
J. Math. Anal. Appl. 321 (2006) 452–468

www.elsevier.com/locate/jmaa

A delayed chemostat model with general nonmonotone
response functions and differential removal rates ✩

Lin Wang, Gail S.K. Wolkowicz ∗

Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, L8S 4K1 Canada

Received 27 June 2005

Available online 15 September 2005

Submitted by William F. Ames

Abstract

A chemostat model with general nonmonotone response functions is considered. The nutrient conversion
process involves time delay. We show that under certain conditions, when n species compete in the chemo-
stat for a single resource that is allowed to be inhibitory at high concentrations, the competitive exclusion
principle holds. In the case of insignificant death rates, the result concerning the attractivity of the single
species survival equilibrium already appears in the literature several times (see [H.M. El-Owaidy, M. Ismail,
Asymptotic behavior of the chemostat model with delayed response in growth, Chaos Solitons Fractals 13
(2002) 787–795; H.M. El-Owaidy, A.A. Moniem, Asymptotic behavior of a chemostat model with delayed
response growth, Appl. Math. Comput. 147 (2004) 147–161; S. Yuan, M. Han, Z. Ma, Competition in the
chemostat: convergence of a model with delayed response in growth, Chaos Solitons Fractals 17 (2003)
659–667]). However, the proofs are all incorrect. In this paper, we provide a correct proof that also applies
in the case of differential death rates. In addition, we provide a local stability analysis that includes suffi-
cient conditions for the bistability of the single species survival equilibrium and the washout equilibrium,
thus showing the outcome can be initial condition dependent. Moreover, we show that when the species
specific death rates are included, damped oscillations may occur even when there is no delay. Thus, the
species specific death rates might also account for the damped oscillations in transient behavior observed in
experiments.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Global asymptotic stability; Nonmonotone response functions; Delay differential equations; Chemostat;
Bistability; Competition; Transient dynamics; Species specific death rates

✩ Research was partially supported by NSERC of Canada.
* Corresponding author.

E-mail address: wolkowic@mcmaster.ca (G.S.K. Wolkowicz).
0022-247X/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2005.08.014



L. Wang, G.S.K. Wolkowicz / J. Math. Anal. Appl. 321 (2006) 452–468 453
1. Introduction

In this paper, we consider the following chemostat model:{
Ṡ(t) = (S0 − S)D − ∑n

j=1 xj (t)fj (S(t)),

ẋj (t) = −Djxj (t) + αjxj (t − τj )fj (S(t − τj )), j = 1,2, . . . , n,
(1.1)

where S(t) denotes the concentration of the nutrient at time t ; S0 denotes the input nutrient
concentration; D represents the washout rate of the nutrient; xj (t) represents the biomass of
the j th population of microorganisms at time t ; Dj , j ∈ N(1, n) := {1,2, . . . , n} represents the
specific removal rate of species xj (Dj = D + εj , where εj is the species specific death rate of
species xj ); fj (S(t)) indicates the consumption rate of nutrient by the j th species; the constant
τj � 0 stands for the time delay in conversion of nutrient to biomass for the j th species. Usually,
as discussed in [6,15], the constant αj = e−Dj τj , and so αjxj (t − τj ) represents the biomass of
those microorganisms in species xj that consume nutrient τj units of time prior to time t and
that survive in the chemostat the τj units of time necessary to complete the nutrient conversion
process. However, in the proofs of this paper, we need only require that the constant αj be
positive. For example, αj = Yj e

−Dj τj , where Yj is a yield constant, or even αj independent of
τj are permitted.

We assume that the growth response functions fj (S) in (1.1) satisfy:

(i) fj :R+ → R+ is continuously differentiable and fj (0) = 0 for each j ∈ N(1, n);
(ii) there exist uniquely defined positive (possibly extended) real numbers λj � μj � ∞ such

that {
αjfj (S) < Dj , if S /∈ [λj ,μj ];
αjfj (S) > Dj , if S ∈ (λj ,μj ).

Note that if Dj = D for j ∈ N(1, n), then (1.1) reduces to{
Ṡ(t) = (S0 − S)D − ∑n

j=1 xj (t)fj (S(t)),

ẋj (t) = −Dxj (t) + αjxj (t − τj )fj (S(t − τj )), j = 1,2, . . . , n,
(1.2)

which was studied in [6,15] in the case of monotone response functions. Model (1.1) is a gener-
alization of the model studied in [2,11,14], where the authors considered nonmonotone response
functions but did not consider delays. An analogous model with monotone response functions
involving distributed delays was investigated in [16,17]. For general theory on chemostat models,
we refer to [12].

Model (1.2) under both assumptions (i) and (ii) when n = 1 was recently analyzed in [18],
where the transient behavior is studied via local and global Hopf bifurcation analysis. In [13],
Wang and Ma considered model (1.2) with n = 2 and they proved that if λ1 < λ2 < S0 < μ1,
then the equilibrium Eλ1 = (λ1, α1(S

0 − λ1),0) of (1.2) is globally attractive in the sense that
all positive solutions converge to Eλ1 . The case with n = 3 was investigated in [4], where the
authors attempted to establish convergence results similar to results in [13]. As well, in [5,19],
the authors tried to obtain global convergence results for an arbitrary number of competitors. As
we will explain in Section 3, the proofs in [4,5,19] are all incorrect.

