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Abstract. We study a model of the chemostat with two species competing for two perfectly
substitutable resources in the case of linear functional response. Lyapunov methods are used
to provide sufficient conditions for the global asymptotic stability of the coexistence equilib-
rium. Then, using compound matrix techniques, we provide a global analysis in a subset of
parameter space. In particular, we show that each solution converges to an equilibrium, even
in the case that the coexistence equilibrium is a saddle. Finally, we provide a bifurcation
analysis based on the dilution rate. In this context, we are able to provide a geometric inter-
pretation that gives insight into the role of the other parameters in the bifurcation sequence.

1. Introduction

The classical theory of ecological competition is attributed to Lotka [26] andVolter-
ra [37] and is an extension of the basic logistic model of single-species growth due
to Verhulst [36]. Models in this class describe how the biomass of each competitor
changes without specifying the resources upon which competition is based or how
these resources are used by the competitors. The lack of such considerations yields
models that are more general than would otherwise be obtained. However, since the
parameters governing the interactions cannot be measured without actually grow-
ing the species together in competition, the models are more phenomenological
than predictive.

In response, a more mechanistic, resource-based theory of ecological compe-
tition has been developed (see, for example, [15,21,28,31,34]). Both consumer-
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resource interactions and competitive interactions are captured by incorporating the
resources into the models. As a result, these models are often less general and more
difficult to analyze (see, for example, [2,3,17]). However, they are predictive, since
the parameters of the models can be measured on species grown alone in advance
of competition (see, for example, [13]). The model that we will be considering is
an example of this resource-based approach.

There are many articles devoted to such studies; as an incomplete sample, we
mention [2,3,7,10,12,14,16–18,21,22,32,33,35]. When considering the impact
of supplying multiple resources in growth-limiting amounts, it becomes necessary
to consider how the resources are used for growth by the individual competitors.
Léon and Tumpson [21] and Rapport [30] classify resources in terms of consumer
needs, and obtain a spectrum of resource types. At one extreme are the essential
resources. These fulfill different requisite needs for growth, and they must be taken
together by the consumer. For example, a nitrogen source and a carbon source might
be classified as essential for a bacterium. Related studies include [7,16,18,21,22,
30,38]. At the other extreme are the perfectly substitutable resources, which are
alternative sources of the same requisite nutrient. Examples for a bacterium may
include two carbon sources or two sources of nitrogen. Related studies include [3,
4,29,38]. Nutrients that fall into neither of these categories fill out the spectrum
and are referred to as imperfectly substitutable.

In this paper we consider a model of competition between two species for two
perfectly substitutable resources in a chemostat. The competition is assumed to
be exploitative, so that the species compete only by consuming the common pool
of resources. We focus on functional responses that are strictly monotone increas-
ing functions of resource concentrations, and further assume that the amount of
each resource consumed is independent of the concentration of the other resource.
The resultant model corresponds to Model I of Léon and Tumpson [21] adapted
to the chemostat and restricted to the case of non-reproducing resources. It is also
a special case of the model studied in [3], where the possible inhibitory effects
that the concentration of one resource may have on the consumption of the other
resource were considered. Assuming the existence of an interior equilibrium, Léon
and Tumpson [21] derive necessary and sufficient conditions for its local asymptotic
stability. In the case of linear response functions, we complete the local analysis
of the coexistence equilibrium by ruling out Hopf bifurcations (using compound
matrices) and all other local bifurcations that do not involve interaction with the
boundary of the positive cone. Though the assumption of linear uptake might appear
to be restrictive, such a system is of interest to those studying adaptive dynamics [9].
We then provide sufficient conditions for global asymptotic stability of the coexis-
tence equilibrium using Lyapunov methods. Further, recent advances in the theory
of compound matrices combined with bifurcation theory have allowed us to provide
a complete global analysis in a different subset of parameter space. This includes
but is not limited to the case in which the coexistence equilibrium is a saddle.
Finally, we provide a bifurcation analysis based on the dilution rate in the subset of
parameter space dictated by the theory of compound matrices, and give a geometric
interpretation.
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2. The Model

The chemostat is a laboratory apparatus designed to provide a controlled envi-
ronment in which to study the growth of microorganisms under nutrient limita-
tion [28]. It can be thought to consist of three vessels: a feed vessel, a culture
vessel, and a waste receptacle (though there are other possibilities, as described in
the remark at the end of this section). The feed vessel contains all required nutrients
at near-optimal amounts with the exception of those under investigation. These are
maintained at growth-limiting amounts. The contents of the feed vessel are supplied
to the culture vessel at a constant rateD, while the medium in the culture vessel is
removed to the waste receptacle at the same rate. Thus, constant volume is main-
tained. The culture vessel, which has been inoculated with one or more populations
of microorganisms, is continuously stirred. Thus, nutrients, microorganisms, and
byproducts are removed in proportion to their concentrations.

To simplify notation, for the remainder of the paper we will assume that the
flow rates have been scaled by the volume of the culture vessel. The concentra-
tion of resource S (respectively, resource R) in the feed vessel is denoted S0 > 0
(respectively, R0 > 0). We will allow for the possibility that the resources in the
culture vessel are depleted through some process additional to consumption or
removal to the waste receptacle, with corresponding rates αS and αR . This is done
for mathematical completeness, since it does not complicate the presentation. The
rate at which resource S (respectively, R) is removed from the culture vessel in the
absence of microorganisms is then DS = D + αS (respectively, DR = D + αR).
Scaling S0 by DS

D
and R0 by DR

D
, the dynamical system in the two-competitor case

can be written as

S′ = (S0 − S)DS − 1

ξ1
x1p1(S)− 1

ξ2
x2p2(S),

R′ = (R0 − R)DR − 1

η1
x1q1(R)− 1

η2
x2q2(R),

x′
1 = x1 (−D1 + G1(S, R)) , (2.1)

x′
2 = x2 (−D2 + G2(S, R)) ,

S(0), R(0), x1(0), x2(0) ≥ 0.

We denote a solution to equation (2.1) by ϕ(t) = (S(t), R(t), x1(t), x2(t)). If one
assumes that the volume of suspension in the culture vessel is one cubic unit, then
the quantities in these equations are described as follows. The concentrations of
resources S and R in the culture vessel at time t are represented by S(t) and R(t),
respectively, while xi(t) is the biomass of the ith population of microorganisms in
the culture vessel at time t , i = 1, 2. Each species of microorganism has a natural
individual death rate. Combined with the rate at which individuals are removed to
the waste receptacle, the biomass of population i is removed from the dynamics at
rate Dixi for i = 1, 2.

We have assumed that the conversion of nutrient to biomass is proportional to the
amount of nutrient consumed. The function pi(S) describes the rate of conversion
of nutrient S to biomass of population i per unit of population i, with corresponding
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growth yield constant ξi �= 0. Similarly, the function qi(R) describes the rate of
conversion of nutrient R to biomass of population i per unit of population i, with
corresponding growth yield constant ηi �= 0. Since resources S and R are perfectly
substitutable, the rate of consumption of nutrient to biomass is made up of a con-
tribution from the consumption of resource S as well as a contribution from the
consumption of resource R. Therefore,

Gi (S, R) = pi(S)+ qi(R).

Generally, pi, qi : R+ → R+ are assumed to be C1 with

pi(0) = 0, p′
i (S) > 0 for S > 0,

qi(0) = 0, q ′
i (R) > 0 for R > 0,

(2.2)

for i = 1, 2.
Define λi and µi so that

Gi (λi, 0) [= pi(λi)] = Di and Gi (0, µi) [= qi(µi)] = Di.

Thus λi andµi represent the breakeven concentrations for population i on resources
S and R, respectively, when none of the other resource is available. By the mono-
tonicity of pi(S), λi is a uniquely defined extended positive real number provided
we assume that λi = ∞ if Gi (S, 0) < Di for all S ≥ 0. A similar statement can be
made for µi and qi(R).

Under these assumptions, system (2.1) reduces to Model I of Léon and Tump-
son [21] adapted to the chemostat and restricted to the case of non-reproducing
resources. Model (2.1) also occurs as a special case of the model studied in [3],
where the possible inhibitory effects that the concentration of one resource may
have on the consumption of the other resource were considered. So as not to detract
from the main results of the present paper, we summarize the relevant results in this
general setting of monotone functional response in Section 3. In Section 4 we then
further specify that the uptake functions pi(S) and qi(R) be linear. In this context
we are able to obtain a complete understanding of the global dynamics of the model
for a subset of the parameter space.

Remark. We note here that, as shown in [7], this model is also appropriate for the
situation in which two feed vessels are used. Then, D is the sum of the flow rates
from the two feed vessels, and S0 and R0 are the input concentrations of the two
resources, measured in terms of the total input flow rate. ��

3. General monotone response

Assuming the existence of an interior equilibrium, Léon and Tumpson [21] derive
necessary and sufficient conditions for its local asymptotic stability and hence for
coexistence of competitors. More specifically, they find that a coexistence equilib-
rium will be locally asymptotically stable if and only if[(

∂S′

∂x1

)(
∂R′

∂x2

)
−
(
∂S′

∂x2

)(
∂R′

∂x1

)][(
∂x′

1

∂S

)(
∂x′

2

∂R

)
−
(
∂x′

1

∂R

)(
∂x′

2

∂S

)]
> 0

(3.1)
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when evaluated at the coexistence equilibrium. Physically, the competitors coex-
ist if at equilibrium each of them removes at a higher rate that resource which
contributes more to its own rate of growth [21].

Proceeding with our analysis, we note that all solutions of (2.1) are non-negative
and bounded for positive time. These are minimum requirements for a reasonable
model of the chemostat.

Theorem 3.1. (a) All solutions of (2.1) for which xi(0) > 0, i = 1, 2, are positive
and bounded for t > 0.

(b) Given any δ > 0, each solution of (2.1) satisfies S(t) < S0 + δ and R(t) <
R0 + δ for all sufficiently large t .

(c) If there exists t0 ≥ 0 such that S(t0) < S0, then S(t) < S0 for all t > t0. A
similar result holds for R(t).

Theorem 3.1 is adapted from Theorem 3.2 of [3]. The proof of (a) is similar to
the proof given in [6]. The proofs of (b) and (c) are immediate from (2.1). In fact,
letting

z(t) = S(t)+ R(t)+ x1(t)

max{ξ1, η1} + x2(t)

max{ξ2, η2}
it can be shown that for t > 0

z(t) ≤
{
(S0DS + R0DR)/D0 if z(0) < (S0DS + R0DR)/D0,

z(0) otherwise,

where D0 = min{DS,DR,D1,D2}. Let

� =
{
(S, R, x1, x2) ∈ int (R4

+) : S<S0, R<R0, z<
S0DS + R0DR

D0

}
. (3.2)

Proposition 3.2. Under the flow described by equation (2.1), each solution begin-
ning in �, remains in � for all finite time.

