (12), it follows that
indexK(T,O+(U, 0)) = 1.

Remark 5. Suppose that T has no fixed point in Ḋ. We can proceed as above to
obtain indexK(T,O+(0, V )) = 1 if λ̂1 > 1, λ2 < 1.

Now we turn to the proof of Theorem 3. Suppose that T has no fixed point in Ḋ.
Then the following equation holds:

indexK(T, Ḋ) = indexK(T,O+(0, 0)) + indexK(T,O+(U, 0)) + indexK(T,O+(0, V )),
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contradicting Lemmas 3–5. This completes the proof of Theorem 3.
Noting Lemma 1, and using the same process as in the proof of Theorem 3.6 in

[15], we have the following theorem.
Theorem 4. If λ1 > 1 and λ2 > 1, then the solution of system (1) satisfies

lim
t→∞

(S,R,U, V ) = (z, z, 0, 0).

If λ1 > 1 and λ2 < 1, then the solution of system (1) satisfies

lim
t→∞

(S,R,U, V ) = (z − βV, z − V, 0, V ).

If λ1 < 1 and λ2 > 1, then the solution of system (1) satisfies

lim
t→∞

(S,R,U, V ) = (z − U, z − αU,U, 0).

Theorem 5. Suppose λ̂i < 1, i = 1, 2. Then the solution of system (1) is
uniformly persistent ([10]).

Proof. It follows from system (1′) that v(x, t) ≤ V (x, t), where V (x, t) is the
solution of the problem

Vt = dVxx + V g2(ϕ1 − βV, ϕ2 − V ), 0 < x < 1, t > 0,

Vx(0, t) = 0, Vx(1, t) + γV (1, t) = 0,

V (x, 0) = v0(x).

Since λ̂2 < 1, then λ2 < 1. We can proceed as in Theorem 2.5 in [32] to show that if
λ2 < 1, then limt→∞ V (x, t) = V (x), where V (x) < min{1, 1

β }z is the unique positive
solution of

dVxx + V g2(z − βV, z − V ) = 0, 0 < x < 1,

Vx(0) = 0, Vx(1) + γV (1) = 0.

Since λ̂1 < 1, we can take 0 < ε � 1, such that for the following principal eigenvalue
λ̃1 < 1,

dφ̃1xx + λ̃1φ̃1g1((1 − ε(1 + β)/2)z − βV (x), (1 − ε)z − V (x)) = 0, 0 < x < 1,

φ̃1x(0) = 0, φ̃1x(1) + φ̃1(1) = 0.

There exists τ ′ > 0 such that for x ∈ [0, 1], t ≥ τ ′, the following inequalities hold:

ϕ1 ≥ z − (ε/2)z, ϕ2 ≥ z − (ε/2)z, v(x, t) ≤ V (x) + (ε/2)z.

Using the comparison theorem, it follows that for t ≥ τ ′, u(x, t) ≥ u(x, t), where
u(x, t) is the solution of

ut = duxx + ug1((1 − (ε(1 + β)/2))z − u− βV (x), (1 − ε)z − αu− V (x)),

0 < x < 1, t > τ ′,

ux(0, t) = 0, ux(1, t) + γu(1, t) = 0,

u(x, τ ′) = min{(1 − ε(1 + β)/2)z − βV (x), ((1 − ε)z − V (x))/α, u(x, τ ′)}.
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Noting λ̃1 < 1, we have limt→∞ u(x, t) = uε(x), where uε(x) is the unique positive
solution of

duεxx + uεg1((1 − ε(1 + β)/2)z − uε − βV (x), (1 − ε)z − αuε − V (x)) = 0

with the usual boundary conditions. It follows from an Lp estimate and the embedding
theorem (see [27]) that limε→0 uε(x) = û(x), where û(x) is the unique positive solution
of the following problem on [0, 1]:

dûxx + ûg1(z − û− βV (x), z − αû− V (x)) = 0(13)

with the usual boundary conditions. A similar result holds for v if λ̂2 < 1. Hence,
there exist constants η1 > 0, τ1 ≥ τ ′ such that u(x, t) ≥ η1, v(x, t) ≥ η1 for x ∈
[0, 1], t ≥ τ1.

By the equation of S in system (1) and the definition of gi, i = 1, 2, we have

St = dSxx − g1(S,R)u− βg2(S,R)v

≥ dSxx − max
{

ms1

Ks1
,
ms2

Ks2

}
S(u + βv).