In this paper, we consider model (1.1). We first establish some preliminary results in Section 2.
Then in Section 3, we provide a correct proof for the attractivity of the single species survival
equilibrium in the case of an arbitrary number of species. In a remark in this section, we point
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out the specific errors in the literature. Global asymptotic stability results are given in Section 4,
where it is also shown that bistability and damped oscillations are possible even in the case of no
delay (i.e., τj = 0). Some numerical simulations are given in Section 5. We conclude this paper
in Section 6 with a discussion.

2. Preliminary results

We denote by C+
n+1 the nonnegative cone of the Banach space of continuous functions

C+
n+1 = {φ = (φ0, φ1, φ2, . . . , φn) : [−r,0] → Rn+1 continuous}, where r = max{τ1, τ2, . . . , τn}.

By the method of steps [1], it can be shown that for each φ ∈ C+
n+1, there is a unique solution of

(1.1) through φ, that we denote by π(φ; t) := (S(φ; t), x1(φ, t), . . . , xn(φ, t)) ∈ R+
n+1, which is

well defined for all t � 0 and satisfies π(φ; ·)|[−r,0] = φ and is positive provided φi(0) > 0, i ∈
N(1, n). Throughout this paper, when we say a solution π(φ; t) or (S(t), x1(t), . . . , xn(t)) of
(1.1) is positive we mean that each component of the solution is positive for all t � 0.

We denote the washout equilibrium ES0 = (S0,0, . . . ,0) and the single species survival equi-
librium

Eλ1 =
(

λ1,
α1(S

0 − λ1)D

D1
,0, . . . ,0

)
.

Let (S(t), x1(t), . . . , xn(t)), t � 0 be an arbitrary positive solution of (1.1). As in [15], we
define

V (t) = S(t) +
n∑

i=1

1

αi

xi(t + τi), t � 0, (2.1)

and Dmax = max(D,D1, . . . ,Dn), Dmin = min(D,D1, . . . ,Dn). Then we have (see [15])

DS0

Dmax
+ ε1(t) � V (t) � DS0

Dmin
+ ε2(t), t � 0, (2.2)

where εi(t) → 0 exponentially for i = 1,2 as t → ∞. This leads to

DS0

Dmax
� α = lim inf

t→∞ V (t) � lim sup
t→∞

V (t) = β � DS0

Dmin
. (2.3)

This implies that V (t) is bounded and all positive solutions of (1.1) are also bounded.
In what follows, we introduce some useful lemmas. Lemma 2.1 is due to Barbălat, which can

be found in [7], and Lemma 2.2 is the so called fluctuation lemma [9].

Lemma 2.1. Let a ∈ (−∞,∞) and f : [a,∞) → R be a differentiable function. If limt→∞ f (t)

exists ( finite) and f ′(t) is uniformly continuous on (a,∞), then limt→∞ f ′(t) = 0.

Lemma 2.2. Let f :R+ → R be a differentiable function. If lim inft→∞ f (t) < lim supt→∞ f (t),
then there are sequences {tm} and {sm} with tm → ∞, sm → ∞ as m → ∞ such that for all m

lim
m→∞f (tm) = lim sup

t→∞
f (t), f ′(tm) = 0

and

lim
m→∞f (sm) = lim inf

t→∞ f (t), f ′(sm) = 0.
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Next we state a result concerning competitor-independent extinction.

Theorem 2.1. If λi � S0, then limt→∞ xi(t) = 0. Moreover, if λi � S0 for all i ∈ N(1, n), then
every solution π(φ; t) of system (1.1) satisfies

lim
t→∞π(φ; t) = (

S0,0, . . . ,0
)
.

Proof. The proof is similar to that of Theorem 4.1 of [15]. �
3. Global attractivity of the single species survival equilibrium

With Theorem 2.1 in mind, we next assume that

λ1 < λj < S0, for all j ∈ N(2, n). (3.1)

For each i ∈ N(1, n), we define

bi := αi

(
DS0

Dmin
− λi

)
, δi := lim inf

t→∞ xi(t), γi := lim sup
t→∞

xi(t).

Lemma 3.1. If (3.1) holds, then

γj := lim sup
t→∞

xj (t) � bj , for all j ∈ N(1, n).

Proof. Since γj = lim supt→∞ xj (t), by Lemma 2.2, there exists a sequence {tm} with tm → ∞
as m → ∞ and

x′
j (tm) = 0, lim

m→∞xj (tm) = lim sup
t→∞

xj (t) = γj .

Notice that by (1.1) and (2.1), we have

ẋj (t) = −Djxj (t) + αjxj (t − τj )fj

(
V (t − τj ) −

n∑
i=1

1

αi

xi(t + τi − τj )

)
. (3.2)

Therefore,

0 = x′
j (tm) = −Djxj (tm) + αjxj (tm − τj )fj

(
V (tm − τj ) −

n∑
i=1

1

αi

xi(tm + τi − τj )

)
,

that is,

fj

(
V (tm − τj ) − 1

αj

xj (tm) −
∑
i �=j

1

αi

xi(tm + τi − τj )

)
= Djxj (tm)

αjxj (tm − τj )
.