Three of the critical points of the full four-dimensional system are readily deter-
mined: the washout equilibrium E0 = (S0, R0, 0, 0), and the single-species equi-
libriaE1 = (S̄1, R̄1, x̄1, 0) andE2 = (S̄2, R̄2, 0, x̄2). If any other equilibria of (2.1)
exist, they must be interior equilibria. We move now to the question of existence,
uniqueness and stability of equilibria of each type. In what follows, ∂f

∂x
denotes the

variational matrix of (2.1) evaluated at a general point (S, R, x1, x2). It is given by

∂f

∂x
=



−DS −∑2

i=1
1
ξi
xip

′
i (S) 0 − 1

ξ1
p1(S) − 1

ξ2
p2(S)

0 −DR−∑2
i=1

1
ηi
xiq

′
i (R) − 1

η1
q1(R) − 1

η2
q2(R)

x1p
′
1(S) x1q

′
1(R) G1(S, R)−D1 0

x2p
′
2(S) x2q

′
2(R) 0 G2(S, R)−D2


 .

(3.3)

There are only two three-dimensional subsystems of (2.1) of interest. Each in-
volves one population of microorganisms consuming the two non-reproducing, per-
fectly substitutable resources in the absence of the other population. Theorem 3.10
of [3] yields the following.
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Theorem 3.3. Fix i, j ∈ {1, 2} with i �= j .

(a) If Gi (S0, R0) ≤ Di , then E0 is globally asymptotically stable for (2.1) with
respect to all solutions for which xj (0) = 0.

(b) If Gi (S0, R0) > Di , then the single-species equilibrium Ei exists and is
unique. Furthermore,Ei is globally asymptotically stable for (2.1) with respect
to all solutions for which xi(0) > 0, and xj (0) = 0.

The washout equilibriumE0 always exists and is clearly the only equilibrium for
which x1 = x2 = 0. The eigenvalues of ∂f

∂x
(E0) are −DS , −DR , G1(S

0, R0)−D1,
and G2(S

0, R0)−D2. If G1(S
0, R0) < D1 and G2(S

0, R0) < D2, thenE0 is locally
asymptotically stable. If either G1(S

0, R0) > D1 or G2(S
0, R0) > D2, then E0 is

unstable, and by Theorem 3.3(b) a unique single-species equilibrium exists in the
corresponding three-dimensional subsystem.

Now assume that G1(S
0, R0) > D1 so that, by Theorem 3.3(b), E1 = (S̄1, R̄1,

x̄1, 0) exists and is unique. The characteristic polynomial of ∂f
∂x
(E1) is given by

(
α − [G2(S̄1, R̄1)−D2

]) (
α3 + A1α

2 + A2α + A3

)
,

where α3 + A1α
2 + A2α + A3 is the characteristic polynomial of the variational

matrix for the three-dimensional subsystem corresponding to the absence of popu-
lation x2 evaluated at (S̄1, R̄1, x̄1). Since this equilibrium is globally asymptotically
stable in this subsystem (again by Theorem 3.3(b)), the corresponding eigenvalues
have non-positive real part. In fact, since the amount of each resource consumed is
independent of the concentration of the other resource, the eigenvalues have nega-
tive real part. (See the relevant discussion on page 157 of [3].) Thus E1 is locally
asymptotically stable with respect to the full four-dimensional system provided
G2(S̄1, R̄1) < D2 and unstable whenever G2(S̄1, R̄1) > D2. A similar results holds
for E2.

Theorems 3.4 and 3.5 pertain to competition-independent extinction of one or
both populations (due to an inadequate supply of resource). The first follows from
Theorem 3.4 of [3]. The second then follows from Theorems 3.3(b) and 3.4(a) of
this work.

Theorem 3.4. (a) If Gi (S0, R0) < Di for some i ∈ {1, 2}, then xi(t) → 0 as
t → ∞.

(b) If xi(t) → 0 as t → ∞ for i = 1, 2, then E0 is globally asymptotically stable
for (2.1).

Theorem 3.5. Fix i, j ∈ {1, 2} with i �= j . Suppose Gi (S0, R0) > Di and
Gj (S0, R0) < Dj . Then Ei is globally asymptotically stable for (2.1) with respect
to all solutions for which xi(0) > 0 and xj (0) ≥ 0.

Thus, the dynamics of system (2.1) can readily be determined when the resource
supply is inadequate for one or both populations. We turn now to the more challeng-
ing problem in which Gi (S0, R0) > Di for i = 1, 2. Conditions for the existence
of an interior (coexistence) equilibrium E∗ = (S∗, R∗, x∗

1 , x
∗
2 ) will be outlined in

the remainder of this section. The balance of the paper is then devoted to the global



464 M.M. Ballyk et al.

dynamics of system (2.1) when the resource supply is adequate for each population
in the absence of its competitor.

Theorem 3.6. Suppose Gi (S0, R0) > Di for i = 1, 2. Then E0 is not an omega
limit point of any solution to (2.1) for which xi(0) > 0, i = 1, 2.

Proof. Choose X = (S(0), R(0), x1(0), x2(0)) with xi(0) > 0, i = 1, 2. Since
solutions to (2.1) are bounded in forward time, the omega limit set 	(X) is a
non-empty compact set which is invariant with respect to system (2.1).

Suppose E0 ∈ 	(X). Since Gi (S0, R0) > Di for i = 1, 2, E0 is an unstable
hyperbolic critical point. From (2.1) it is clear that E0 is globally attracting with
respect to all solutions initiating in its stable manifold M+(E0) = {(S, R, 0, 0) ∈
R

4+}. Furthermore, each solution inM+(E0)\{E0} is unbounded for negative time.
Since X �∈ M+(E0), 	(X) contains more than just E0. Therefore, by the Butler-
McGehee Lemma (see Lemma A1 of [11]) there exists P ∈ (M+(E0) \ {E0}) ∩
	(X) and hence O(P ) ⊂ 	(X) where O(P ) denotes the entire orbit through P .
But then as t → −∞, O(P ) is unbounded, contradicting the fact that 	(X) is
bounded. Therefore E0 �∈ 	(X). ��
Corollary 3.7. Suppose Gi (S0, R0) > Di for i = 1, 2. Then any solution to equa-
tion (2.1) for which xi(0) > 0, i = 1, 2 satisfies inf t≥0 max{x1(t), x2(t)} > 0.

Thus, we know that each solution for which xi(0) > 0, i = 1, 2 is bounded
away from the set for which x1 = x2 = 0. The next theorem says that there is a
uniform bound.

Theorem 3.8. Suppose Gi (S0, R0) > Di for i = 1, 2. Then there exists β > 0
such that any solution to equation (2.1) for which xi(0) > 0, i = 1, 2 satisfies
lim inf t→∞ max{x1(t), x2(t)} ≥ β.

The proof is similar to but simpler than the proof in [5] which uses compact
isolating neighbourhoods to give conditions under which weak persistence implies
uniform persistence.

An interior equilibriumE∗ for (2.1) is not necessarily unique. Such an example
need not involve complicated uptake functions. For instance, if

G1(S, R) = 4S

1.8 + S
+ 2R

0.4 + R
and G2(S, R) = 2S + 3R,

with

ξ1 = 200, η1 = 1, ξ2 = 3, η2 = 20,

S0 = R0 = 1, and DS = DR = D1 = D2 = 1,

then there exist precisely two interior equilibria. Note that in this example popu-
lation 1 consumes both resources according to Michaelis-Menten dynamics, while
population 2 consumes both resources linearly. If instead the functional response of
both species to both resources is linear then, provided the breakeven concentrations
are distinct (see (4.2)), there can be at most one interior equilibrium.
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4. Linear functional response: local analysis

In this section we assume that the uptake functions are linear:

pi(S) = ciS, qi(R) = kiR, (4.1)

with ci , ki > 0, i = 1, 2. Note that for linear uptake functions, the breakeven
concentrations are λi = Di

ci
and µi = Di

ki
. The critical points are isolated if

(λ1, µ1) �= (λ2, µ2), (4.2)

as this ensures that the nullclines for x1 and x2 do not lie on top of each other. In
fact, Theorem 3.15 of [3] provides the following.

Theorem 4.1. Suppose (4.1) holds and that Gi (S0, R0) > Di for i = 1, 2.

(a) If (G1(S̄2, R̄2)−D1)(G2(S̄1, R̄1)−D2) > 0, then E∗ exists and is unique.
(b) If (G1(S̄2, R̄2)−D1)(G2(S̄1, R̄1)−D2) < 0, then E∗ does not exist.

Moreover, we can determine the coordinates of the interior equilibrium E∗ =
(S∗, R∗, x∗

1 , x
∗
2 ). The (S, R) coordinates of E∗ come from solving

c1S + k1R = D1,

c2S + k2R = D2.

This system will have at most one admissible solution whenever hypothesis (4.2)
holds. Solving, we find

S∗ = D1k2 −D2k1

c1k2 − c2k1

and

R∗ = D2c1 −D1c2

c1k2 − c2k1
.

The (x∗
1 , x

∗
2 ) coordinates of the coexistence equilibrium then come from solving

x1
c1

ξ1
S∗ + x2

c2

ξ2
S∗ = (S0 − S∗)DS,

x1
k1

η1
R∗ + x2

k2

η2
R∗ = (R0 − R∗)DR.

Setting

�(S∗, R∗) = S∗R∗
(c1

ξ1

k2

η2
− c2

ξ2

k1

η1

)
,

we find

x∗
1 = 1

�(S∗, R∗)

(
(S0 − S∗)DS

k2

η2
R∗ − (R0 − R∗)DR

c2

ξ2
S∗
)
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and

x∗
2 = 1

�(S∗, R∗)

(
(R0 − R∗)DR

c1

ξ1
S∗ − (S0 − S∗)DS

k1

η1
R∗
)
.

