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Abstract. In this paper, in order to try to account for the transient oscillations observed in
chemostat experiments, we consider a model of single species growth in a chemostat that
involves delayed growth response. The time delay models the lag involved in the nutrient
conversion process. Both monotone response functions and nonmonotone response func-
tions are considered. The nonmonotone response function models the inhibitory effects of
growth response of certain nutrients when concentrations are too high. By applying local and
global Hopf bifurcation theorems, we prove that the model has unstable periodic solutions
that bifurcate from unstable nonnegative equilibria as the parameter measuring the delay
passes through certain critical values and that these local periodic solutions can persist, even
if the delay parameter moves far from the critical (local) bifurcation values.

When there are two positive equilibria, then positive periodic solutions can exist. When
there is a unique positive equilibrium, the model does not have positive periodic oscillations
and the unique positive equilibrium is globally asymptotically stable. However, the model
can have periodic solutions that change sign. Although these solutions are not biologically
meaningful, provided the initial data starts close enough to the unstable manifold of one of
these periodic solutions they may still help to account for the transient oscillations that have
been frequently observed in chemostat experiments. Numerical simulations are provided to
illustrate that the model has varying degrees of transient oscillatory behaviour that can be
controlled by the choice of the initial data.

1. Introduction

In this paper, we study the following single-species chemostat model with delay:

S′(t) = (
S0 − S(t)

)
D − p

(
S(t)

)
x(t),

x′(t) = −Dx(t)+ α p
(
S(t − τ)

)
x(t − τ). (1.1)

In this model, S(t) denotes the concentration of the unconsumed nutrient in the
growth vessel at time t and x(t) denotes the biomass of the population of micro-
organisms at time t. The function p(S) represents the species specific per-capita
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nutrient uptake rate. It also models the rate of conversion of nutrient to viable bio-
mass. The growth yield constant has been scaled out for mathematical convenience.
The constant τ ≥ 0 denotes the time delay involved in the conversion of nutrient
to viable biomass. S0 and D are positive constants and denote, respectively, the
concentration of the growth-limiting nutrient and the flow rate of the chemostat
(see more details in [19], [51] and [52]). The constant positive constant, α = e−Dτ ,
is required, because it is assumed that the current change in biomass depends on
the amount of nutrient consumed τ units of time in the past by the microorganisms
that were in the growth vessel at that time and managed to remain in the growth
vessel the τ units of time required to process the nutrient.

We show that (1.1) has unstable periodic solutions for certain ranges of the
time delay τ.We provide numerical solutions of (1.1) as well, which illustrate how
transient oscillatory solutions can be obtained numerically by choosing the initial
data appropriately.

The main purpose of this paper is to study the transient behaviour of (1.1) and
to give an analytic approach to explain the existence of transient oscillatory solu-
tions. We consider both monotone response functions and nonmonotone response
functions. Nonmonotone response functions are important in order to model the
inhibitory effects of growth response of certain nutrients when their concentrations
are too high. By applying the local Hopf bifurcation theorem, we prove that (1.1)
has unstable periodic solutions that bifurcate from unstable nonnegative equilibria
as the time delay τ passes through certain critical values. Global Hopf bifurcation
is also considered, and it is shown that these local periodic solutions can persist,
even if the delay parameter moves far from the critical (local) bifurcation values.
The unstable periodic solutions of the model may help to account for the transient
oscillations observed in chemostat experiments, provided that the initial data starts
close enough to the unstable manifold of one of these periodic solutions. Numeri-
cal simulations indicate that the model has varying degrees of transient oscillatory
behaviour that can be controlled by the choice of the initial data.

We remark that transient dynamics are usually more difficult to study than the
asymptotic behaviour of solutions. As a result, fewer analytic tools are available
for studying transient dynamics and most authors have used a numerical approach,
despite the fact that transient behaviour is of great importance in understanding
microbial growth in the chemostat. One tool to study asymptotic behaviour is to
study equations linearized about the equilibrium solution and show that the charac-
teristic equation has complex eigenvalues with negative real parts (see [30], [32],
[39] and [41]). This results in solutions that approach the steady state via damped
sinusoidal oscillations, provided that the solution starts close enough to the steady
state. Results in this paper indicate that unstable periodic solutions can be viewed as
sources of transient oscillations, and even though they are unstable, their detection
might be useful in understanding transient dynamics.

This paper is organized as follows. In Section 2, we give a brief literature
review on transient dynamics for chemostat models. In Section 3, we establish
some preliminary results on (1.1) that are used in later sections. In Section 4, we
first consider the case where the model has a unique positive equilibrium and explore
its global asymptotic behaviour as well as the transient dynamics. The case where
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the model has two positive equilibrium points is studied in Section 5. Section 6
presents some numerical simulations that illustrate how transient oscillatory solu-
tions can be obtained numerically by choosing initial data appropriately. Finally,
in Section 7, we discuss the implications of our results.