Note that γj = lim supt→∞ xj (t). Then for any η > 0, there exists an N > 0 such that when
m > N ,

xj (tm − τj ) < γj + η.

This implies that

fj

(
V (tm − τj ) − 1

αj

xj (tm) −
∑ 1

αi

xi(tm + τi − τj )

)
� Djxj (tm)

αj (γj + η)
, m > N.
i �=j
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Consequently,

lim inf
m→∞ fj

(
V (tm − τj ) − 1

αj

xj (tm) −
∑
i �=j

1

αi

xi(tm + τi − τj )

)
� Djγj

αj (γj + η)
.

Letting η → 0, we obtain

lim inf
m→∞ fj

(
V (tm − τj ) − 1

αj

xj (tm) −
∑
i �=j

1

αi

xi(tm + τi − τj )

)
� Dj

αj

,

which implies that

lim inf
m→∞

[
V (tm − τj ) − 1

αj

xj (tm) −
∑
i �=j

1

αi

xi(tm + τi − τj )

]
� λj .

By virtue of lim supt→∞ V (t) � DS0

Dmin
and xj (t) � 0, we have

DS0

Dmin
− 1

αj

γj � λj ,

which gives the desired

γj = lim sup
t→∞

xj (t) � αj

(
DS0

Dmin
− λj

)
= bj , j ∈ N(1, n). �

Lemma 3.2. If

λ1 < λj < S0 � DS0

Dmin
� μ1, for all j ∈ N(2, n) (3.3)

and

S0D

Dmax
− λ1 >

n∑
j=2

(
S0D

Dmin
− λj

)
(3.4)

hold, then δ1 > 0.

Proof. The proof is similar to that of Lemma 5 in [13] and is omitted here (see also the proof of
Lemma 3.5 in [15]). �
Remark 3.1. The following lemma plays a crucial role in the proof of our convergence result,
Theorem 3.1. It cannot be accomplished by the technique employed in the corresponding lemma
in [15] where only the case of monotone response functions is considered. It is the proof of this
result that is incorrect in [4,5,19] as will be explained in Remark 3.2.

Lemma 3.3. If (3.3) and (3.4) hold, then δj = γj = 0 for all j ∈ N(2, n).

Proof. The proof is divided into several steps.

Step 1. Since (3.3) implies (3.1) holds, by Lemma 3.1, it follows that γj � bj . We show this
implies

δ1 � e1 := α1

[(
DS0

Dmax
− λ1

)
−

n∑(
DS0

Dmin
− λj

)]
.

j=2
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This can be accomplished by considering two cases: δ1 = γ1 and δ1 < γ1.

Case 1.1. δ1 = γ1, i.e., limt→∞ x1(t) exists. Then by Lemma 2.1, we know that limt→∞ x′
1(t) = 0.

By Lemma 3.2, δ1 > 0 and so it follows from (3.2) that

f1

(
V (t − τj ) − 1

α1
x1(t) −

n∑
j=2

1

αj

xj (t + τj − τ1)

)
= D1x1(t) + x′

1(t)

α1x1(t − τ1)
.

Hence,

lim
t→∞f1

(
V (t − τj ) − 1

α1
x1(t) −

n∑
j=2

1

αj

xj (t + τj − τ1)

)
= D1

α1
,

which implies that either

lim
t→∞

[
V (t − τj ) − 1

α1
x1(t) −

n∑
j=2

1

αj

xj (t + τj − τ1)

]
= λ1, (3.5)

or

lim
t→∞

[
V (t − τj ) − 1

α1
x1(t) −

n∑
j=2

1

αj

xj (t + τj − τ1)

]
= μ1. (3.6)

Note that (3.6) can be excluded due to (2.3) and δ1 > 0, therefore,

DS0

Dmax
− 1

α1
δ1 −

n∑
j=2

1

αj

bj � λ1.

Consequently, we have

δ1 � α1

(
DS0

Dmax
− λ1 −

n∑
j=2

(
DS0

Dmin
− λj

))
= e1

as desired.

Case 1.2. δ1 < γ1. By Lemma 2.2, for 0 < ε < δ1, there exists a sequence {tm}, with tm → ∞ as
m → ∞ such that

x′
1(tm) = 0, lim

m→∞x1(tm) = δ1 and x1(tm − τ1) > δ1 − ε > 0.

Then

f1

(
V (tm − τ1) − 1

α1
x1(tm) −

n∑
j=2

1

αj

xj (tm + τj − τ1)

)

= D1x1(tm)

α1x1(tm − τ1)
� D1x1(tm)

α1(δ1 − ε)
.