Table 4.1 summarizes the existence and local stability results for the equilibria
of system (2.1) when (4.1) holds (see Table 2 of [3]). With this additional infor-
mation concerning the local stability of the equilibria, Theorem 4.1 states that for
linear uptake functions, given the existence (and hyperbolicity) of E1 and E2, the
interior equilibrium exists (and is unique) if and only if the local asymptotic stabil-
ity of E1 and E2 are the same (i.e. each is locally asymptotically stable or each is
unstable). A consequence of the stated existence criterion for E∗ is that

c1k2 − c2k1 �= 0 and
c1

ξ1

k2

η2
− c2

ξ2

k1

η1
�= 0. (4.3)

The condition for the local asymptotic stability ofE∗ given in Table 4.1 follows
from the results of Léon and Tumpson [21]. We now complete the local stability
analysis of E∗ by ruling out Hopf bifurcations and other local bifurcations.

Following the formula given in [24], we can use equation (2.1) to write the
second additive compound of the Jacobian matrix evaluated at the coexistence
equilibrium as

Table 4.1. Summary of local stability results for (2.1) under assumption (4.1).

Critical Existence Criteria for Local
Point Criteria Asymptotic Stability

E0 = (S0, R0, 0, 0) Always Exists Gi (S0, R0) < Di , i = 1, 2

E1 = (S̄1, R̄1, x̄1, 0) G1(S
0, R0) > D1 G2(S̄1, R̄1) < D2

E2 = (S̄2, R̄2, 0, x̄2) G2(S
0, R0) > D2 G1(S̄2, R̄2) < D1

E∗ = (S∗, R∗, x∗
1 , x

∗
2 ) Gi(S

0, R0) > Di , i = 1, 2 G1(S̄2, R̄2) > D1

and and
(G1(S̄2, R̄2)−D1) G2(S̄1, R̄1) > D2

×(G2(S̄1, R̄1)−D2) > 0
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∂f

∂x

[2]

(E∗)=




−(DSS0

S∗ + DRR
0

R∗ ) − k1
η1
R∗ − k2

η2
R∗ c1

ξ1
S∗ c2

ξ2
S∗ 0

k1x
∗
1 −DSS

0

S∗ 0 0 0 c2
ξ2
S∗

k2x
∗
2 0 −DSS

0

S∗ 0 0 − c1
ξ1
S∗

−c1x
∗
1 0 0 −DRR

0

R∗ 0 k2
η2
R∗

−c2x
∗
2 0 0 0 −DRR

0

R∗ − k1
η1
R∗

0 −c2x
∗
2 c1x

∗
1 −k2x

∗
2 k1x

∗
1 0



. (4.4)

Suppose there is a Hopf bifurcation at the coexistence equilibrium. Then two of
the eigenvalues of ∂f

∂x
are purely imaginary conjugates, adding to zero. Recalling

that the eigenvalues of the second compound of a matrix are sums of pairs of eigen-
values of the original matrix [27], we see that when there is a Hopf bifurcation at

E∗, ∂f
∂x

[2]
(E∗) has zero as an eigenvalue, and so the determinant of ∂f

∂x

[2]
(E∗)must

equal zero. Taking the determinant of ∂f
∂x

[2]
as it appears in equation (4.4) gives

(omitting the superscript ∗)

det
(∂f
∂x

[2])
= D2S0R0

SRη2
1η

2
2ξ

2
1 ξ

2
2

(
k4

1ξ
2
1 ξ

2
2 η

2
2R

2x2
1 − 2k2

1c
2
2ξ

2
1 ξ2η1η

2
2SRx1x2

+c4
2ξ

2
1 η

2
1η

2
2S

2x2
2 + k4

2ξ
2
1 ξ

2
2 η

2
1R

2x2
2 − 2k2

2c
2
1ξ1ξ

2
2 η

2
1η2SRx1x2

+c4
1ξ

2
2 η

2
1η

2
2S

2x2
1 + other positive terms

)

>
D2S0R0

SRη2
1η

2
2ξ

2
1 ξ

2
2

(
ξ2

1 η
2
2

(
k2

1ξ2Rx1 − c2
2η1Sx2

)2

+ξ2
2 η

2
1

(
k2

2ξ1Rx2 − c2
1η2Sx1

)2)
≥ 0. (4.5)

Thus, the determinant of ∂f
∂x

[2]
is never zero at E∗ and therefore ∂f

∂x
(E∗) cannot

have two purely imaginary eigenvalues. Hence, there cannot be a Hopf bifurcation
at the coexistence equilibrium.

Also, the determinant of the Jacobian at E∗ can be shown to be

det
(∂f
∂x
(E∗)

)
= S∗R∗x∗

1x
∗
2

(
c1k2 − c2k1

)(c1

ξ1

k2

η2
− c2

ξ2

k1

η1

)
. (4.6)

Suppose parameters are varied so that an eigenvalue of E∗ passes through zero.
At the bifurcation point, either E∗ is interacting with the boundary of the positive
cone or E∗ exists as an equilibrium in the interior of the positive cone, in which
case (4.3) must hold. But, if (4.3) holds then the determinant of E∗ cannot be zero,
and so there is no bifurcation. Thus, if parameters are varied so that an eigenvalue
of E∗ passes through zero, then E∗ must be interacting with the boundary of the
positive cone. This can only happen at an equilibrium in the boundary. Hence such
a bifurcation involves E∗ coalescing with either E1 or E2 (or possibly E0 if there
is a higher order bifurcation).
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5. Linear functional response: global analysis using Lyapunov functions

We now give sufficient conditions for global asymptotic stability of the coexistence
equilibrium using Lyapunov methods.

Theorem 5.1. Consider system (2.1) and assume that (4.1) holds. Suppose that

(i) G1(S
0, R0) > D1 and G2(S

0, R0) > D2,
(ii) G1(S̄2, R̄2) > D1 and G2(S̄1, R̄1) < D2,

(iii)
k2R̄1

D2 − c2S̄1
<
ξ1η2

ξ2η1
<
D2 − k2R̄1

c2S̄1
.

Then E1 is globally asymptotically stable for system (2.1) with respect to all solu-
tions for which x1(0) > 0 and x2(0) ≥ 0.

By simply interchanging the indices, the analogous result yields a global asymp-
totic stability condition for E2.

Note that by Theorem 3.3 (b), condition (i) of Theorem 5.1 implies that E1 and
E2 exist and are unique. From Table 4.1, condition (ii) implies that E1 is locally
asymptotically stable and E2 is unstable. By Theorem 4.1(b), E∗ does not exist.
Condition (ii) implies there is an open interval of values in which ξ1η2

ξ2η1
may lie so

that condition (iii) is satisfied; furthermore, this interval contains 1.

Proof. Define L : {(S, R, x1, x2) ∈ R
4+ : S,R, x1 > 0} → R by

L(S,R, x1, x2) = ξ1

∫ S

S̄1

τ − S̄1

τ
dτ + η1

∫ R

R̄1

τ − R̄1

τ
dτ

+
∫ x1

x̄1

τ − x̄1

τ
dτ + σx2

where σ = min{ ξ1
ξ2
,
η1
η2

}. Then L is C1 on the interior of R
4+, E1 is the global

minimum of L on R
4+, and L(S̄1, R̄1, x̄1, 0) = 0. Using D1 = c1S̄1 + k1R̄1, the

time derivative of L computed along solutions of (2.1) is

L′(S, R, x1, x2) = ξ1
(S − S̄1)

S
S′ + η1

(R − R̄1)

R
R′ + (x1 − x̄1)

x1
x′

1 + σx′
2

= ξ1
(S − S̄1)

S

(
(S0 − S)DS − c1

ξ1
x̄1S
)

+η1
(R − R̄1)

R

(
(R0 − R)DR − k1

η1
x̄1R

)

+x2

(
c2S(σ − ξ1

ξ2
)+ k2R(σ − η1

η2
)

+c2S̄1
ξ1

ξ2
+ k2R̄1

η1

η2
−D2σ

)
.

Let H denote the coefficient of x2. Noting that (S0 − S)DS − c1
ξ1
x̄1S and (R0 −

R)DR − k1
η1
x̄1R have the same signs as S̄1 − S and R̄1 − R, respectively, L′ � 0

whenever H � 0 now show that (iii) ensures H < 0.
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Consider σ = ξ1
ξ2

≤ η1
η2

. Hypothesis (ii) and (4.1) imply thatD2 −k2R̄1 > c2S̄1,
so the right inequality of hypothesis (iii) holds automatically. Further,

H = k2R(
ξ1

ξ2
− η1

η2
)+ c2S̄1

ξ1

ξ2
+ k2R̄1

η1

η2
−D2

ξ1

ξ2

≤ c2S̄1
ξ1

ξ2
+ k2R̄1

η1

η2
−D2

ξ1

ξ2

which is negative if and only if

k2R̄1

D2 − c2S̄1
<
ξ1η2

ξ2η1
.

If instead, σ = η1
η2

≤ ξ1
ξ2

, then the left inequality in hypothesis (iii) holds
automatically and the requirement that H be negative yields

ξ1η2

ξ2η1
<
D2 − k2R̄1

c2S̄1
.

Thus, L′(S, R, x1, x2) ≤ 0, and so L is a Lyapunov function for (2.1) in
int (R4+) in accordance with Definition 1.1 of [39]. Note that, since H < 0,
L′(S, R, x1, x2) = 0 if and only if S = S̄1, R = R̄1, and x2 = 0. Hence, since
all solutions are bounded in forward time (Theorem 3.1(a)), Theorem 1.2 of [39]
implies every solution of (2.1) for which S(0), R(0), x1(0) > 0 approaches M,
where M is the largest invariant subset of {(S, R, x1, x2) ∈ R

4+ : S = S̄1, R =
R̄1, x1 � 0, x2 = 0}. But then M = {E1}, a single point, since by Theorem 3.3(b)
the single-species survival equilibrium E1 is unique, and so x1 �= x̄1 implies that
S′ �= 0 and R′ �= 0, violating the invariance of M. ��

The final result of this section pertains to the global stability of the coexistence
equilibrium.

Theorem 5.2. Consider system (2.1) and assume that (4.1) holds. Suppose

(i) G1(S
0, R0) > D1 and G2(S

0, R0) > D2,
(ii) (G1(S̄2, R̄2)−D1)(G2(S̄1, R̄1)−D2) > 0,

(iii) ξ1η2 = ξ2η1.

Then E∗ is globally asymptotically stable for system (2.1) with respect to all solu-
tions for which x1(0) > 0 and x2(0) > 0.

Note that by Theorem 3.3 (b), condition (i) of Theorem 5.2 implies that E1 and
E2 exist, while condition (ii) and assumption (4.1) imply that the interior equilib-
rium E∗ exists, is unique, and is locally asymptotically stable (see the remark at
the end of this section).