2. Transient dynamics: a literature review

Transient growth dynamics are of considerable importance in the study of how
microorganisms respond to environmental changes, and are pertinent to under-
standing the control mechanisms for microbial growth ([40]). Much research, both
theoretical and experimental, has been undertaken dealing with transient behaviour
of microbial population growth in the chemostat. While the Monod model [37]
has some success in describing steady state growth rates (see [26] and [44]), it
has been found inadequate to predict transients observed in chemostat experiments
where the initial data is not at the globally attracting steady state. It has often been
observed that changes in the environmental parameters, such as the input nutrient
concentration, dilution rate, and temperature, can give rise to overshoots or tran-
sient oscillations in cell numbers ([9], [13], [49]). Lag phases occur in the growth
response of microorganisms to changes in the environment ([4]). Cunningham and
Maas [13] claim that in order to model such lag phases, it is necessary that transient
growth models incorporate some mathematical device that allows the population to
“remember” its nutrient history. Hence multicompartment models have been used,
where the entire nutrient pool is subdivided into a chain of intracellular compart-
ments through which the limiting nutrient must pass before it catalyzes cell growth.
Consequently, the lag phase is modeled by the inevitable time delay introduced dur-
ing the transfer of nutrient from one compartment to the other.

In [17], while studying the growth-limiting effect of vitamin B12 deficiency
on the algae, Monochrysis lutheri, in the chemostat, Droop formulated a single-
compartment model (often called the variable-yield model). In this model, the
specific growth rate is decoupled from extracellular nutrient concentration by intro-
ducing an intracellular nutrient pool, so that only the internal nutrient is immediately
available for cell growth. The model was tested by Droop [17] and showed some
empirical superiority to the Monod model. Williams [49] postulated that the popu-
lation biomass has two basic portions, a synthetic portion and a structured/genetic
portion. This led him to formulate a two-compartment model in which the masses
of these two portions are taken to be proportional to the two separate intracellular
nutrient stores transformed from the outside nutrient supply. Williams tested his
model on data for the Chlorella populations and, with a few exceptions including
transient oscillations in cell numbers, he found good agreement between the model
and the actual population dynamics. In [46], Tang and Wolkowicz considered the
case where, in the presence of some extracellular enzymes, the external nutrient
is first converted to an intermediate product before being absorbed into the cells.
Hence the growth rate of the microorganisms is directly related to the concentration
of the intermediate product and depends only indirectly on the concentration of the
nutrient supply. Compared with the Monod model, this model exhibits different
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asymptotic behaviour and indicates the importance of the initial concentrations of
the populations in determining their final steady states.

From a similar perspective, Barford et. al. [4] concluded that a generalized tran-
sient growth model should probably take the form of a structured model in which
the biomass is described in terms of a number of intracellular subsections which
are internally balanced in the same way the Monod model assumes the overall cell
mass to be balanced. Such structured models have been proposed by Ramkrishna
et. al. [41] who, in order to introduce a lag phase, assumed that the biomass is
composed of two groups of substances which interact with each other and with
substances in the environment to produce growth. The structure assigned to the
organisms in the model accounts for the dependence of growth on the past his-
tory of the cells, and hence it is capable of predicting the lag phases and transient
oscillations observed in experiments. In [33], Lee and Jackman also constructed a
structured model in which the cells are subdivided into dispersed cells and flocs.
Due to different growth rates of the flocs and dispersed cells, sudden changes in
either the dilution rate or the nutrient concentration would alter the distribution of
the cells in the dispersed state and the floc state. They investigated the responses
of the model to step changes in dilution rate and intake nutrient concentration on
bacteria growth. The theoretical predictions were in qualitative agreement with the
experimental results. Similar two-state models have also been considered by Jäger
et. al [30] and Tang et. al. [45]. They incorporated adaptive mechanisms of cells into
the modelling equations. Numerical simulations indicate that transient oscillations
are possible in the solutions of the models, and they can reproduce the qualitative
behaviour of the experimental data from Hansen and Hubbell [26].

Others have directly incorporated time delays in the modelling equations and,
as a result, the models take the form of delay differential equations. In [9], Caperon
studied the growth response of Isochrysis galbana in a varying nitrate environment
and found a smooth overdamped adjustment in cell numbers after step changes
on the flow rate. He used delay differential equations to describe the time lag in
the growth response, and the resulting model successfully predicted the population
growth in experiment data under dynamic conditions. In an attempt to describe
the damped oscillations observed on the transient growth of the unicellular algae,
Chlamydomonas reinhardii, under nitrogen limitation (see [12]), Cunningham and
Nisbet [14] found it is necessary to modify the Droop model [17] by introducing
a time delay in the relationship between specific growth rate and the intracellular
nutrient supply (see also [38]). The addition of the time delay in the modelling
equations brings about oscillations and consequently a qualitative improvement in
the behaviour of the model. In [47], Thingstad and Langeland introduced a discrete
delay in the Monod model and showed that persistent oscillations are possible.
Bush and Cooke [7] also confirmed that autonomous oscillations exist in the model
of [47] for growth response functions with inhibitory effects. We refer to MacDon-
ald [35], Wolkowicz and Xia [51], and the references therein, for more detailed
discussions on chemostat modeling approaches using delay differential equations.