This implies

lim sup
m→∞

f1

(
V (tm − τ1) − 1

α1
x1(tm) −

n∑ 1

αj

xj (tm + τj − τ1)

)
� D1δ1

α1(δ1 − ε)
.

j=2
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Thus, by continuity of the function f1, for ε > 0 sufficiently small, there exists an N > 0 such

that for m > N , V (tm − τ1) � DS0

Dmax
− ε

3 ,

V (tm − τ1) − 1

α1
x1(tm) −

n∑
j=2

1

αj

xj (tm + τj − τ1) � λ1 + ε

and

x1(tm) � δ1 + α1ε

3
, xj (tm + τj − τ1) � bj + αj ε

3(n − 1)
.

This shows that

DS0

Dmax
− 1

α1
δ1 −

n∑
j=2

1

αj

bj � λ1 + 2ε.

Letting ε → 0, we have

DS0

Dmax
− 1

α1
δ1 −

n∑
j=2

1

αj

bj � λ1,

and thus

δ1 � α1

(
DS0

Dmax
− λ1 −

n∑
j=2

(
DS0

Dmin
− λj

))
= e1.

Step 2. Using δ1 � e1 established in Step 1, we next show that

γj � max
(
0, e

j

2

)
, where e

j

2 := αj

(
DS0

Dmin
− λj − e1

α1

)
.

We consider two cases: δj = γj and δj < γj .

Case 2.1. First we assume that δj = γj . Then we have x′
j (t) → 0 as t → ∞ and it follows from

(3.2) that

fj

(
V (t − τj ) − 1

αj

xj (t) −
n∑

i �=j

1

αi

xi(t + τi − τj )

)
= Djxj (t) + x′

j (t)

αj xj (t − τj )
.

Since the limit on the right-hand side of the above equation exists, it follows from δ1 > 0 that

lim
t→∞

(
V (t − τj ) − 1

αj

xj (t) −
n∑

i �=j

1

αi

xi(t + τi − τj )

)
= λj , or μj .

Note that μj > λj . By (2.3), we have

DS0

Dmin
− 1

αj

γj − 1

α1
δ1 � λj .

This, combined with δ1 � e1, yields

DS0

D
− 1

α
γj − 1

α
e1 � λj .
min j 1



L. Wang, G.S.K. Wolkowicz / J. Math. Anal. Appl. 321 (2006) 452–468 459
Consequently, we have

γj � αj

(
DS0

Dmin
− λj − 1

α1
e1

)
= e

j

2 .

Hence, we have γj � max(0, e
j

2) as desired.

Case 2.2. Assume δj < γj . By Lemma 2.2, given any η > 0, there exists a sequence {tm}, with
tm → ∞ as m → ∞ such that

x′
j (tm) = 0, lim

m→∞xj (tm) = γj , and xj (tm − τj ) < γj + η.

Then it follows from (3.2) that

fj

(
V (tm − τj ) − 1

αj

xj (tm) −
n∑

i �=j

1

αi

xi(tm + τi − τj )

)

= Djxj (tm)

αjxj (tm − τj )
� Djxj (tm)

αj (γj + η)
.

This implies that

lim inf
m→∞ fj

(
V (tm − τj ) − 1

αj

xj (tm) −
n∑

i �=j

1

αi

xi(tm + τi − τj )

)
� Djγj

αj (γj + η)
.

Therefore, letting η → 0, we have

lim inf
m→∞

(
V (tm − τj ) − 1

αj

xj (tm) −
n∑

i �=j

1

αi

xi(tm + τi − τj )

)
� λj .

It follows that

DS0

Dmin
− 1

αj

γj − 1

α1
δ1 � λj ,

and hence

DS0

Dmin
− 1

αj

γj − 1

α1
e1 � λj .

Then, as in Case 2.1, we have γj � max(0, e
j

2).

Step 3. If e
j

2 � 0 for all j ∈ N(2, n), then we are done. Without loss of generality, we assume

that e
j

2 > 0, j = 2,3, . . . , n1 and e
j

2 � 0, j = n1 + 1, . . . , n, where 2 < n1 � n. Then we have

γj � e
j

2 for j ∈ N(2, n1) and γj = 0 for j ∈ N(n1 + 1, n). As in the proof of Step 1, with e
j

2
playing the role of bj , it follows that

DS0

Dmax
− 1

α1
δ1 −

n∑
j=2

1

αj

e
j

2 � λ1.

Therefore, we have
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δ1 � α1

(
DS0

Dmax
− λ1 −

n1∑
j=2

1

αj

e
j

2

)

= α1

(
DS0

Dmax
− λ1 −

n1∑
j=2

(
DS0

Dmin
− λj − e1

α1

))

= α1

(
DS0

Dmax
− λ1 −

n1∑
j=2

(
DS0

Dmin
− λj

))
+ (n1 − 1)e1

� α1

(
DS0

Dmax
− λ1 −

n∑
j=2

(
DS0

Dmin
− λj

))
+ (n1 − 1)e1

= e1 + (n1 − 1)e1 =: e3 > 2e1.