Proof. Define L : int (R4+) → R by

L(S,R, x1, x2)=ξ1

∫ S

S∗

τ − S∗

τ
dτ + η1

∫ R

R∗

τ − R∗

τ
dτ +

2∑
i=1

γi

∫ xi

x∗
i

τ − x∗
i

τ
dτ,
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where γ1 = 1 and γ2 = ξ1/ξ2. Then L ∈ C1(int (R4+)),E∗ is the global minimum
of L on R

4+, and L(S∗, R∗, x∗
1 , x

∗
2 ) = 0. Note that under hypothesis (iii)

γi = ξ1

ξi
= η1

ηi
.

Using Di = ciS
∗ + kiR

∗, the time derivative of L computed along solutions
of (2.1) is

L′(S, R, x1, x2) = ξ1

(
S − S∗

S

)(
(S0 − S)DS − c1

ξ1
x1S − c2

ξ2
x2S

)

+η1

(
R − R∗

R

)(
(R0 − R)DR − k1

η1
x1R − k2

η2
x2R

)

+
2∑
i=1

γi

(
xi − x∗

i

xi

)
xi(ci(S − S∗)+ ki(R − R∗))

=
2∑
i=1

xi

(
ci(S − S∗)

(
γi − ξ1

ξi

)
+ ki(R − R∗)

(
γi − η1

ηi

))

+ξ1
(S − S∗)

S

(
(S0 − S)DS −

2∑
i=1

cix
∗
i S
γi

ξ1

)

+η1
(R − R∗)

R

(
(R0 − R)DR −

2∑
i=1

kix
∗
i R

γi

η1

)

= ξ1
(S − S∗)

S

(
(S0 − S)DS −

2∑
i=1

ci

ξi
x∗
i S

)

+η1
(R − R∗)

R

(
(R0 − R)DR −

2∑
i=1

ki

ηi
x∗
i R

)
.

Note that (S0 − S)DS >
∑2
i=1

ci
ξi
x∗
i S for 0 < S < S∗, while (S0 − S)DS <∑2

i=1
ci
ξi
x∗
i S for S > S∗. A similar statement holds forR. Thus, L′(S, R, x1, x2) ≤

0, and so L is a Lyapunov function for (2.1) in int (R4+) in accordance with Defini-
tion 1.1 of [39]. Note that L′(S, R, x1, x2) = 0 if and only if S = S∗ and R = R∗.
Hence by Theorem 3.1(a) and Theorem 1.2 of [39], every solution of (2.1) for which
x1(0) > 0 and x2(0) > 0 approaches M, where M is the largest invariant subset
of {(S, R, x1, x2) ∈ R

4+ : S = S∗, R = R∗, x1 ≥ 0, x2 ≥ 0}. But then M = {E∗},
a single point, since (4.2) implies the only choice for x1 and x2 that ensures S′ ≡ 0
and R′ ≡ 0 is x1 = x∗

1 and x2 = x∗
2 . ��

Remark concerning Theorem 5.2: Note that hypothesis (ii) implies the existence
of the interior equilibrium E∗. It does not, in general, imply the local asymptotic
stability of E∗. (See Table 4.1.) One might question if we have indeed proved that
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E∗ can be an unstable equilibrium that is globally asymptotically stable! In fact,
using hypothesis (iii) in the left hand side of (3.1) yields

1

ξ1η2
S∗R∗x∗

1x
∗
2

(
c1k2 − k1c2

)2
,

which is positive by (4.3). Therefore, if condition (iii) holds, then E∗ is locally
asymptotically stable (by the necessary and sufficient condition given in [21]) when-
ever it exists.

It is possible for system (2.1) to have an unstable interior equilibrium when
hypothesis (iii) does not hold. Taking

G1(S, R) = 1.5S + 1.7R and G2(S, R) = 1.7S + 1.5R,

with

ξ1 = 0.8, η1 = 1, ξ2 = 1, η2 = 0.8,

S0 = R0 = 1, DS = DR = 0.97, and D1 = D2 = 1.33,

then there exists precisely one interior equilibrium, and the linearization about
this equilibrium yields three eigenvalues with negative real part and one positive
eigenvalue. ��

6. Stability theory using compound matrices

We present here an application of the theory of Li and Muldowney to a situation
which is frequently encountered in mathematical models related to biology and
epidemiology. While the Li-Muldowney theory has generally been applied to dem-
onstrate the global stability of an equilibrium, it is used here to show that the omega
limit set of each orbit consists of a single equilibrium. This was also done in [1],
but the method used here is more direct and more easily applied. An overview of
compound matrices and their applications to global stability theory can be found
in [23–25,27].

Let B be the closed Euclidean unit ball in R
2 with boundary ∂B. Letting

Lip(X → Y ) be the set of Lipschitzian functions from X to Y , a function φ ∈
Lip(B → D) is called a simply connected rectifiable surface in D. We say φ(∂B)
is the boundary of φ. A function ψ ∈ Lip(∂B → D) is called a closed rectifiable
curve in D and is called simple if it is one-to-one. Let �(ψ,D) = {φ ∈ Lip(B →
D) : φ|∂B = ψ}. In [25], it is shown that if ψ is contained in a simply connected
open subset of D, then �(ψ,D) is non-empty.

Let ‖ · ‖ be a norm on R
( n2). Consider a functional S on surfaces in D ⊆ R

n

defined by

Sφ =
∫
B

∥∥∥Q ·
( ∂φ
∂u1

∧ ∂φ

∂u2

)∥∥∥ du (6.1)

where u = (u1, u2), u �→ φ(u) is in Lip(B → D), the wedge product ∂φ
∂u1

∧ ∂φ
∂u2

is

a vector in R
( n2) andQ is an ( n2)× ( n2)matrix such that ‖Q−1‖ is bounded on φ(B).
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Functionals of this form give a measure of surface area. The next result, which
follows from the development in [24] and [25], says that given a simple closed
curve ψ in R

n and a measure of surface area, all surfaces with boundary ψ have
surface area uniformly bounded away from zero.

Proposition 6.1. Suppose that ψ is a simple closed rectifiable curve in R
n. Then

there exists δ > 0 such that

Sφ ≥ δ

for all φ ∈ �(ψ,Rn).
Let f : D → R

n be C1 where D ⊆ R
n. Consider the equation

dx

dt
= f (x). (6.2)

Let x(t; x0) denote the solution to equation (6.2) which passes through x0 at time
0. For any surface φ, we define the surface φt by φt (u) = x

(
t;φ(u)) for u ∈ B.

Note that when viewed as a function of t , φt (u) gives the solution to (6.2) which
passes through the point φ(u) at time 0.

It follows from work done in [24] and [25] that

Sφt =
∫
B

‖z(t)‖ du (6.3)

where for each u ∈ B, z(t) = z
(
t;φ(u)) = Q

(
φt (u)

) · ( ∂φt
∂u1

∧ ∂φt
∂u2

)
is the solution

to

dz

dt
= M

(
φt (u)

)
z, z(0) = Q

(
φ(u)

) ·
( ∂φ
∂u1

∧ ∂φ

∂u2

)
(6.4)

whereM = QfQ
−1 +Q

∂f
∂x

[2]
Q−1. Here,Qf is the directional derivative ofQ in

the direction of the vector field f , and ∂f
∂x

[2]
is the second additive compound of

∂f
∂x

.
Suppose there exist T , g > 0 such that ‖z(t)‖ ≤ ‖z(0)‖ e−gt for all initial

conditions and all t ≥ T . Then equation (6.3) implies

Sφt ≤ e−gtSφ (6.5)

for t ≥ T . As t becomes arbitrarily large, the right hand side of (6.5) goes to zero.
Thus, by Proposition 6.1, for large t the boundary of φt must be different from
the boundary of φ. In particular this means that the boundary of φ could not have
been an invariant closed curve under the flow (6.2), precluding the possibility of a
periodic orbit, a homoclinic orbit or a heteroclinic cycle. In [24] this argument is
extended, using Pugh’s Closing Lemma, to rule out non-constant non-wandering
points. One consequence of this is that all omega limit points of solutions to (6.2)
must be equilibria.

We give here a theorem that follows from the work of Li and Muldowney, which
suits the present context. It is believed that this theorem will be relevant for many
biological and epidemiological models.



Global analysis of competition for perfectly substitutable resources 473

Theorem 6.2. Let D be a simply connected open subset of R
n such that solutions

of equation (6.2) with x(0) = x0 ∈ D, remain in D for all finite time. Let ‖ · ‖ be
a norm on R

( n2), and let Q be an ( n2)× ( n2) matrix-valued function on D such that
‖Q−1‖ is bounded on D. Consider

dz

dt
= M

(
x(t; x0)

)
z (6.6)

with M = QfQ
−1 + Q

∂f
∂x

[2]
Q−1. If for each compact set C ⊂ D, there exist

T , g > 0 such that ‖z(t)‖ ≤ ‖z(0)‖ e−gt for t ≥ T , for all z(0) ∈ R
( n2) and all

x0 ∈ C, then the omega limit set of any solution to (6.2) which is bounded away
from the boundary of D consists entirely of equilibria.

Remark. Although, in Theorem 6.2, a general compact set C ⊂ D is referred to,
all that is necessary is that the condition be true when C is a simply connected
rectifiable surface in D. ��

If, in addition to the conditions of the above theorem, it can be shown that any
solution to equation (6.2) which has a limit point on the boundary of D in fact limits
to an equilibrium in the boundary of D, then each solution beginning in D limits
to a single equilibrium, either in the interior or on the boundary.

7. Linear functional response: global analysis using compound matrices

In this section we re-examine the global dynamics of system (2.1) under hypoth-
eses (4.1) and (4.2), using the theoretical framework of compound matrices dis-
cussed in Section 6. Since the global dynamics have already been resolved in the
case of competition-independent extinction, we will now apply Theorem 6.2 under
the assumption that we do not have competition-independent extinction (so that
Gi (S0, R0) > Di for i = 1, 2).

Take D = � where � is given in equation (3.2). Note that � is open, simply
connected, and positively invariant for finite time, as required by Theorem 6.2.

For a non-zero constant ν (to be specified later), define

Q = 1

x1x2
diag

(
ν

√
x1x2

SR
,

√
ξ2x2

S
,

√
ξ1x1

S
,

√
η2x2

R
,

√
η1x1

R
, 1
)
.

Then using any matrix norm,Q−1 is bounded on�. We now demonstrate the nec-
essary exponential decay of a functional of the form given in (6.1) when evaluated
on surfaces in � under the dynamics described by (2.1).