While delay differential equations have been widely used in modelling pop-
ulation dynamics (see [16],[23] and [25]), some practical problems have to be
overcome when applied to models of the chemostat. Cunningham and Nisbet [15]
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pointed out that the oscillations produced by their time delay model are of the
damped sinusoidal form, while the actual oscillatory shape from experiment data is
of a more complicated nature. Although time delay models are capable of produc-
ing oscillations, they often introduce undesirable features when used for microbial
growth in the chemostat. For example, the delay chemostat models studied in [7],
[9], [21], [22], [42], [47] and [55] can exhibit stable periodic solutions, although
such a form of sustained oscillations has been rarely observed in chemostat exper-
iments (see [35]) performed in accordance with the underlying assumptions in the
model. Models of the form (1.1), that incorporate time delay more appropriately,
have been proposed and studied in [19], [51], [52] and [53]. The global asymptotic
behaviour of the models are completely understood, for both the single-species
and the two species competition cases, in the case of monotone growth response
functions. It turns out that the global dynamics of these models (with at most two
species) are similar to the dynamics of the Monod model. In particular, there are no
sustained periodic solutions in such models. However, it was found in [52] that the
time delay can affect both the qualitative and quantitative behaviour of the solu-
tions, and numerical simulations illustrate that the models with delay may exhibit
slightly more oscillations in the transients, when compared with the models with-
out delay. To the best of our knowledge, the question of how to obtain analytic
results on transient oscillations for (1.1) has not been studied, despite the fact that
understanding transient microbial growth is just as important as understanding the
long term (asymptotic) behaviour as far as controlling microbial population growth
is concerned.

3. Preliminary results

Throughout this paper we assume that the growth response function p(S) in (1.1)
satisfies:

(3.1) p : R
+ → R

+ is continuously differentiable and p(0) = 0;
(3.2) there exists a (possibly extended) real number 0 < η ≤ ∞ such thatp′(S) >

0 on [0, η) and p′(S) < 0 on (η,∞);
(3.3) there exist uniquely defined positive (possibly extended) real numbers λ1 ≤

µ1 ≤ ∞ such that
(i) p(S) < DeDτ , if S /∈ [λ1, µ1];

(ii) p(S) > DeDτ , if S ∈ (λ1, µ1).

A typical growth response function is shown in Fig. 1. Clearly, when λ1, µ1 and
η are all finite, λ1 ≤ η ≤ µ1. Generally λ1 and µ1 depend on the delay τ ≥ 0. In
fact, it can be seen from (3.1)-(3.3) that provided η is finite and 0 < τ < 1

D
ln(p(η)

D
),

λ1 and µ1 are differentiable functions of τ, and if λ1(τ ) �= η, then λ′
1(τ ) > 0 and

µ′
1(τ ) < 0.

Let C2 := {ϕ = (ϕ0, ϕ1) : [−τ, 0] → R2 is continuous } be the Banach space
of continuous functions on [−τ, 0] with supremum norm. We denote by C+

2 the
nonnegative cone ofC2.By using the method of steps (see Bellman and Cooke [5]),
it can be shown that for each ϕ ∈ C+

2 , there is a unique solution of (1.1) through ϕ,
that we call π(ϕ; t) := (

S(ϕ; t), x(ϕ; t)) ∈ R2, and it is well-defined for all t ≥ 0
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λ
1

µ
1

η

DeDτ

S

p(S)

Fig. 1. A typical growth response function p(S) for a fixed τ ≥ 0.

and satisfies π(ϕ; ·) |[−τ,0]= ϕ. Moreover, if ϕ ∈ C+
2 , then π(ϕ; t) ∈ R

+
2 for all

t ≥ 0. Throughout, we will also denote by
(
S(t), x(t)

)
the solution π(ϕ; t) with

ϕ ∈ C+
2 , if no confusion arises. When we say a solution π(ϕ; t) or

(
S(t), x(t)

)
of

(1.1) is positive, we mean that each component of the solution vector is positive for
all t > 0. By using the variation-of-constant formula, it follows that

x(ϕ; t) = ϕ1(0)e
−Dt + α

∫ t

0
e−D(t−θ)p

(
S(θ − τ)

)
x(θ − τ) dθ, (3.4)

from which it follows that the solution π(ϕ; t) exists if ϕ ∈ R
+
2 with ϕ1(0) > 0.

Let
(
S(t), x(t)

)
be a given solution (not necessarily nonnegative) of (1.1).

Define

W(t) = S0 − S(t)− eDτ x(t + τ)

for all t ≥ 0. Then it follows from (1.1) that W ′(t) = −DW(t) for all t ≥ 0.
Consequently,

S(t)+ eDτ x(t + τ) = S0 + ρ(t), t ≥ 0, (3.5)

where ρ(t) is a continuously differentiable function with ρ(t) → 0 exponentially
as t → ∞. Thus all nonnegative solutions of (1.1) are bounded for t > 0.

In what follows, to avoid degeneracy, we assume that λ1, µ1 (when they are
finite) are distinct from each other and from S0. Then model (1.1) has at most three
nonnegative equilibrium points and they depend on the delay τ and the parameters
in the model. The equilibrium ES0 = (S0, 0) corresponds to washout of the single
population from the chemostat. We define two other possible positive equilibria:

Eλ1 = (
λ1, α(S

0 − λ1)
)
, if λ1 < S0,

Eµ1 = (
µ1, α(S

0 − µ1)
)
, if µ1 < S0.
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where α = e−Dτ . The criteria for local stability of these equilibrium points are
given in the following theorem.