Using the same argument as in Step 2, we can show that if

δ1 � e0 := max

{
α1

(
DS0

Dmin
− λj

)
, j = 2,3, . . . , n

}
,

then γj = 0 for all j ∈ N(2, n). So if e3 � e0, then there is nothing to do. We next assume that
e3 < e0. Then, as for Step 2, we can show that

γj � max
(
0, e

j

4

)
with e

j

4 := αj

(
DS0

Dmin
− λj − 1

α1
e3

)
.

Notice that e3 = n1e1, and so e
j

4 < e
j

2 . If for some j ∈ N(2, n1), e
j

4 � 0, then for such j, γj = 0.
Repeating the above procedure, we can obtain a sequence

e1, e
j

2 (j = 2,3, . . . , n1), e3, e
j

4 (j = 2,3, . . . , n2), . . .

with

n1 � n2 � · · · , e
j

2 > e
j

4 > · · · ,
and

e
j

2k = αj

(
DS0

Dmin
− λj − e2k−1

α1

)
, e2k+1 = e1 + (nk − 1)e2k−1, k = 1,2, . . . .

Since DS0

Dmin
− λj and e0 are finite, then after a finite number of steps, say, after obtaining e2k+1

for some k ∈ N , we either have all e
j

2(k+1) � 0 or e2k+3 � e0. This implies that γj = 0 for all
j ∈ N(2, n) and the proof is complete. �

We are now in the position to state our result concerning the attractivity of Eλ1 .

Theorem 3.1. Assume that (3.3) and (3.4) hold. If 0 < D1 < 2D, then every solution π(φ; t) of
(1.1) satisfies

lim
t→∞π(φ; t) = Eλ1 . (3.7)

Proof. As in [15], it suffices to show that

lim
t→∞

(
V (t), x1(t)

) =
(

S0 + (D − D1)(S
0 − λ1)

,
α1(S

0 − λ1)D
)

. (3.8)

D1 D1
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Note that (V (t), x1(t)) satisfies the following differential equations:

V̇ (t) = −DV (t) + D − D1

α1
x1(t) + DS0 − ε1(t),

ẋ1(t) = −D1x1(t) + α1x1(t − τ1)f1

(
V (t − τ1) − 1

α1
x1(t) − ε2(t)

)
, (3.9)

where

ε1(t) =
n∑

j=2

Dj − D

αj

xj (t + τj ) and ε2(t) =
n∑

j=2

1

αj

xj (t + τj − τ1).

By Lemma 3.2, we know εi(t) → 0, i = 1,2 as t → ∞. We next show that

β − α � γ1 − δ1

α1
, (3.10)

where α and β are defined in (2.3). For any ε > 0, we can find a sequence {tm} with tm → ∞ as
m → ∞ such that

lim
m→∞x1(tm) = γ1, x′

1(tm) = 0, x1(tm − τ1) � γ1 + ε.

Then it follows from the second equation of (3.9) that

f1

(
V (tm − τ1) − 1

α1
x1(tm) − ε2(tm)

)
= D1x1(tm)

α1x1(tm − τ1)
� D1x1(tm)

α1(γ1 + ε)
,

which implies

lim inf
m→∞ f1

(
V (tm − τ1) − 1

α1
x1(tm) − ε2(tm)

)
� D1γ1

α1(γ1 + ε)
.

Letting ε → 0, we have

lim inf
m→∞ f1

(
V (tm − τ1) − 1

α1
x1(tm) − ε2(tm)

)
� D1

α1
.

This implies there is a subsequence {tmk
} of {tm} such that

tmk
→ ∞, as k → ∞,

and

lim inf
m→∞ f1

(
V (tm − τ1) − 1

α1
x1(tm) − ε2(tm)

)

= lim
k→∞f1

(
V (tmk

− τ1) − 1

α1
x1(tmk

) − ε(tmk
)

)

� D1

α1
.

Therefore, we have

lim
k→∞

(
V (tmk

− τ1) − 1

α1
x1(tmk

) − ε(tmk
)

)
∈ [λ1,μ1],

i.e.,

lim

(
V (tmk

− τ1) − 1
γ1

)
� λ1.
k→∞ α1
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This shows

lim sup
t→∞

V (t) = β � lim
k→∞V (tmk

− τ1) � λ1 + γ1

α1
. (3.11)

Similarly, we can show that

α � δ1

α1
+ λ1. (3.12)

Then (3.10) follows from (3.11) and (3.12). The rest of the proof is similar to the last part of the
proof of Lemma 4.3 in [15] and we omit the details here. �

Applying the above theorem to model (1.2), we immediately have the following result.