Then there exists τ ′′ > 0, and for t ≥ τ ′′, the following inequality holds:

St ≥ dSxx − max

{
ms1

Ks1

,
ms2

Ks2

}
S(z + ε− S).

A similar result holds for R. Thus we can proceed as in Lemma 3.8 in [15] to show that
there exist η2 > 0, τ2 > 0 such that S(x, t) ≥ η2, R(x, t) ≥ η2 for x ∈ [0, 1], t ≥ τ2.
Denote τ = max{τ1, τ2}, η = max{η1, η2}. Then we have S ≥ η, R ≥ η, u ≥ η, v ≥ η
for x ∈ [0, 1], t ≥ τ. This completes the proof.

3. Numerical simulations. The goal of this section is to present the results
of numerical simulations that complement the analytic results of the previous sec-
tion. The simulations reported below represent a small fraction of those made. We
wish to make a few general comments based on our observations. First, in most
simulations performed, convergence to equilibrium was observed. Second, competi-
tive exclusion, the elimination of one population by another, was observed. Finally,
nonuniqueness of the positive equilibrium and bistability of the semitrivial equilib-
rium were observed. Our simulations are consistent with the analytic results of the
previous sections. Furthermore, the simulations reveal that much more complicated
dynamics are also possible in the region D defined below. Our numerical simulations
also seemed to indicate that coexistence is more likely in the case of competition for
two limiting complementary resources in the unstirred chemostat, than in the case of
competition for a single limiting resource in the unstirred chemostat (see [26]).

Define A = {(λ̂1, λ̂2) : 0 < λ̂1 < 1, 0 < λ̂2 < 1}, B = {(λ̂1, λ̂2) : 0 < λ̂1 < 1, λ̂2 >

1}, C = {(λ̂1, λ̂2) : λ̂1 > 1, 0 < λ̂2 < 1}, and D = {(λ̂1, λ̂2) : λ̂1 > 1, λ̂2 > 1}.
Our numerical simulations seem to indicate the following:
(1) Coexistence in the form of a positive equilibrium can be observed when

(λ̂1, λ̂2) ∈ A ∪ B ∪ C (see Figures 1–2 and Tables 1–2), and apparently a globally

stable positive equilibrium can always be observed when (λ̂1, λ̂2) ∈ A;
(2) Competitive exclusion in the form of an apparently globally stable semitrivial

positive equilibrium can occur when (λ̂1, λ̂2) ∈ B∪C (see Figures 1–2 and Tables 1–2);
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(3) Both stable and unstable positive equilibria can exist, and there can be bista-
bility with two stable semitrivial equilibria and an unstable positive equilibrium, re-
sulting in initial condition dependent outcomes when (λ̂1, λ̂2) ∈ D (see Figures 3–4);

(4) Existence of multiple stable and/or unstable positive equilibria can be ob-

served when (λ̂1, λ̂2) ∈ D (see Figures 4–5);
(5) The parameters have an apparent effect on the density of both organisms,

i.e., the density u can be nondecreasing and the density v can be nonincreasing as α
increases (see Figures 6(a)–6(c)). Similar results for v and u hold as β increases. But
the density of both organisms can decrease as γ increases (see Figures 6(b) and 6(d)).

Now we describe an indirect method used for determining either λ̂i > 1 or λ̂i < 1
from numerical simulations. The method will be described for determining the sign
of λ̂1 − 1 only, since the other case is similar. Consider the following system:

ut = duxx + ug1(z − u− βv, z − αu− v), 0 < x < 1, t > 0,

vt = dvxx + vg2(z − βv, z − v), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) + γu(1, t) = 0,

vx(0, t) = 0, vx(1, t) + γv(1, t) = 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, �≡ 0,

(14)

where u0 + βv0 ≤ z, αu0 + v0 ≤ z. Taking initial conditions characterized by a very
small density of u0, we can prove and observe numerically that v rapidly approaches
the equilibrium V (x). Hence for large times, t, we take v(x, t) as V (x) in the first
equation of (14). Then we have

ut = duxx + ug1(z − u− βV, z − αu− V ), 0 < x < 1, t > 0(15)

with the usual boundary and initial conditions. We can use the comparison theorem
and the Liapunov function method to prove that the solution u(x, t) of (15) satisfies

limt→∞ u(x, t) = 0 if λ̂1 ≥ 1 and limt→∞ u(x, t) = û if λ̂1 < 1, where û is the unique
positive solution of (13). Therefore, what happens to u depends essentially on the

sign of λ̂1 − 1. If λ̂1 ≥ 1, we observed the decay of the solution u of (15) to very small

values; if λ̂1 < 1, we observed the growth of the solution u of (15) to the value of

the solution of (13). Therefore, we can determine the sign of λ̂1 − 1 numerically by
observing whether there is decay to very small values or growth to the value of the
solution of (13).