Theorem 3.1. For system (1.1):

(i) whenever it is defined (i.e., λ1 < S0), the equilibrium Eλ1 is locally asymp-
totically stable;

(ii) whenever it is defined (i.e., µ1 < S0), the equilibrium Eµ1 is unstable;
(iii) the equilibrium ES0 is always defined and is locally asymptotically stable if

S0 /∈ [λ1, µ1], and unstable if S0 ∈ (λ1, µ1).

Proof. Let E∗ = (S∗, x∗) denote any one of the equilibrium points ES0 , Eλ1 , or
Eµ1 . Linearizing (1.1) about E∗ we obtain,

z′0(t) = −(D + x∗p′(S∗)
)
z0(t)− p(S∗)z1(t)

z′1(t) = α p′(S∗)x∗z0(t − τ)−Dz1(t)+ α p(S∗)z1(t − τ). (3.6)

After simplifying, the characteristic equation of (3.6) is 
(λ) = 0, where


(λ) = (λ+D)
(
λ+D − α p(S∗)e−λτ + x∗p′(S∗)

)
. (3.7)

(i) If E∗ = Eλ1 , then λ1 < S0, α p(S∗) = α p(λ1) = D and p′(S∗) =
p′(λ1) > 0.As in Ellermeyer [19], we can use Hayes’s theorem (see Bellman
and Cooke [5] or the appendix of Hale and Lunel [25]) to show that all roots
of λ+D −De−λτ + α(S0 − λ1)p

′(λ1) have negative real parts. Therefore,
Eλ1 is locally asymptotically stable.

(ii) If E∗ = Eµ1 , then µ1 < S0 and α p(S∗) = D, p′(S∗) < 0. Let

f (λ) = λ+D −De−λτ + α(S0 − µ1)p
′(µ1).

We have f (0) = α(S0 −µ)p′(µ) < 0 and limλ→∞ f (λ) = +∞. Thus f (λ)
has at least one positive real root. This implies that 
(λ) has a positive real
root. Consequently, Eµ1 is unstable.

(iii) The proof is similar to (i) and (ii) and so we omit the details. 	


Remark 3.1. The above result is similar to the ODEs case (i.e. when τ = 0 in model
(1.1)), as shown in Lemma 5.1 of Butler and Wolkowicz [8], who considered the
n-species competition case with no delays. However, it is important to note that,
unlike the ODEs case, the equilibrium points Eµ1 and ES0 for model (1.1) may be
non-hyperbolic for some values of the delay τ. In fact, we will show in the next two
sections, that a Hopf bifurcation can occur at these two equilibrium points. This
indicates the significance of considering delay in the growth response.

When the equilibrium pointsEλ1 andEµ1 do not exist, we can show thatES0 is
globally asymptotically stable (with respect to the non-negative cone C+

2 ). In this
case, population x will eventually be washed out from the chemostat.
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Theorem 3.2. If λ1 > S0, then the equilibrium pointES0 is globally asymptotically
stable (with respect to C+

2 ).

Proof. By Theorem 3.1 (iii),ES0 is locally asymptotically stable. Thus it suffices to
show that limt→∞

(
S(t), x(t)

) = (S0, 0) for every positive solution of (1.1), which
can be achieved by a similar argument as that given in Theorem 2.3 of [51]. This
completes the proof. 	


4. The case λ1 < S0 < µ1

Throughout this section, we study the global dynamics of model (1.1) under the
assumption that αp(S0) > D so that λ1(τ ) < S0 < µ1(τ ) for all 0 ≤ τ <
1
D

ln p(S0)
D
. In this case, the equilibrium point Eλ1 sits in the positive cone, but

Eµ1 does not. We prove that Eλ1 is globally asymptotically stable (with respect
to C+

2 ). Moreover, we also study the dynamical behaviour of solutions near the
boundary of C+

2 in an attempt to better understand certain transient oscillations
of solutions in C+

2 .

We begin with the following observation.

Lemma 4.1. Let
(
S(t), x(t)

)
be a positive solution of (1.1). If λ1 < S0 < µ1, then

S(t) < S0 for all sufficiently large t.

Proof. This can be proved by an argument similar to that given for Lemma 2.2 in
Wolkowicz and Xia [51]. 	


Let
(
S(t), x(t)

)
be an arbitrary positive solution of (1.1). We define y(t) =

eDτ x(t+τ), t ≥ 0.Then it follows from (3.5) that S(t) = S0−y(t)+ρ(t), t ≥ 0.
From the second equation of (1.1) it follows that

y′(t) = −Dy(t)+ α p
(
S0 − y(t)+ ρ(t)

)
y(t − τ). (4.1)

We now give a global stability result as follows.

Theorem 4.1. If λ1 < S0 < µ1, then Eλ1 is globally asymptotically stable with
respect to the nonnegative cone C+

2 .