Corollary 3.1. If

λ1 < λj < S0 < μ1 for all j ∈ N(2, n), (3.13)

and

S0 − λ1 >

n∑
j=2

(
S0 − λj

)
, (3.14)

hold, then every positive solution π(φ; t) of (1.2) satisfies

lim
t→∞π(φ; t) = (

λ1, α1
(
S0 − λ1

)
,0, . . . ,0

)
. (3.15)

Proof. In model (1.2), Dmin = Dmax = Dj = D, j ∈ N(1, n). Then (3.3) and (3.4) reduce to
conditions (3.13) and (3.14), respectively, and 0 < D1 = D < 2D holds automatically. Therefore
the conclusion follows. �
Remark 3.2. Here we discuss some errors in [4,5,19]. In these papers, the authors attempted
to generalize the results given in [15] to the case with nonmonotone response functions, as in
Corollary 3.1. Essentially, the same type of mistakes occurred in [4,5]. More specifically, the
assertions (4) of [4] and (3.1) of [5] were incorrect. We also noticed that there was a mistake
in [19]. Throughout, it was stated that the response functions were not necessarily monotone,
but in the 6th line of the proof of [19, Lemma 3.3, p. 664], the monotonicity of fj was used to
derive an inequality which was crucial for the proof of their main result. In fact, the proof in [19]
was very much the same as that of [15], where the monotonicity played an important role. Here
in this paper, we establish Lemma 3.3 using a new approach that enables us to finally provide a
correct proof.

4. Global stability, bistability and damped oscillations

4.1. Global stability

Note that in Theorem 3.1, we obtain the attractivity of the single species survival equilib-
rium Eλ1 . To show that Eλ1 is globally asymptotically stable, it only remains to prove Eλ1 is
locally asymptotically stable.
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Lemma 4.1. Eλ1 is locally asymptotically stable provided that λ1 < S0 and λ1 < λj for all
j ∈ N(2, n).

Proof. The characteristic equation of the linearization of (1.1) at Eλ1 is Δ(λ) = 0, with

Δ(λ) = Δ1(λ)

n∏
j=2

(
λ + Dj − αjfj (λ1)e

−λτj
)
,

where

Δ1(λ) := λ2 + [
(1 + k)D1 + kb

]
λ − (

kD2
1 + D1λ

)
e−λτ1 + kD1(D1 + b)

with k := D
D1

, b := α1(S
0 − λ1)f

′(λ1) > 0. Note that λ1 < λj , j ∈ N(2, n), i.e., λ1 /∈ [λj ,μj ],
j ∈ N(2, n). This implies αjfj (λ1) < αjfj (λj ) = Dj for all j ∈ N(2, n). Then by Haye’s theo-
rem [1], all roots of

λ + Dj − αjfj (λ1)e
−λτj , j ∈ N(2, n),

have only negative real parts. It is only left to show that all roots of Δ1(λ) = 0 have negative real
parts. It is easy to show this is true when k = 1, i.e., D = D1. It is also clear that λ = 0 is not a
root of Δ1(λ) = 0. Thus by Theorem 2.1 of [3], it suffices to show that Δ1(λ) = 0 does not admit
a purely imaginary root. In fact, if iω (ω > 0) is a root of Δ1(λ) = 0, then we have, by separating
the real and imaginary parts,

−ω2 + kD2
1 + kbD1 − ωD1 sin(ωτ1) − kD2

1 cos(ωτ1) = 0 (4.1)

and

(1 + k)D1ω + kbω − ωD1 cos(ωτ1) + kD2
1 sin(ωτ1) = 0. (4.2)

From (4.1) and (4.2), we obtain

−ω2 + kD2
1 + kbD1 = ωD1 sin(ωτ1) + kD2

1 cos(ωτ1) (4.3)

and

(1 + k)D1ω + kbω = ωD1 cos(ωτ1) − kD2
1 sin(ωτ1). (4.4)

Squaring both sides of (4.3) and (4.4) and adding, we have

ω2[kb + (1 + k)D1
]2 + (

kD2
1 + kbD1 − ω2)2 = ω2D2

1 + k2D4
1,

which leads to

ω4 + Bω2 + C = 0, (4.5)

with

B = [
kb + (1 + k)D1

]2 − D2
1 − 2

(
kD2

1 + kbD1
)

and C = (
kD2

1 + kbD1
)2 − k2D4

1 .

Letting y = ω2 > 0, we can write (4.5) as

F(y) = y2 + By + C = 0. (4.6)

Noting that b = α1(S
0 − λ1)f

′(λ1) > 0, we have F(0) = C > 0. Also noting that

B = [
kb + (1 + k)D1

]2 − D2
1 − 2

(
kD2

1 + kbD1
) = (kb + kD1)

2 > 0,
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we conclude that F(y) = 0 for y = ω2 is impossible. Therefore Δ1(λ) = 0 has no purely imagi-
nary roots and thus all roots of Δ(λ) = 0 have negative real parts. The proof is complete. �

Theorem 3.1 and Lemma 4.1 immediately give the following global stability result.

Theorem 4.1. Consider model (1.1). The equilibrium Eλ1 is globally asymptotically stable with
respect to C+

n+1 provided that 0 < D1 < 2D, (3.3) and (3.4).

Corollary 4.1. Consider model (1.2). If (3.13) and (3.14) hold, then Eλ1 = (λ1, α1(S
0 − λ1),

0, . . . ,0) is globally asymptotically stable with respect to C+
n+1.