Following the formula given in [24], the second compound of the Jacobian
matrix given in (3.3) is
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∂f

∂x

[2]

= diag




−[DS +DR + c1
ξ1
x1 + c2

ξ2
x2 + k1

η1
x1 + k2

η2
x2]

c1S + k1R − [D1 +DS + c1
ξ1
x1 + c2

ξ2
x2]

c2S + k2R − [D2 +DS + c1
ξ1
x1 + c2

ξ2
x2]

c1S + k1R − [D1 +DR + k1
η1
x1 + k2

η2
x2]

c2S + k2R − [D2 +DR + k1
η1
x1 + k2

η2
x2]

c1S + k1R + c2S + k2R − [D1 +D2]




+




0 − k1
η1
R − k2

η2
R c1

ξ1
S c2

ξ2
S 0

k1x1 0 0 0 0 c2
ξ2
S

k2x2 0 0 0 0 − c1
ξ1
S

−c1x1 0 0 0 0 k2
η2
R

−c2x2 0 0 0 0 − k1
η1
R

0 −c2x2 c1x1 −k2x2 k1x1 0



. (7.1)

Define M = QfQ
−1 +Q

∂f
∂x

[2]
Q−1; then

M = 1

2
diag




D1 +D2 −DS(1 + S0

S
)−DR(1 + R0

R
)

D2 −DS(1 + S0

S
)

D1 −DS(1 + S0

S
)

D2 −DR(1 + R0

R
)

D1 −DR(1 + R0

R
)

0




−1

2
diag




(c1 + c2)S + (k1 + k2)R + ( c1
ξ1

+ k1
η1
)x1 + ( c2

ξ2
+ k2

η2
)x2

c2S + k2R + c1
ξ1
x1 + c2

ξ2
x2

c1S + k1R + c1
ξ1
x1 + c2

ξ2
x2

c2S + k2R + k1
η1
x1 + k2

η2
x2

c1S + k1R + k1
η1
x1 + k2

η2
x2

0




+




0 − k1ν

η1
√
ξ2

√
x1R − k2ν

η2
√
ξ1

√
x2R

c1ν

ξ1
√
η2

√
x1S

c2ν

ξ2
√
η1

√
x2S 0

k1
√
ξ2

ν

√
x1R 0 0 0 0 c2

√
Sx2
ξ2

k2
√
ξ1

ν

√
x2R 0 0 0 0 −c1

√
Sx1
ξ1

− c1
√
η2
ν

√
x1S 0 0 0 0 k2

√
Rx2
η2

− c2
√
η1
ν

√
x2S 0 0 0 0 −k1

√
Rx1
η1

0 −c2

√
Sx2
ξ2

c1

√
Sx1
ξ1

−k2

√
Rx2
η2

k1

√
Rx1
η1

0




.

We are interested in the stability of the time-dependent linear systems

z′ = M(ϕ(t)) z (7.2)

where ϕ(t) is a solution to equation (2.1) with initial condition in �. We wish to

use V (z) = (zT z)
1
2 as a Lyapunov function for system (7.2). Note that

V ′(z) = 1

V (z)
zT

1

2
(MT +M)z.
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It has been established [8, p. 41] that zT 1
2 (M

T +M)z ≤ ρV (z)2 where ρ is the
largest eigenvalue of M̃ = 1

2 (M
T +M); hence, we are motivated to examine the

eigenvalues of M̃ . In calculating M̃ , we get a matrix for which the main diagonal is
the same as that ofM , and for which the only non-zero off-diagonal terms lie in the
first row and the first column. Furthermore, there are two values of ν, ν1 = √

ξ1η2
and ν2 = √

ξ2η1, that reduce the number of non-zero off-diagonal terms to four.
First consider ν1 = √

ξ1η2 and let M1 denote the matrix M evaluated with
ν = ν1. Then, letting

A = ξ1η2

ξ2η1
,

M̃1 = 1
2 (M1 +MT

1 ) is given by

M̃1 =




M11
1
2
(1−A)√

A
k1

√
x1R
η1

0 0 1
2
(A−1)√

A
c2

√
x2S
ξ2

0

1
2
(1−A)√

A
k1

√
x1R
η1

M22 0 0 0 0

0 0 M33 0 0 0
0 0 0 M44 0 0

1
2
(A−1)√

A
c2

√
x2S
ξ2

0 0 0 M55 0

0 0 0 0 0 0




where the Mii’s represent the corresponding diagonal entries of M (which are
independent of ν).

Noting that the last column of M̃1 consists entirely of zeroes it is clear that M̃1
has a zero eigenvalue. Nonetheless, we proceed to find conditions under which the
five remaining eigenvalues of M̃1 have negative real part.

Since all off-diagonal entries in the third and fourth rows and columns of M̃1
are zero, the third and fourth diagonal entries of M̃1 are eigenvalues.

Proposition 7.1. If

D1,D2 < 2DS, 2DR, (7.3)

then the eigenvalues of M̃1 corresponding to its third and fourth diagonal entries
will be negative on �.

Proof. Consider the third diagonal entry of M̃1. We have

1

2

(
D1 −DS

(
1 + S0

S

))− 1

2

(
c1S + k1R + c1

ξ1
x1 + c2

ξ2
x2

)

≤ 1

2

(
D1 −DS

(
1 + S0

S

))

which is negative in � under assumption (7.3) since S < S0 in �. The fourth
diagonal entry of M̃1 is handled similarly. ��
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It follows from Proposition 7.1 that the only potentially positive eigenvalues
of M̃1 are among the remaining three. Information about these eigenvalues can be
obtained by considering M̃×

1 , the 3 × 3 minor of M̃1 that consists of the elements
of the first, second and fifth rows and columns.

M̃×
1 = 1

2







D1 +D2 −DS(1 + S0

S
)

−DR(1 + R0

R
)

−( c1
ξ1

+ k1
η1
)x1 − ( c2

ξ2
+ k2

η2
)x2

−(c1 + c2)S − (k1 + k2)R


 (1−A)√

A
k1

√
x1R

η1

(A−1)√
A
c2

√
x2S

ξ2

(1−A)√
A
k1

√
x1R

η1


D2 −DS(1 + S0

S
)

− c1
ξ1
x1 − c2

ξ2
x2

−c2S − k2R


 0

(A−1)√
A
c2

√
x2S

ξ2
0


D1 −DR(1 + R0

R
)

− k1
η1
x1 − k2

η2
x2

−c1S − k1R







.

Inequality (7.3) implies the diagonal entries of M̃×
1 are negative. All of the off-

diagonal entries of M̃×
1 are zero if and only if A = 1 (i.e. ξ1η2 = ξ2η1). Therefore,

inequality (7.3) and A = 1 guarantee that the eigenvalues of M̃×
1 are negative.

The method of Gersgorin discs [19, Section 10.6] will be used to determine a more
robust condition on the ξi’s and ηi’s that will ensure the eigenvalues of M̃×

1 still
have negative real part. Before determining the Gersgorin discs, we perform the
similarity transformation PM̃×

1 P
−1 where

P = diag




1
(1−A)√

A
k1

√
x1R
η1

/(
c1
ξ1
x1 + c2

ξ2
x2 + c2S + k2R

)
(A−1)√

A
c2

√
x2S
ξ2

/(
k1
η1
x1 + k2

η2
x2 + c1S + k1R

)




and we denote the resultant matrix M̃�
1 :

M̃�
1 = 1

2







D1 +D2 −DS(1 + S0

S
)

−DR(1 + R0

R
)

−( c1
ξ1

+ k1
η1
)x1 − ( c2

ξ2
+ k2

η2
)x2

−(c1 + c2)S − (k1 + k2)R




(
c1
ξ1
x1 + c2

ξ2
x2

+c2S + k2R

) (
k1
η1
x1 + k2

η2
x2

+c1S + k1R

)

Ā
k2
1
η1
x1R(

c1
ξ1
x1+ c2

ξ2
x2+c2S+k2R

)

D2 −DS(1 + S0

S
)

− c1
ξ1
x1 − c2

ξ2
x2

−c2S − k2R


 0

Ā
c22
ξ2
x2S(

k1
η1
x1+ k2

η2
x2+c1S+k1R

) 0


D1 −DR(1 + R0

R
)

− k1
η1
x1 − k2

η2
x2

−c1S − k1R







where

Ā = (A− 1)2

A
=
(
ξ1η2 − ξ2η1

)2

ξ1ξ2η1η2
.
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Similarly, by choosing ν = ν2 = √
ξ2η1, one obtains the matrix

M̃�
2 = 1

2






D1 +D2 −DS(1 + S0

S
)

−DR(1+ R0

R
)

−( c1
ξ1

+ k1
η1
)x1 − ( c2

ξ2
+ k2

η2
)x2

−(c1 + c2)S − (k1 + k2)R




(
c1
ξ1
x1 + c2

ξ2
x2

+c1S + k1R

) (
k1
η1
x1 + k2

η2
x2

+c2S + k2R

)

Ā
k2
2
η2
x2R(

c1
ξ1
x1+ c2

ξ2
x2+c1S+k1R

)

D1 −DS(1 + S0

S
)

− c1
ξ1
x1 − c2

ξ2
x2

−c1S − k1R


 0

Ā
c21
ξ1
x1S(

k1
η1
x1+ k2

η2
x2+c2S+k2R

) 0


D2 −DR(1 + R0

R
)

− k1
η1
x1 − k2

η2
x2

−c2S − k2R







(where the matrices M2, M̃2, M̃×
2 and M̃�

2 are constructed in the same manner
as M1, M̃1, M̃×

1 and M̃�
1 , respectively, but with ν = ν2 rather than ν = ν1). If

the eigenvalues of M̃�
1 (respectively, M̃�

2 ) are bounded away from zero on the
negative side in �, then the same is true for all of the non-zero eigenvalues of M̃1
(respectively, M̃2). We now show that if (7.3) holds and

Ā ≤ 1, or equivalently (3 −
√

5)/2 ≤ A ≤ (3 +
√

5)/2, (7.4)

then the Gersgorin discs (and therefore the eigenvalues) for at least one of M̃�
1 or

M̃�
2 lie in the left half plane.

To determine a Gersgorin disc based on a column of a matrix, we sum the
absolute values of the off-diagonal terms in that column and consider the circle in
the complex plane with this radius, centred at the point on the real axis whose real
part is given by the diagonal entry of that same column. All of the eigenvalues of a
matrix are contained in the union of the Gersgorin discs. Thus, if all of the Gersgo-
rin discs for a matrix are entirely in the left half plane, then all of the eigenvalues
of the matrix have negative real part. To determine the right-most point of these
discs, one simply adds the diagonal entry of a column to the sum of the absolute
values of the off-diagonal entries of the same column. If the total is negative for
each column, then each disc lies in the left half plane, and so the matrix is stable.