Proof. Since Eλ1 is locally asymptotically stable, by Theorem 3.1, it suffices to
show that it is globally attractive, i.e. limt→∞

(
S(t), x(t)

) = Eλ1 for every positive
solution

(
S(t), x(t)

)
of (1.1). Let z(t) = eDτ x(t). Then z(t) satisfies (4.1) and is

bounded. Define

β = lim inf
t→∞ z(t), γ = lim sup

t→∞
z(t).

Then 0 ≤ β ≤ γ ≤ S0. By Lemma 4.1 and the Fluctuation Lemma of Hirsch,
Hanisch and Gabriel [28], assumptions (3.3) and λ1 < S0 < µ1, we can proceed
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as in the proofs of Lemmas 3.4, 3.5 and 3.8 in Wolkowicz and Xia [51], to show
that β = γ = S0 −λ1. Thus lim

t→∞ x(t) = α(S0 −λ1) and by (3.5), lim
t→∞ S(t) = S0.

Therefore, lim
t→∞

(
S(t), x(t)

) = Eλ1 and the proof is complete. 	


Remark 4.1. For the case where two species are competing for one limiting resource
in the chemostat with general delayed growth functions, Wang and Ma [48] also
established a global convergence result by taking advantage of the Fluctuation
Lemma.

In the rest of this section, we study the dynamical behaviour of the solutions
near the unstable equilibrium point ES0 = (S0, 0) that lies on the boundary of the
nonnegative cone C+

2 . These solutions themselves are not always biologically rel-
evant, since they may involve negative values. However, the oscillatory behaviour
of these solutions can be used to help us understand transient oscillations (of other
positive solutions) that have been frequently observed in chemostat experiments.

Our idea is to determine when Hopf bifurcations occur at the unstable equi-
librium point ES0 . Note that by (3.7), the characteristic equation 
(λ) = 0 of the
linearized system at ES0 always has a negative real root λ = −D.All of the other
roots are determined by the equation

λ+D − A(τ)e−λτ = 0, (4.2)

where α = e−Dτ and A(τ) = α p(S0) > D, provided that 0 < τ < 1
D

ln p(S0)
D
.

We look for purely imaginary roots of (4.2). Substitute λ = iβ, β > 0 as a root
of (4.2). Considering the real and imaginary parts of (4.2), we obtain

β + A(τ) sin βτ = 0, D − A(τ) cosβτ = 0.

Equivalently,

cosβτ = D

A(τ)
, sin βτ = − β

A(τ)
. (4.3)

Note that since cosβτ > 0 and sin βτ < 0, it follows thatβτ ∈ ((4n−1)π/2, 2nπ)
for some positive integer n. Squaring both sides of (4.3) and adding, we obtain

β =
√
A2(τ )−D2. (4.4)

Therefore, we think of β as β(τ). Now substituting (4.4) into (4.3),

cos
(
τ
√
A2(τ )−D2

) = D

A(τ)
, sin

(
τ
√
A2(τ )−D2

) = −
√
A2(τ )−D2

A(τ)
. (4.5)

Thus, by (4.4), a solution of (4.5) for 0 < τ < 1
D

ln p(S0)
D

has β > 0, and hence
yields an imaginary root of (4.2). Therefore, we look for positive solutions of
equation (4.5).
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Let n be a positive integer. We define γn(τ ) to be the unique solution of the
following equation

sin x = − x
√
x2 + (Dτ)2

, x ∈ [ 4n−1
2 π, 2nπ). (4.6)

It follows from the Implicit Function Theorem that for fixed n, γn(τ ) is contin-
uous on [0,∞) and differentiable on (0,∞), with γn(0) = (4n − 1)π/2 and
γn(∞) = 2nπ. Moreover, using the fact that cos γn(τ ) =

√
1 − sin2 γn(τ ) on

((4n− 1)π/2, 2nπ), we have

γ ′
n(τ ) = Dγn(τ)

γ 2
n (τ )+D2τ 2 +Dτ

> 0. (4.7)

Similarly, from (4.7),

γ ′′
n (τ ) = −2Dγn(τ)

(
γn(τ )γ

′
n(τ )+D2τ

)

(
γ 2
n (τ )+D2τ 2 +Dτ

)2 < 0,

for all τ ∈ (0,∞). Hence γn(τ ) is strictly increasing and concave down.
Before we characterize the positive solutions of (4.5) we require the following

technical lemma.

Lemma 4.2. Let δ = δ(S0,D) > 0 be the unique solution of the equation

p2(S0)(1 −Dx) = D2e2Dx, x > 0,

and N > 0 be the smallest integer such that

p
(
S0)√D δ 3

2 e−Dδ ≤ 2Nπ.

Consider the function

f (τ) = τ
√
A2(τ )−D2, τ ∈

[
0,

1

D
ln
p(S0)

D

]
. (4.8)

Then the following hold:

(i) τβ = f (τ) ≤ p(S0)
√
D δ

3
2 e−Dδ with equality if and only if τ = δ;

(ii) τ = τ ∗ > 0 is a solution of (4.5) if and only if there exists an integer
0 < n ≤ N such that the graphs of γn(τ ) and f (τ) intersect at τ = τ ∗;

(iii) If γN(δ) < f (δ), then there are at least N solutions of (4.5) in the interval

(0, δ) and exactly N solutions of (4.5) in the interval
(
δ, 1

D
ln p(S0)

D

);
(iv) If γN(δ) > f (δ), then there are at leastN−1 solutions of (4.5) in the interval

(0, δ) and exactly N − 1 solutions of (4.5) in the interval (δ, 1
D

ln p(S0)
D

)
.
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Proof. (i) First note that f (τ) is always nonnegative and

f ′(τ ) = p2(S0)(1 −Dτ)−D2e2Dτ

e2Dτ
√
A2(τ )−D2

. (4.9)

Sof (τ) is strictly increasing on (0, δ) and strictly decreasing on (δ, 1
D

ln
(
p(S0)/D

)
].