4.2. Bistability

Note that in Theorem 4.1 and Corollary 4.1, S0 is assumed to be less than μ1. In fact, as can be
seen from the following lemma, it is possible for system (1.1) to have two asymptotically stable
equilibria when S0 > μ1, and hence the single species survival equilibrium Eλ1 is not globally
asymptotically stable. Suppose that S0 > μ1. Then system (1.1) admits at least three nonnegative

equilibrium points, namely, Eλ1,ES0 ,Eμ1 , where Eμ1 = (μ1,
α1(S

0−μ1)D
D1

,0, . . . ,0).

Lemma 4.2. Assume that λ1 < μ1 < S0 and λ1 < λj < μj < S0 for all j ∈ N(2, n). Then Eλ1

and ES0 are both locally asymptotically stable.

Proof. It is shown in Lemma 4.1 that Eλ1 is locally asymptotically stable. We only need show
that ES0 is also locally asymptotically stable. Linearizing (1.1) about ES0 , we obtain the charac-
teristic equation

Δ(λ) = (λ + D)

n∏
j=1

(
λ + Dj − αjfj

(
S0)e−λτj

) = 0. (4.7)

Note that λj < μj < S0 for all j ∈ N(1, n). This yields αjfj (S
0) < Dj , j ∈ N(1, n). By Hayes’s

theorem, we know that for each j ∈ N(1, n), equation λ+Dj −αjfj (S
0)e−λτj = 0 allows roots

with negative real parts only. This shows that all roots of Eq. (4.7) have negative real parts. Thus
the equilibrium ES0 of model (1.1) is locally asymptotically stable. �
Remark 4.1. The bistability result stated in Lemma 4.2 implies that initial condition dependent
outcome in the chemostat is possible. This phenomenon never happens in the case when the
response functions are monotone.

4.3. Damped oscillations

It is well known that if all removal rates are equal and the response functions are monotone,
in the ODE system corresponding to (1.2), i.e., τj = 0, j ∈ N(1, n), if λ1 < S0, then every
positive solution ultimately converges to the single species survival equilibrium monotonically.
It is interesting to note that when there are differential removal rates, even in the no delay case
with monotone response functions, it is possible for Δ1(λ) to have complex roots resulting in
damped oscillations. In fact, when τ1 = 0, Δ1(λ) reduces to
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Δ1(λ) = λ2 + [
(1 + k)D1 + kb

]
λ − (

D1λ + kD2
1

) + kD1(D1 + b)

= λ2 + k(b + D1)λ + kbD1,

with discriminant given by

Δ2 = k2(D1 + b)2 − 4kbD1 = k
[
(b + D1)

2k − 4bD1
]
.

Clearly, Δ2 is negative when k ∈ (
0, 4bD1

(b+D1)
2

) ⊂ (0,1). This implies that whenever D1 > D and
D
D1

∈ (
0, 4bD1

(b+D1)
2

) ⊂ (0,1), the characteristic equation of (1.1) always has complex roots with

negative real parts, which results in damped oscillations near the stable equilibrium Eλ1 . This
fact may partially explain why the transient behavior in some chemostat experiments involves
damped oscillations, as some biological data seems to indicate (see [8]).

5. Numerical simulations

In this section, we present some numerical simulations. Throughout this section, the response
functions fi(S) = miDiS

(ai+S)(bi+S)
, i = 1,2,3, are used. The three response functions are all non-

monotone and Theorem 3.9 of [15] does not apply.

Example 1. Letting D = 1.0, D1 = 1.5, D2 = 1.2, D3 = 0.9, S0 = 6.0, τ1 = 0.2, τ2 = 0.05, τ3 =
0.04, a1 = b1 = 2, a2 = b2 = 7.2, a3 = b3 = 7.5, m1 = 20, m2 = 32, m3 = 32, we obtain λ1 =
0.3834, μ1 = 10.4330, λ2 = 4.6951, λ3 = 5.3454 and DS0

Dmax
−λ1 = 3.6166 > DS0

Dmin
−λ2 + DS0

Dmin
−

λ3 = 3.2930. Theorem 4.1 applies. Hence, the equilibrium point Eλ1 = (0.3834,2.7739,0,0)

is globally asymptotically stable and all positive solutions of (1.1) with the above choice of
parameters converge to Eλ1 (see Fig. 1).

Example 2. We use the same parameters as in Example 1 except we choose S0 = 16, which is
now bigger than μ1. As can be seen from Fig. 2, the asymptotic behavior of (1.1) is initial con-
dition dependent. For some initial conditions, x1 is still the final survivor (see Fig. 2(a)) and for
some initial conditions, all species will be washed out and no species can survive (see Fig. 2(b)).

Fig. 1. Numerical simulations of Example 1. Initial data: S(θ) = 0.6, x1(θ) = 2.0, x2(θ) = 2.2, x3(θ) = 1.5 for
θ ∈ [−0.2,0].
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Fig. 2. Numerical simulations of Example 2. Initial data: (a) S(θ) = 0.6, x1(θ) = 2.0, x2(θ) = 5.5, x3(θ) = 8.5 for
θ ∈ [−0.2,0]; (b) S(θ) = 0.6, x1(θ) = 0.3, x2(θ) = 0.25, x3(θ) = 0.15 for θ ∈ [−0.2,0].