Suppose (7.3) and (7.4) hold. Then for each of M̃�
1 and M̃�

2 , the Gersgorin
discs for columns two and three lie in the left half plane. A sufficient condition for
the Gersgorin disc of the first column of M̃�

1 to lie in the negative half plane is

Ā
k2

1
η1
x1R(

c1
ξ1
x1 + c2

ξ2
x2 + c2S + k2R

) +
Ā
c2

2
ξ2
x2S(

k1
η1
x1 + k2

η2
x2 + c1S + k1R

)

−
(
c1

ξ1
+ k1

η1

)
x1 −

(
c2

ξ2
+ k2

η2

)
x2 − (c1 + c2)S − (k1 + k2)R ≤ 0. (7.5)

Condition (7.5) holds whenever

Ā
k2

1
η1
x1R(

c1
ξ1
x1 + k2R

) ≤
(
c1

ξ1
+ k1

η1

)
x1 + (k1 + k2)R
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and

Ā
c2

2
ξ2
x2S(

k2
η2
x2 + c1S

) ≤
(
c2

ξ2
+ k2

η2

)
x2 + (c1 + c2)S.

Multiplying each of these through by the denominators, and considering only the
cross terms we see that (7.5) holds whenever

Ā
k2

1

η1
≤ k2

(
c1

ξ1
+ k1

η1

)
+ c1

ξ1
(k1 + k2) (7.6)

and

Ā
c2

2

ξ2
≤ c1

(
c2

ξ2
+ k2

η2

)
+ k2

η2
(c1 + c2). (7.7)

Since Ā is assumed to be less than one, we see that in fact, (7.5) is satisfied whenever

k1
k1

η1
≤ k2

(
c1

ξ1
+ k1

η1

)
+ c1

ξ1
(k1 + k2) (7.8)

and

c2
c2

ξ2
≤ c1

(
c2

ξ2
+ k2

η2

)
+ k2

η2
(c1 + c2). (7.9)

Thus (7.8) and (7.9) are sufficient conditions for the Gersgorin discs based on
column one of M̃�

1 to be in the left half plane. Similarly, if

k2
k2

η2
≤ k1

(
c2

ξ2
+ k2

η2

)
+ c2

ξ2
(k1 + k2) (7.10)

and

c1
c1

ξ1
≤ c2

(
c1

ξ1
+ k1

η1

)
+ k1

η1
(c1 + c2) (7.11)

are satisfied then the Gersgorin disc based on column one of M̃�
2 lies in the left

half plane. We now show that either (7.8) and (7.9) are both satisfied or (7.10) and
(7.11) are both satisfied.

Without loss of generality, we can assume k1 ≤ k2. This implies (7.8) holds. If
c2 ≤ c1 or c2

ξ2
≤ k2

η2
then (7.9) holds and so the assertion is valid. Suppose instead

that c1 < c2 and k2
η2
< c2

ξ2
. Then it follows that (7.11) and (7.10), respectively, must

hold. Therefore, if (7.3) and (7.4) hold, then the five non-zero eigenvalues of either
M̃1 or M̃2 lie in the left half plane for all (S, R, x1, x2) ∈ �.

Remark. While Ā ≤ 1 is a sufficient condition for the Gersgorin discs to be in the
left half plane, it is not necessary. On the other hand, it can be shown that for any
Ā > 1, it is possible to choose ci , ki , ξi and ηi such that one of (7.6) and (7.7) fails,
as well as one of the analogous conditions for M̃�

2 . This does not mean that Ā ≤ 1
is optimal for every case, but it is always sufficient. ��
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We have now shown that it is possible to choose ν such that the matrix M̃ has zero
as an eigenvalue, as well as five eigenvalues with negative real part. Furthermore,
since (7.3) is a strict inequality, it follows that the five eigenvalues with negative
real part are bounded away from real part zero on �. Since M̃ is symmetric, these
eigenvalues are in fact real, and so we have eigenvalues ρ6 ≤ · · · ≤ ρ2 < 0 = ρ1.

Thus, V (z) = (zT z)
1
2 , with derivative

V ′(z) = 1

V (z)
zT M̃z,

satisfies V ′(z) ≤ 0 for all z, since the largest eigenvalue of M̃ is zero, and so V (z)
is a Lyapunov function for system (7.2).

We now show that along solutions to (7.2),V (z)decreases to zero. Let e1, . . . , e6
be the standard basis vectors for R

6. Then W = span{e1, . . . , e5} is equal to the
direct sum of the generalized eigenspaces of the eigenvalues of M̃ with negative
real part, and Y = span{e6} is the eigenspace associated with the zero eigenvalue
of M̃ . (Note that even though individual eigenvectors of M̃ may vary over time, the
corresponding eigenspaces align with the spaces W and Y , as described above, for
all time.) Each z ∈ R

6 can be uniquely written as z = w+y wherew = w(z) ∈ W
and y = y(z) ∈ Y . For z �= 0,

V ′(z) = 1

V (z)
zT M̃z

= 1

V (z)
wT M̃w.

Choose ρ̄ > 0 such that ρ6, . . . , ρ2 < −ρ̄ on�. Since M̃ is symmetric andw ∈ W ,
we have wT M̃w ≤ −ρ̄wT w and so

V ′(z) ≤ −ρ̄ 1

V (z)
wT w

= −ρ̄ w
T w

zT z
V (z).

Thus V ′(z) is zero if and only if w = 0 or, equivalently, z ∈ Y . Hence, by LaS-
alle’s Extension Theorem [20], the omega limit set of any solution to (7.2) lies in
the largest invariant set B contained in Y . At a point z = ζe6, we have z′ = ζC6,
where C6 is the sixth column of M:

C6 =
(

0, c2

√
Sx2

ξ2
,−c1

√
Sx1

ξ1
, k2

√
Rx2

η2
,−k1

√
Rx1

η1
, 0

)T
.

Proposition 7.2. Let C ⊂ � be a compact set. C6 is bounded away from zero for
all solutions initiating in C.
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Proof. By Theorem 3.8, there exists β > 0 such that

inf
t≥0;x0∈C

max{x1(t), x2(t)} ≥ β.

Also, for solutions starting in C, S(t) and R(t) are bounded away from zero for all
t ≥ 0. Thus, the magnitude of C6 is bounded away from zero. ��

Noting thatC6 is orthogonal to Y , we see that if ζ is non-zero, then the solution
to (7.2) through z = ζe6 leaves Y , contradicting the invariance of B. Therefore, B
consists of exactly the origin, and so z goes to zero.

We now show that z goes to zero with exponential speed, uniformly for all initial
conditions of (2.1) in compact C ⊂ � and all initial conditions of (7.2) in R

6. For
non-zero z, let z̃ = z/‖z‖2 and w̃ = w/‖z‖2. Then

V ′(z(t)) ≤ −ρ̄ w̃
T w̃

z̃T z̃
V (z(t))

= −ρ̄ w̃T w̃ V (z(t)), (7.12)

and so

V (z(t)) ≤ V (z(0)) exp
(
−ρ̄
∫ t

τ=0
w̃T (z(τ ))w̃(z(τ )) dτ

)
. (7.13)

Another consequence ofC6 being bounded away from zero, while being orthogonal
to Y is that there exists ε > 0 and t2 > t1 > 0 such that ‖w̃(t0)‖2 < ε implies
‖w̃(t)‖2 > ε for t1 < |t − t0| < t2. This follows since (7.2) is homogeneous. Thus,
every time interval of length 2t2 has a subset of measure at least 2(t2 − t1) such that
w̃T w̃ > ε2 on that subset. For any t > 0 let nt be such that 2nt t2 ≤ t < 2(nt+1)t2.
Then ∫ t

τ=0
w̃T w̃ dτ ≥

∫ 2nt t2

τ=0
w̃T w̃ dτ

≥ 2nt (t2 − t1)ε
2

> 2nt (t2 − t1)ε
2 t

2(nt + 1)t2

≥ (t2 − t1)

2t2
ε2t

where the last inequality only holds for t ≥ 2t2 (since that makes 2nt
nt+1 ≥ 1).

Substituting into (7.13) gives,

V (z(t)) ≤ V (z(0)) exp
(
−ρ̄ (t2 − t1)

2t2
ε2t
)

for t ≥ t2, and so z goes to zero uniformly for all z(0) ∈ R
6 and all x(0) ∈ C. Thus,

by Theorem 6.2 the omega limit set of each orbit bounded away from the boundary
of � consists entirely of equilibria. If (4.2) holds, then the equilibria are isolated
and so each omega limit set consists of a single equilibrium.

Since it has been shown that each solution of equation (2.1) having a limit point
in the boundary of � actually limits to an equilibrium in the boundary of �, we
have the following theorem.



Global analysis of competition for perfectly substitutable resources 481

Theorem 7.3. Suppose (4.1), (4.2), (7.3) and (7.4) hold. Then the dynamics of (2.1)
are trivial in the sense that each solution initiating in � limits to an equilibrium.

8. Bifurcation analysis

In the portion of parameter space dictated by the theory of compound matrices (i.e.
when (7.3) and (7.4) hold), we offer the following bifurcation analysis based on
decreasing the parameterD. We also assume (4.3) holds so that E∗ can potentially
exist. Let εi denote the intrinsic death rate of population i. We will assume here that
Gi (S0, R0) > εi , i = 1, 2. Otherwise, species i cannot consume enough resource
to compensate for the rate at which it is dying, let alone the rate at which it is being
removed. We will also assume that DS = DR = D.

Note that if ciS + kiR = Di , then R = 1
ki
(Di − ciS). Also, λi = Di/ci

and µi = Di/ki . With this notation, define the subsistence curve ϕi(S) so that
Gi (S, ϕi(S)) = Di :

ϕi(S) = 1

ki
(Di − ciS) = µi

λi
(λi − S).