Its maximum value is f (δ) = p(S0)
√
D δ

3
2 e−Dδ.

(ii) Observe that τ = τ ∗ > 0 is a solution of (4.5) if and only if






τ ∗A(τ ∗) =
√
f 2(τ ∗)+ (Dτ ∗)2,

sin
(
f (τ ∗)

) = − f (τ∗)
τ∗A(τ∗) ,

f (τ ∗) ∈ ( 4n−1
2 π, 2nπ

)
,

for some integern > 0.This means thatf (τ ∗) is a solution of (4.6), i.e. the functions

f (τ) and γn(τ ) intersect at τ = τ ∗. Since f (τ) ≤ f (δ) = p(S0)
√
D δ

3
2 e−Dδ ≤

2Nπ, any γi(τ ) with i ≥ N + 1 cannot intersect the function f (τ). Hence n ≤ N

and (ii) holds.
(iii) If γN(δ) < f (δ), then there are at least 2N intersection points of the

functions f (τ) and γi(τ ), 1 ≤ i ≤ N, with at least N points on each side of
τ = δ, since f (τ) is always strictly increasing on [0, δ) and strictly decreasing on
[
δ, 1

D
ln p(S0)

D

)
, and each γi(τ ) is strictly increasing. The conclusion now follows

from (ii) (see Fig. 2).
(iv) This case is similar to (iii). 	


(δ,f(δ))

γ
1
(τ)

γ
2
(τ)

γ
3
(τ)

γ
4
(τ)

3π/2

7π/2

11π/2

15π/2

ln(p(S0)/D) / Dτ

f(τ)

0
0

Fig. 2. Intersections of f (τ) and γi(τ ).
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Remark 4.2. (a) It follows immediately from Lemma 4.2 that βτ is bounded above
by 2Nπ where N is the smallest positive integer such that f (δ) ≤ 2Nπ (see
Fig. 2).

(b) Note that p(S0) >
√

2D is necessary for the existence of positive solutions
of (4.5). In fact, p(S0) > 3

2πeD >
√

2D is necessary. To see this, first note that

δ
3
2 e−Dδ is an increasing function of δ for 0 ≤ δ ≤ 3

2D . Keeping in mind that

δ < 1
D
, if p(S0) ≤ δ

3
2 e−Dδ, it follows that

f (δ) = p(S0)
√
D δ3/2e−Dδ < p(S0)

√
D
( 1

D

)3/2
e−1 = p(S0)

D
e−1 ≤ 3π

2
.

Hence f (τ) < γ1(τ ) for all τ ∈ (
0, 1

D
ln p(S0)

D

)
, and by Lemma 4.2 (i), equation

(4.5) has no positive solution.

In order to establish analytically that there are only a finite number of positive
solutions to (4.5), and that they are distinct and hence isolated, we require a generic
transversality condition.

Lemma 4.3. Let δ0 = δ0(S
0,D) be the unique solution of the equation

p2(S0)(1 −Dx) = 2D2e2Dx, x > 0,

and letN and δ be the numbers defined in Lemma 4.2. Assume that p(S0) >
√

2D
and f (δ0) �= γi(δ0) for all 1 ≤ i ≤ N.

(i) If γN(δ) < f (δ), then there are exactly 2N positive solutions of (4.5), namely,
0 < τ ∗

1 < τ ∗
2 < · · · < τ ∗

2N such that τ ∗
N < δ0 < δ < τ ∗

N+1 and

γn(τ
∗
n ) = f (τ ∗

n ), γn(τ
∗
2N−n+1) = f (τ ∗

2N−n+1), 1 ≤ n ≤ N.

(ii) If γN(δ) > f (δ), then one of the following two conclusions holds.
(a) There are exactly 2(N − 1) positive solutions 0 < τ ∗

1 < τ ∗
2 < · · · <

τ ∗
2N−2 such that τ ∗

N−1 < δ0 < δ < τ ∗
N and

γn(τ
∗
n ) = f (τ ∗

n ), γn(τ
∗
2N−n−1) = f (τ ∗

2N−n−1), 1 ≤ n ≤ N − 1;

(b) There are exactly 2N positive solutions 0 < τ ∗
1 < τ ∗

2 < · · · < τ ∗
2N such

that τ ∗
N < δ0 < τ ∗

N+1 < δ < τ ∗
N+2 and

γn(τ
∗
n ) = f (τ ∗

n ), γn(τ
∗
2N−n+1) = f (τ ∗

2N−n+1), 1 ≤ n ≤ N.