Fig. 3. (Left): Damped oscillations in the ODE system (5.1) given in Example 3. Initial data: S(0) = 1.0002, x(0) = 0.05;
(right): Damped oscillations in the DDE system (5.2) given in Example 4 with τ = 0.02. Initial data: S(θ) = 1.0002,
x(θ) = 0.05 for θ ∈ [−0.02,0].

Example 3. Here we provide an example illustrating damped oscillations in the associated ODE
(no delay). Let n = 1, τ1 = 0, and α1 = 1 in (1.1). This results in a two-dimensional system

S′(t) = (
S0 − S

)
D − x1(t)f1

(
S(t)

)
,

x′
1(t) = −D1x1(t) + x1(t)f1

(
S(t)

)
. (5.1)

Let S0 = 3, D1 = 4, f1(s) = 36s

(2+s)2 . Then, we obtain λ1 = 1 and b := (S0 − λ1)f
′
1(λ1) = 8

3 . The

characteristic equation of the linearization of (5.1) about Eλ1 is Δ1(λ) = λ2 + 20
3 kλ + 32

3 k = 0,
which has two complex roots with negative real parts provided k ∈ (0,0.96). That is, whenever
D ∈ (0,3.84), damped oscillations near Eλ1 appear due to the existence of two complex roots.
This is shown in Fig. 3 (left), where D = 1

16 , k = 1
64 ∈ (0,0.96), and Δ1(λ) = 0 has the two

complex roots: −0.05208 ± 0.4049i.

Example 4. Next we illustrate how introduction of a small delay affects the damped oscillations
in the previous example. We keep all parameters the same as in Example 3 except we let τ1 =
0.02, and α1 = e−D1τ1 . Then we have
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S′(t) = (
S0 − S

)
D − x1(t)f1

(
S(t)

)
,

x′
1(t) = −D1x1(t) + α1x1(t − τ1)f1

(
S(t − τ1)

)
. (5.2)

Again, we expect there are damped oscillations as confirmed in Fig. 3 (right). It is interesting
to note that the introduction of a small delay increased both the period and the amplitude of the
oscillations, and decreased the limiting biomass of the species.

6. Discussion

In this paper, we considered a delayed chemostat model (i.e., model (1.1)) with differential
removal rates and with nonmonotone response functions. We showed that under certain condi-
tions the single species survival equilibrium Eλ1 is globally asymptotically stable and hence the
competitive exclusion principle holds.

The statement of one of our results, Corollary 3.1 has appeared in [19] and in special cases in
[4,5]. The proof in each case required Lemma 3.3, but this was proved incorrectly as explained
in Remark 3.2. We provided a correct proof of Lemma 3.3 in this paper.

We also analyzed local stability for the single species survival equilibrium Eλ1 and the
washout equilibrium ES0 . Bistability is possible when S0 > μ1, which leads to initial condition
dependent outcome of the competition. This is confirmed by our numerical simulations given
in Example 2. This initial condition dependent outcome does not occur in analogous models
with monotone response functions. This shows in the case of nonmonotone response functions,
when S0 > μ1, richer dynamics are possible. Indeed, when n = 1 in (1.2) with α1 = e−Dτ1 , it
is recently showed in [18] that Hopf bifurcations occur at critical values of the delay and the
bifurcating periodic solutions persist when S0 > μ1.

One of the reasons for including delay in the basic chemostat model (see [2,10] when the
death rates are assumed to be insignificant compared to the dilution rate) was to try to account
for differences between the model’s predictions and the actual behavior seen in experiments. In
particular, in experiments reported in [8], damped oscillatory convergence to the survival equi-
librium was observed, whereas the basic model predicted monotone convergence. As well in
experiments the species that died out, did so much faster than predicted by the basic model.
Surprisingly, it is enough to allow differential removal rates to obtain damped oscillatory conver-
gence to the survival equilibrium. Numerical simulations also showed that the more significant
the death rates are, the faster the losing species died out. If in addition, a small delay is intro-
duced, we observed, in our numerical simulations, an increase in the amplitude and period of
the damped oscillations and it took longer for the oscillations to become difficult to observe.
More experimental work is necessary to determine which it is, the delay or the species specific
death rates or some combination of both that can help to account for the damped oscillations in
experiments.

Note that our results allow the constants αj ’s to be quite general. Mathematically, model (1.1)
is a generalization of the model considered in [5,15,19]. Our results predicted that at most one
competitor survives, the competitor with the lowest break-even value. If the constants αj , j ∈
N(1, n) are independent of the delays τj , j ∈ N(1, n), then the break-even values λj , j ∈ N(1, n)

do not depend on the corresponding delays τj , j ∈ N(1, n) and hence the global convergence
results established in Theorem 3.1 and Corollary 3.1 are also independent of delays τj , j ∈
N(1, n). This implies that the delays do not affect the outcome in this case. On the other hand, if
the constants αj , j ∈ N(1, n) depend on the delays, for instance, as in [15], in (1.1) αj = e−Dj τj ,
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then the break-even values do depend on τj ’s and hence omitting appropriate delays in the model
could lead to an incorrect prediction of the ultimate survival.
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