We next simulate the corresponding time-dependent system of (3), which deter-
mines the limiting system of (1):

ut = duxx + ug1(z − u− βv, z − αu− v), 0 < x < 1, t > 0,

vt = dvxx + vg2(z − u− βv, z − αu− v), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) + γu(1, t) = 0,

vx(0, t) = 0, vx(1, t) + γv(1, t) = 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0.

We have chosen to discretize the spatial variables in the above system using a
second-order finite-difference scheme. The derivative terms in the boundary conditions
are approximated using second-order centered differencing. The temporal variable is
approximated using the Crank–Nicholson method. In all of the simulations the domain
is divided uniformly into 40 cells.
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Table 1

The equilibria corresponding to the parameters given in Tables 1 and 2 are shown in Figures 1
and 2.

ms λ̂1 λ̂2 Area Equilibrium
(2.06, 2.04) < 1 > 1 B (U, 0)

(2.045, 2.055) < 1 > 1 B Coexistence
(2.04, 2.06) < 1 < 1 A Coexistence
(1.8, 2.3) < 1 < 1 A Coexistence
(1.6, 2.5) < 1 < 1 A Coexistence

(1.55, 2.55) > 1 < 1 C (0, V )

Table 2

ms λ̂1 λ̂2 Area Equilibrium
(4.55, 4.45) < 1 > 1 B (U, 0)
(4.48, 4.52) < 1 > 1 B Coexistence
(4.45, 4.55) < 1 < 1 A Coexistence
(2.2, 6.8) < 1 < 1 A Coexistence
(2.1, 6.9) > 1 < 1 C Coexistence

(1.95, 7.05) > 1 < 1 C (0, V )

In the following, we denote ms = (ms1 ,ms2), mr = (mr1 ,mr2), Ks = (Ks1 ,Ks2),
Kr = (Kr1 ,Kr2).

Coexistence and competitive exclusion. In Figures 1 and 2 a sequence of simula-
tions is reported where different growth rates were used, but all of the other param-
eter values remain fixed. The parameter values used were α = β = 0.5, γ = 1,Ks =
(1, 1),Kr = (1, 1.2). In Figure 1 and Table 1, mr = (3, 3), and in Figure 2 and
Table 2, mr = (6, 6). In Figure 1, ms took the values indicated in Table 1, and in
Figure 2, ms took the values indicated in Table 2. In each simulation in Figures 1
and 2, the densities were plotted at the final time, t = 1000. This appeared to be long
enough to allow the solutions to be very close to steady state. A similar procedure
was used in the other figures. We observed from Figures 1 and 2, as well as from
many other simulations, that at the highest growth rate of u and the lowest growth
rate of v, u is dominant with v barely present for any initial conditions. In this case,
we checked that (λ̂1, λ̂2) ∈ B. As the growth rate of u is decreased or the growth
rate of v is increased, the amount of v increases at the expense of the amount of u.
Both organisms coexist at a positive equilibrium. In this case, we also checked that
(λ̂1, λ̂2) ∈ A or B or C. All the simulations show that the coexistence is unique and

an apparently globally stable positive equilibrium exists when (λ̂1, λ̂2) ∈ A. As the
growth rate of u is further decreased or the growth rate of v is further increased, v
is dominant with u barely present for any initial condition. In addition, we checked
(λ̂1, λ̂2) ∈ C in this case. Coexistence in the form of a positive equilibrium can occur

when (λ̂1, λ̂2) ∈ A or B or C. The nonexistence of a positive equilibrium can also

occur when (λ̂1, λ̂2) ∈ B or C.
Bistability and the existence of positive equilibria. (i) In Figure 3, we provide

numerical evidence of bistability; i.e., each of the two semitrivial equilibria is stable
to invasion by its rival and attracts solutions corresponding to nearby initial data.
As well, an unstable positive equilibrium is observed. We took ms = (3, 2), mr =
(2.4, 3.6), and the other parameter values as in Figure 1. In this case we checked that