Its role in the bifurcation analysis is as follows. For each i = 1, 2, whenD is large,
(S0, R0) is contained in the triangular region bounded by the positive S andR axes
and the subsistence curve ϕi(S) (see Figure 1, where the lines with negative slope
are the ϕi). Therefore, Gi (S0, R0) < Di , soEi exists outside the nonnegative cone.
As D is decreased, the subsistence curve maintains its slope, but moves closer to
the origin (since λi and µi decrease). Ei will then enter the positive cone through
E0 as the subsistence curve passes through (S0, R0). Furthermore, the S and R
coordinates of E∗ (when it exists) are given by the intersection of the subsistence
curves, since it is only on these curves that x′

1 and x′
2 are zero for non-zero values

of x1 and x2, respectively.
We now proceed with the bifurcation analysis. There are two cases to consider:

Case 1: (λ1 − λ2)(µ1 − µ2) > 0
In this case, the subsistence curves do not intersect for any value of D, so that

the coexistence equilibrium E∗ cannot exist. Without loss of generality, suppose
λ1 < λ2. Thenϕ1 lies belowϕ2. Start withD large enough so that Gi (S0, R0) < Di ,
i = 1, 2. Then bothEi lie outside the nonnegative cone and the washout equilibrium
E0 is globally asymptotically stable for (2.1) (Theorem 3.4). Now decrease D so
that G1(S

0, R0) = D1, and hence E0 and E1 coalesce. As D decreases further, E1
bifurcates into the nonnegative cone, andE0 loses a degree of stability toE1. Since
G2(S

0, R0) < D2,E1 is globally asymptotically stable for (2.1) for all solutions for
which x1(0) > 0 (Theorem 3.5). Now decrease D so that G2(S

0, R0) = D2, and
hence E0 and E2 coalesce. As D decreases further, E2 bifurcates into the nonneg-
ative cone and E0 loses another degree of stability to E2. Since G1(S̄2, R̄2) > D1
and G2(S̄1, R̄1) < D2, Theorem 7.3 can be applied to conclude that E1 is globally
asymptotically stable for (2.1) whenever x1(0) > 0. This remains the case as D is
decreased further.
Case 2: (λ1 − λ2)(µ1 − µ2) < 0
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Fig. 1. Diagram showing the relative positions in the (S, R) plane of ϕ1(S), ϕ2(S), and the
line ψ describing the S and R coordinates of E∗ (see equation (8.2)). As D is decreased,
the slopes of ϕ1 and ϕ2 remain fixed, but their intersection moves along ψ so that λi and µi
move towards the origin. While the slope of ψ need not be positive, ψ need intersect one of
the positive axes closer to the origin than each of ϕ1 and ϕ2

In this case, the subsistence curves ϕ1(S) and ϕ2(S) intersect uniquely in the
positive cone. This intersection gives the (S, R) coordinates of the coexistence
equilibrium

S∗ = D1k2 −D2k1

c1k2 − c2k1
= D

k2 − k1

c1k2 − c2k1
+ ε1k2 − ε2k1

c1k2 − c2k1
(8.1)

and

R∗ = D2c1 −D1c2

c1k2 − c2k1
= D

c1 − c2

c1k2 − c2k1
+ ε2c1 − ε1c2

c1k2 − c2k1
.

As D is decreased, the point (S∗, R∗) remains on ψ(S),

the straight line through

(
ε1k2 − ε2k1

c1k2 − c2k1
,
ε2c1 − ε1c2

c1k2 − c2k1

)
with slope

c1 − c2

k2 − k1
. (8.2)

Fix (S0, R0) in the plane with Gi (S0, R0) > εi , i = 1, 2. There exists a unique
D̂ such that

S0 = D̂
k2 − k1

c1k2 − c2k1
+ ε1k2 − ε2k1

c1k2 − c2k1
.

There are three possibilities.

(a) If

R0 = D̂
c1 − c2

c1k2 − c2k1
+ ε2c1 − ε1c2

c1k2 − c2k1
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then (S0, R0) lies on ψ(S), the (S∗, R∗) line described in (8.2). In this case,
E1, E2, and E∗ coalesce with E0, and then E1 and E2 enter the nonnegative
cone and E∗ enters the positive cone, simultaneously as D is decreased.

(b) If

R0 > D̂
c1 − c2

c1k2 − c2k1
+ ε2c1 − ε1c2

c1k2 − c2k1

then (S0, R0) lies above ψ(S). If λ1 < λ2 then as D is decreased the E0-E2
transcritical bifurcation occurs first. If λ2 < λ1 then the E0-E1 transcritical
bifurcation occurs first. See Figure 1.

(c) If

R0 < D̂
c1 − c2

c1k2 − c2k1
+ ε2c1 − ε1c2

c1k2 − c2k1

then (S0, R0) lies below ψ(S). If λ1 < λ2 then as D is decreased the E0-E1
transcritical bifurcation occurs first. If λ2 < λ1 then the E0-E2 transcritical
bifurcation occurs first.

Without loss of generality, assume λ1 < λ2 and (S0, R0) is as in (b) above.
Now decrease D so that G2(S

0, R0) = D2, and hence E0 and E2 coalesce. As D
decreases further, E2 bifurcates into the nonnegative cone and E0 loses a degree
of stability to E2. Since G1(S

0, R0) < D1, E2 is globally asymptotically stable
for (2.1) for all solutions for which x2(0) > 0 (Theorem 3.5). Now decrease D so
that G1(S

0, R0) = D1, and hence E0 and E1 coalesce. As D decreases further, E1
bifurcates into the nonnegative cone andE0 loses another degree of stability toE1.
We now have G2(S̄1, R̄1) > D2 (so that E1 can be invaded) and G1(S̄2, R̄2) < D1
(so that E2 cannot be invaded). Theorem 7.3 can be applied to conclude that E2 is
globally asymptotically stable for (2.1) for all solutions for which x2(0) > 0. The
coexistence equilibrium E∗ exists outside the nonnegative cone.

The passing ofE∗ throughEi is accompanied by a change in the stability ofEi ,
indicated by a change in the sign of Gj (S̄i , R̄i)−Dj , i �= j , i, j ∈ {1, 2}. One can
express the S-coordinate of Ei in terms ofD as follows: set xj = 0 and restrict the
R coordinate to ϕi(S) (as dictated by x′

i = 0). Then, solve S′ = 0 and R′ = 0 for
xi , set these expressions equal to each other, and solve the equation for S in terms
of D. Denote by �i(D) the resulting curve in the (D, S)-plane. It can be shown
that

D = �−1
i (S) = ciS − εi + kiR

0ηiciS

ξiki(S0 − S)+ ηiciS
.

As E∗ passes through Ei , the line described in (8.1) intersects �i . Clearly, the
manner in which E∗ passes through the positive cone is determined in part by the
slope and intercepts of (8.1) together with the concavity of �−1

1 and �−1
2 . Note

that �−1
i (S) is monotone increasing for S ∈ [0, S0], and its concavity is given by

the sign of

(�−1
i )′′(S) = −2

cik
2
i ηiR

0ξiS
0(ηici − ξiki)

(ξiki(S0 − S)+ ηiciS)3
.
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On this same interval, the sign of (�−1
i )′′ is fixed and so the concavity of�−1

i does
not change. Thus, a straight line may intersect �−1

i at most twice. The balance
between the parameters is quite delicate. Nonetheless, it is possible to produce var-
ious bifurcations of E∗ into and out of the positive cone as D is decreased further.
There are several possibilities, as illustrated in Figures 2 through 6.

First, if there is noD > 0 such that Gj (S̄i , R̄i) = Dj , then E∗ does not appear
in the nonnegative cone as one decreases D.

Second, if there is a value ofD at which G1(S̄2, R̄2) = D1 and another at which
G2(S̄1, R̄1) = D2, then E∗ enters into the nonnegative cone through Ei and travels
right through, leaving through Ej . If E∗ enters through E1, then Theorem 7.3 can
be applied to show that E∗ is a saddle. (See Figure 2. In (a), solid curves indicate
stability while dotted curves indicate instability. In (b), the S coordinate of E0 is
given by the vertical line at S0 = 1, of E1 is given by − − −, of E2 is given
by − · −, and of E∗ is given by the diagonal line. Bifurcations in (a) correspond
to intersections in (b), but not vice versa. For instance, when the lines for the S
coordinates of E0 and E∗ cross, there is no bifurcation; the x1 and x2 coordinates
of the equilibria differ.) If E∗ enters through E2, then Theorem 7.3 can be applied
to show that E∗ is globally asymptotically stable. (See Figure 3.)

Third, if there is precisely one value of D > 0 at which Gj (S̄i , R̄i) = Dj , but
no value ofD ≥ 0 at which Gi (S̄j , R̄j ) = Di , then E∗ enters the nonnegative cone
through Ei and exits the nonnegative cone for D = 0 as the x1 and x2 coordinates
become negative. If E∗ enters through E2, then Theorem 7.3 can be applied to
show that E∗ is globally asymptotically stable. If E∗ enters through E1, then The-
orem 7.3 can be applied to show that E∗ is a saddle. Figure 4 shows an instance
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Fig. 2. (a) Bifurcation diagram withE∗ entering the nonnegative cone throughE1 and leav-
ing the nonnegative cone through E2. D ∈ [0, 5.5] is the bifurcation parameter. Parameters
used are: S0 = 1.0, R0 = 1.2, D1 = D+ ε1 = D+ 0.1, D2 = D+ ε2 = D+ 0.14, c1 =
2.2, c2 = 1.8, k1 = 2, k2 = 2.8, ξ1 = 0.5, ξ2 = 1.2, η1 = 0.1, η2 = 0.5. The first
transcritical bifurcation occurs at D = 5.02 when E2 enters. The second transcritical bifur-
cation occurs at D = 4.5 when E1 enters. E∗ enters through E1 at D = 2.21 and leaves
through E2 atD = 1.96. Both single-species equilibria are locally stable and E∗ is unstable
whenD ∈ (1.96, 2.21). (b) Plot of the dilution rateD versus the S coordinate of each of the
equilibria, using the same parameter values as were used for (a).
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Fig. 3. (a) Bifurcation diagram with E∗ entering the nonnegative cone through E2 and leav-
ing the nonnegative cone through E1. D ∈ [0, 5.5] is the bifurcation parameter. Parameters
used are: S0 = 1.0, R0 = 1.2, D1 = D+ ε1 = D+0.05, D2 = D+ ε2 = D+0.08, c1 =
2.33, c2 = 1.8, k1 = 2, k2 = 2.8, ξ1 = 0.2, ξ2 = 1.5, η1 = 0.1, η2 = 0.5. The first
transcritical bifurcation occurs at D = 5.08 when E2 enters. The second transcritical bifur-
cation occurs at D = 4.68 when E1 enters. E∗ enters through E2 at D = 2.99 and leaves
through E1 at D = 1.07. Both single-species equilibria are unstable and E∗ is globally
asymptotically stable when D ∈ (1.07, 2.99). (b) Plot of the dilution rate D versus the S
coordinate of each of the equilibria, using the same parameter values as were used for (a).

of the former. Note that for D = 0, any point satisfying x1 = x2 = 0 is an equi-
librium, so the passing of E1, E2, and E∗ out of the nonnegative cone represents
a (degenerate) bifurcation. Also, note that as D approaches zero, condition (7.3)
fails and the global behaviour becomes unknown.