Proof. First note that when p(S0) >
√

2D, it follows that δ0 > 0. We now show
that if f (δ0) �= γi(δ0), 1 ≤ i ≤ N, then the functions f (τ) and γi(τ ) intersect
transversally. In fact, by (4.7) and (4.9), at any τ such that f (τ) = γi(τ ), we have
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f ′(τ )− γ ′
i (τ ) = p2(S0)(1 −Dτ)−D2e2Dτ

e2Dτ
√
α2p2(S0)−D2

− D γi(τ )

γ 2
i (τ )+D2τ 2 +Dτ

= p2(S0)(1−Dτ)−p2(λ1)

e2Dτ
√
α2p2(S0)−D2

− D τ
√
α2p2(S0)−D2

τ 2
(
α2p2(S0)−D2

)+D2τ 2 +Dτ

= τ α2

f (τ)

(

p2(S0)(1 −Dτ)− p2(λ1)− D
(
p2(S0)− p2(λ1)

)

τ α2p2(S0)+D

)

= τ α2

f (τ)

(
τ α2p2(S0)

τ α2p2(S0)+D

(
p2(S0)− p2(λ1)

)−D τ p2(S0)

)

= τ 2 α2 p2(S0)

f (τ )
(
τp2(S0)+De2Dτ

)
(
p2(S0)(1 −Dτ)− 2D2e2Dτ ).

(4.10)

where α = e−Dτ . Define the function

g(τ) = p2(S0)(1 −Dτ)− 2D2e2Dτ , τ ≥ 0. (4.11)

Note that g(τ) is a decreasing function and g(τ) = 0 if and only if τ = δ0. There-
fore, if f (τ) = γi(τ ), then f ′(τ ) = γ ′

i (τ ) if and only if τ = δ0, contradicting the
hypothesis that f (δ0) �= γi(δ0), 1 ≤ i ≤ N.

(i). From Lemma 4.2(ii), it suffices to show that there is exactly one intersection
point of f (τ) with each γi(τ ), 1 ≤ i ≤ N, on the interval (0, δ). Suppose not.
Then there exists 1 ≤ i0 ≤ N such that there are at least two τ ’s in (0, δ) such
that f (τ) = γi(τ ). Since there are at least two such τ ’s, by the transversality of
the intersection of f (τ) with γi(τ ) shown above and the fact that f (δ) > γi0(δ),

there must be at least three such τ ’s and so we can always select τ ∗+ > τ ∗− such that
f (τ ∗+) = γi0(τ

∗+) and f (τ ∗−) = γi0(τ
∗−), but

f ′(τ ∗
+)− γ ′

i0
(τ ∗

+) > 0 and f ′(τ ∗
−)− γ ′

i0
(τ ∗

−) < 0.

By (4.10), this implies that g(τ ∗+) > 0 and g(τ ∗−) < 0, which is impossible,
since g(τ) is a strictly decreasing function. That τ ∗

N < δ0, follows since f ′(τ ∗
N)−

γ ′
N(τ

∗
N) > 0 and this inequality is reversed for τ > δ0. This establishes (i).

(ii). Note that γN−1(δ) < 2(N−1)π < f (δ), and so there are exactly 2(N−1)
intersections of γi(τ ) and f (τ), 1 ≤ i ≤ N − 1, as in (i). Either γN(τ) does not
intersect f (τ) or it does. If there is no intersection, the proof is similar to (i), and
conclusion (a) follows. Otherwise, it is clear that there must be at least two inter-
sections, since f (δ) < γN(δ). We claim that in this case there are exactly two
intersection points of f (τ) with γN . Suppose not, i.e., there are at least three such
intersection points, Then we can find τ ∗− < τ ∗+ < δ such that f ′(τ ∗−)−γ ′

N(τ
∗−) < 0

and f ′(τ ∗+)− γ ′
N(τ

∗+) > 0 and there is a contradiction if one argues as in the pre-
vious case. In fact, if there are two such intersections, that τ ∗

N < δ0 < τ ∗
N+1 < δ

follows, since f ′(τ ∗
N)− γ ′

N(τ
∗
N) > 0 and f ′(τ ∗

N+1)− γ ′
N(τ

∗
N+1) > 0. This proves

(ii) (b).
This completes the proof. 	
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Lemma 4.4. Let λ = λ(τ) = R(τ)+ i I (τ ) be a root of the characteristic equation
(3.2), with R(τ ∗) = 0 and β = I (τ ∗) > 0 for some τ ∗ > 0. Then

Sign
(
R′(τ ∗)

) = Sign
(
f ′(τ ∗)− γ ′

i (τ
∗)
)

(4.12)

for some i ≥ 1, where Sign(x) is the sign function defined by

Sign(x) =
{ x

|x| , if x �= 0,
0, if x = 0.

Proof. We differentiate both sides of (4.2) with respect to τ. It follows that

dλ

dτ
− e−λτ

dA

dτ
+ Ae−λτ

(
τ
dλ

dτ
+ λ

)
= 0.

Note that dA/dτ = −DA. Solving for dλ/dτ in the above equation gives

dλ

dτ
= −DAe−λτ − λAe−λτ

1 + τAe−λτ
.