(λ̂1, λ̂2) ∈ D. The simulations in Figures 3(a) and 3(b) show a plot of the L1 norms of
u and of v versus time t. In Figure 3(a) the initial conditions used were u0 = 0.5 and
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Fig. 1. Equilibria for mr = (3, 3) and the different values of ms from Table 1 (in the order
given in that table). The other parameters used are Ks = (1, 1), Kr = (1, 1.2), α = β = 0.5, and
γ = 1.
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Fig. 2. Equilibria for mr = (6, 6) and the different values of ms from Table 2 (in the order
given in that table). All the other parameters are the same as those in Figure 1.
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Fig. 3. Convergence to equilibria. All parameters except ms and mr are the same as those
in Figure 1. In (a)–(c) ms = (3, 2) and mr = (2.4, 3.6). In (a)–(b) the L1 norms of u and of v
versus time are shown for two semitrivial equilibria. In (c) a plot of the positive equilibrium for
each x ∈ [0, 1] is shown. In (d)–(f) ms = (2, 2) and mr = (2, 4). The L1 norms of u and of v versus
time are shown for several different equilibria.



COMPETING FOR RESOURCES IN THE UNSTIRRED CHEMOSTAT 225

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 

u
v

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 

u
v

(a) (b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 

u
v

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 

u
v

(c) (d)

Fig. 4. Several positive equilibria. All parameters are the same as those in Figure 1, except
ms = (2, 2) and mr = (2, 4). Note that u and v are indistinguishable in (d).

v0 = 0.1. In Figure 3(b) the initial conditions used were u0 = 0.1 and v0 = 0.5. The
positive equilibrium is plotted in Figure 3(c). After many simulations, in this case we
believe that this is the only positive equilibrium and that it is unstable.

(ii) In Figures 3(d)–(f), we took ms = (2, 2) and mr = (2, 4). All other parameters
are the same as in Figure 1. Both semitrivial equilibria are stable. Only one of them
is shown (see Figure 3(d)). As well, nonuniqueness and stability of more than one

positive equilibrium are observed. In this case, we checked that (λ̂1, λ̂2) ∈ D.
Existence of multiple positive equilibria. Based on extensive simulations, we be-

lieve that much more complicated dynamical behavior can occur when (λ̂1, λ̂2) ∈ D.
(i) In Figure 4 we took the same parameters as in Figures 3(d)–(f) and used

continuation (numerical analysis) to find the equilibria. Simulations (not shown)
seem to indicate that there are at least four positive equilibria in this case, and
strongly suggest that one of them is unstable (see Figure 4(d), where u and v are
indistinguishable), and that the other three are stable (see Figures 4(a)–(c)). Note
that the equilibria depicted in Figures 4(b)–(c) correspond to those in Figures 3(e)–(f),
respectively.

(ii) In Figures 5(a)–(c) we took ms = (1.5, 1.8) and mr = (1.75, 1.42). In Fig-
ures 5(d)–(f) we took ms = (2.1, 2.75) and mr = (2.8, 2.13). The other parameters
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Fig. 5. Positive equilibria. All parameters are the same as those in Figure 1, except that in
(a)–(c) ms = (1.5, 1.8) and mr = (1.75, 1.42), and in (d)–(f) ms = (2.1, 2.75) and mr = (2.8, 2.13).
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Fig. 6. Parameters α and γ have an effect on the densities of the equilibria. In (a)–(d)
ms = (2, 2.1), mr = (3, 3), Ks = (1, 1), Kr = (1, 1.2), and β = 0.5. In (a)–(c) γ = 1, and in (d)
γ = 0.6. In (a) α = 0.3, in (b) α = 0.5, in (c) α = 0.7, and in (d) α = 0.5.

were taken as in Figure 1. In both cases, we checked that (λ̂1, λ̂2) ∈ D. For each
case, we used numerical analysis to find the three positive equilibria depicted in Fig-
ure 5. Subsequent simulations strongly indicated that all these positive equilibria are
unstable.

Effects of the parameters. In Figure 6 a sequence of simulations shows that the
parameters α, β, γ have an apparent effect on the density of both populations. Param-
eter values taken are ms = (2, 2.1), mr = (3, 3), Ks = (1, 1), Kr = (1, 1.2). Values
for α, β, and γ are given in the caption of Figure 6. The initial data are u0 = 1 and
v0 = 1. We observed that the density of u can be nondecreasing and the density of
v can be nonincreasing as α increases (see Figures 6(a)–6(c)). A similar result holds
for v and u as β increases. We also observed that the density of both u and v can
decrease as γ increases (see Figures 6(b) and 6(d)).
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