There are at most two values of D at which Gj (S̄i , R̄i) = Dj , since this repre-
sents the intersection of the S∗ line with �i(D). If there are two values of D > 0
at which Gj (S̄i , R̄i) = Dj but no value of D ≥ 0 at which Gi (S̄j , R̄j ) = Di ,
then E∗ enters the nonnegative cone through Ei , passes into the interior, and then
leaves again through Ei . Again, if E∗ enters through E2, then Theorem 7.3 can
be applied to show that E∗ is globally asymptotically stable (see Figure 5). If E∗
enters through E1, then it is a saddle and Theorem 7.3 can be applied to show that
there is global bistability.

Figure 6 illustrates what is, in some sense, the most interesting scenario – one in
which the line described in (8.1) intersects both�1 and�2 twice. In this particular
case, E∗ enters through E2 and exits through E1, then reenters through E1 and
exits again through E2. As one can see from the associated plot in (S,D)-space,
there are certainly other possibilities that can be obtained by delicately balancing
the parameters governing the concavity of�1 and�2, the slope in (8.1), etc. None
will result in more than two crossings of E∗ through the interior.

Now, consider any fixed set of parameter values at whichE∗ is globally asymp-
totically stable and choose any curve in parameter space that passes through this
particular set of parameter values. In Section 4 we showed that E∗ cannot undergo
a Hopf bifurcation, and that the only local bifurcations ofE∗ occur whenE∗ passes
out of the positive cone through one of the faces. Therefore, if the parameters are
varied in such a way that E∗ remains in the interior of the positive cone, then E∗
remains globally asymptotically stable unless there is a non-local bifurcation.
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Fig. 4.(a) Bifurcation diagram withE∗ entering the nonnegative cone throughE2 and leaving
the nonnegative cone for D = 0 as the x1 and x2 coordinates become negative. D ∈ [0, 5]
is the bifurcation parameter. Parameters used are: S0 = 1.0, R0 = 1.2, D1 = D + ε1 =
D + 0.05, D2 = D + ε2 = D + 0.06, c1 = 2.33, c2 = 1.4, k1 = 1.6, k2 = 2.8, ξ1 =
0.08, ξ2 = 1.5, η1 = 0.1, η2 = 1.0. The first transcritical bifurcation occurs at D = 4.70
whenE2 enters. The second transcritical bifurcation occurs atD = 4.20 whenE1 enters.E∗

enters through E2 atD = 2.59. All three equilibria leave through (S, R, 0, 0) whenD = 0,
but with different values of S and R. Both single-species equilibria are unstable and E∗ is
stable whenD ∈ (0, 2.59). (b) Plot of the dilution rateD versus the S coordinate of each of
the equilibria, using the same parameter values as were used for (a).
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Fig. 5. (a) Bifurcation diagram with E∗ entering and exiting the nonnegative cone through
E2.D ∈ [0, 5] is the bifurcation parameter. Parameters used are: S0 = 1.0, R0 = 1.2, D1 =
D + ε1 = D + 0.14, D2 = D + ε2 = D + 0.08, c1 = 2.4, c2 = 1.4, k1 = 1.6, k2 =
2.8, ξ1 = 0.12, ξ2 = 1.5, η1 = 0.2, η2 = 1.0. The first transcritical bifurcation occurs
at D = 4.68 when E2 enters. The second transcritical bifurcation occurs at D = 4.18
when E1 enters. E∗ enters through E2 at D = 2.45 and leaves through E2 at D = 0.25.
Both single-species equilibria are unstable and E∗ is globally asymptotically stable when
D ∈ (0.25, 2.45). (b) Plot of the dilution rate D versus the S coordinate of each of the
equilibria, using the same parameter values as were used for (a).
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Fig. 6. (a) Bifurcation diagram with E∗ entering and exiting the nonnegative cone through
E2.D ∈ [0, 5] is the bifurcation parameter. Parameters used are: S0 = 1.0, R0 = 1.2, D1 =
D + ε1 = D + 0.18, D2 = D + ε2 = D + 0.08, c1 = 1.6, c2 = 1.4, k1 = 2.8, k2 =
3.0, ξ1 = 1.5, ξ2 = 1.7, η1 = 0.2, η2 = 0.2. The first transcritical bifurcation occurs at
D = 4.92 whenE2 enters. The second transcritical bifurcation occurs atD = 4.78 whenE1

enters.E∗ enters throughE2 atD = 2.39 and leaves throughE1 atD = 2.1.E∗ enters once
more, this time through E1 atD = 1.26 and leaves through E2 atD = 1.0. Both single-spe-
cies equilibria are unstable and E∗ is globally asymptotically stable when D ∈ (2.1, 2.39)
and whenD ∈ (1.0, 1.26). (b) Plot of the dilution rateD versus the S coordinate of each of
the equilibria, using the same parameter values as were used for (a).

Now suppose E∗ exists and is a saddle. Then Theorem 5.2 implies A = ξ1η2
ξ2η1

is
not equal to 1. If A is varied to be made equal to 1, then Theorem 5.2 says that if
E∗ exists, then it is stable. Since local bifurcations at E∗ can only occur when E∗
coalesces with E1 or E2, such a transcritical bifurcation must occur before A = 1.

9. Discussion

In this paper we consider a resource-based model of two-species competition in
the chemostat for two growth-limiting, non-reproducing, non-inhibitory, perfectly
substitutable resources S and R. The competition is exploitative, so that the mem-
bers of the microbial populations compete only by reducing the common pool of
resources. We assume that the amount of each resource consumed is a monotone
increasing function of the abundance of that resource and is independent of the
concentration of the other resource. The resultant model corresponds to Model I
of Léon and Tumpson [21] adapted to the chemostat and restricted to the case of
non-reproducing resources. It is also a special case of the model studied in [3,29],
where the possible inhibitory effects that the concentration of one resource may
have on the consumption of the other resource were considered.

In the single-species growth submodel (S, R, x1, 0), species x1 avoids extinc-
tion if and only if G1(S

0, R0) > D1. In other words, if species 1 cannot consume
enough resource to more than compensate for the rate D1 at which it is being
removed, even if the growth vessel is maintained at the input concentrations S0 and
R0, then species 1 will become extinct. Otherwise, there exists a unique one-spe-
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cies survival equilibrium that is globally asymptotically stable for all solutions for
which x1(0) > 0, x2(0) = 0. A similar result holds for the (S, R, 0, x2) submodel.

For the two-species competition model, first we consider the case in which
one or both species are eliminated due to an inadequate resource supply (compe-
tition-independent extinction). If Gi (S0, R0) < Di for i = 1 and 2, so that the
resource supply is inadequate for each species, then the washout equilibrium E0
is globally asymptotically stable. If G1(S

0, R0) > D1 and G2(S
0, R0) < D2, so

that the resource supply is inadequate only for population two, then the unique sin-
gle-species equilibrium E1 = (S̄1, R̄1, x̄1, 0) exists and is globally asymptotically
stable with respect to all solutions with x1(0) > 0. A similar result holds when the
resource supply is inadequate only for population one.

We then move to the more challenging problem of determining the asymptotic
behaviour of solutions when the resource supply is adequate for each species, so
that Gi (S0, R0) > Di for i = 1 and 2. Note that both of the equilibria E1 and
E2 exist, and their local stability is determined by the standard invasion criterion:
E1 is unstable whenever G2(S̄1, R̄1) > D2 (and so can be invaded by species
two) and E2 is unstable whenever G1(S̄2, R̄2) > D1 (and so can be invaded by
species one). When each species’ functional response to each resource is linear,
(G2(S̄1, R̄1)−D2)(G1(S̄2, R̄2)−D1) < 0 ensures that no coexistence equilibrium
exists, whereas (G2(S̄1, R̄1)−D2)(G1(S̄2, R̄2)−D1) > 0 implies the existence of
a unique interior equilibrium.

Next, two techniques are used to examine the global dynamics under the assump-
tion of linear uptake functions. First we employ Lyapunov function arguments to
determine the global behaviour of the system.We show thatE1 is globally asymptot-
ically stable with respect to all solutions with x1(0) > 0 provided G2(S̄1, R̄1) < D2,

G1(S̄2, R̄2) > D1, and
k2R̄1

D2 − c2S̄1
<
ξ1η2

ξ2η1
<
D2 − k2R̄1

c2S̄1
. (Of course, the first two

conditions ensure that there is no coexistence equilibrium.) It is then shown that
there exists a unique coexistence equilibrium that is globally asymptotically stable
with respect to all solutions with xi(0) > 0, i = 1 and 2 provided G2(S̄1, R̄1) > D2,
G1(S̄2, R̄2) > D1, and ξ1η2 = ξ2η1. (Note that the first two conditions ensure that
both of the single-species equilibria can be invaded.)

Our most complete results are obtained in the theoretical framework of com-
pound matrices. Here we impose two conditions on the parameters of the model:
D1,D2 < 2DS, 2DR , so that the intrinsic death rates are not too large, and (3 −√

5)/2 ≤ ξ1η2
ξ2η1

≤ (3 + √
5)/2, so that the ratios of the growth yields cannot differ

greatly between the two species. We find that the dynamics of the competition
model are trivial in the sense that each solution initiating in the feasible region of
(S, R, x1, x2)-space approaches an equilibrium in the limit. In particular, the global
behaviour can be resolved here even when the coexistence equilibrium is a saddle.

Finally, using the dilution rate D as a bifurcation parameter we describe the
different possible sequences of bifurcations. Ecologists often think of the chemo-
stat as a lake in a laboratory. This analysis seems to warn us that the diversity
of populations in a lake system might be sensitive to the changes in the dilution
rate that could result from, for example, dams used to control the water levels,
or changes in the weather, and that it might not be obvious whether increasing or
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decreasing the dilution rate is better, if one wishes to protect diversity. This is most
dramatically illustrated in the example given in Figure 6. We see that as the dilution
rate is decreased, there is a transfer of global asymptotic stability from E0 to Ē2
to E∗ to Ē1 to E∗ to Ē2. Thus, if both species coexist at a given dilution rate,
then depending on which branchE∗ lies on, a particular species may be eliminated
either by an increase or by a decrease in the dilution rate.
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