By (4.2), Ae−λτ = λ+D. Substituting this into the above expression now yields

dλ

dτ
= −

(
λ+D

)2

1 + τ
(
λ+D

) . (4.13)

It then follows from (4.13) that at τ = τ ∗, λ = i β, and we have

R′(τ ∗) = Re

(
−(iβ +D

)2

1 + τ ∗(iβ +D
)

)

= −Re

(
D2 − β2 + 2βDi

1 +Dτ ∗ + τ ∗βi

)

= −
(
D2 − β2

)(
1 +Dτ ∗)+ 2Dτ ∗β2

(
1 +Dτ ∗)2 + (

τ ∗β
)2

= −D
2 − β2 +D3τ ∗ +Dτ ∗β2

(
1 +Dτ ∗)2 + (

τ ∗β
)2

= −D
2 − β2 +Dτ ∗(D2 + β2

)

(
1 +Dτ ∗)2 + (

τ ∗β
)2 . (4.14)

Note that from (4.4), we haveD2 + β2 = A2(τ ∗) = e−2Dτ∗
p2(S0). Therefore, by

(4.14), we obtain

R′(τ ∗) = −D
2 − β2 +Dτ ∗A2(τ ∗)
(
1 +Dτ ∗)2 + (

τ ∗β
)2 ,
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which leads to

Sign
(
R′(τ ∗)

) = Sign
(
β2 −D2 −Dτ ∗A2(τ ∗)

)

= Sign
(
β2 +D2 − 2D2 −Dτ ∗A2(τ ∗)

)

= Sign
(
A2(τ ∗)− 2D2 −Dτ ∗A2(τ ∗)

)

= Sign
(
e−2Dτ∗

p2(S0)(1 −Dτ ∗)− 2D2)

= Sign
(
p2(S0)(1 −Dτ ∗)− 2D2e2Dτ∗)

.

The formula (4.12) follows from (4.10) and Lemma 4.2 (i).
This completes the proof. 	


Remark 4.3. As is well-known, Sign
(
R′(τ ∗)

) �= 0 is the transversality condition
in the classical Hopf bifurcation theorem. It is interesting to note that by formula
(4.12), this transversality condition is satisfied if and only if the curves f (τ) and
γi(τ ) cross transversally. Thus this formula gives a way to check the transversality
condition geometrically.

Together with Lemmas 4.2 and 4.4, the following theorem gives a sufficient
condition for a Hopf bifurcation for model (1.1).

Theorem 4.2. Let τ ∗ be a solution of (4.5). Then there exists a unique integer n ≥ 1
such that f (τ ∗) = γn(τ

∗). If f ′(τ ∗) �= γ ′
n(τ

∗), then there is a Hopf bifurcation
at τ = τ ∗ of small amplitude periodic solutions bifurcating from the equilibrium
ES0 . When τ is sufficiently close to τ ∗, these periodic solutions are all unstable
and their periods lie in the interval

(
τ ∗/n, 4τ ∗/(4n− 1)

)
.

Proof. Since τ ∗ > 0 is a solution of (4.5), at τ = τ ∗, (4.2) has a purely imaginary
root, βi, and by (4.4) β =

√
A2(τ ∗)−D2. Moreover, by Lemma 4.2 (i), there

exists a unique integer n ≥ 1 such that f (τ ∗) = γn(τ
∗).Applying Lemma 4.4, we

obtain

d

dτ

(
Re(λ)

)
∣∣∣∣
τ=τ∗

�= 0,

where λ = λ(τ) is a root of (4.2) with λ(τ ∗) = βi. Note that

2π

β
= 2πτ ∗

τ ∗√A2(τ ∗)−D2
= 2πτ ∗

f (τ ∗)
= 2πτ ∗

γn(τ ∗)
,

and γn(τ ∗) ∈ ((4n− 1)π/2, 2nπ
)
. Therefore, we have

τ ∗

n
<

2π

β
<

4τ ∗

4n− 1
. (4.15)

By the Hopf bifurcation theorem for delay differential equations (see, for exam-
ple, Hale and Lunel [25]), there is a Hopf bifurcation of small amplitude periodic
solutions at τ = τ ∗ with periods in

(
τ ∗/n, 4τ ∗/(4n− 1)

)
.
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Notice that p(S0) > D. The characteristic equation (4.2) always has a positive

real root for each τ ∈ [0, 1
D

ln p(S0)
D

)
. This positive real root gives a Floquet multi-

plier for the small amplitude periodic solutions nearES0 with positive real part (see
§4, Chapter VIII of Golubitsky and Schaeffer [24]). Therefore, these bifurcating
periodic solutions are all unstable and the proof is complete. 	

Remark 4.4. As shown in Theorem 4.1, all positive solutions must converge to the
equilibrium Eλ1 as t → ∞. Therefore, the periodic solutions bifurcating from
ES0 cannot be nonnegative. In fact, as we will see later in this section, in the case
λ1 < S0 < µ1, any periodic solution of (1.1) must involve negative and positive
values and surround the equilibrium ES0 = (S0, 0). Thus these periodic solutions
involve negative values in the initial data and are not themselves biologically rel-
evant. However, these unstable periodic solutions are still of interest for model
(1.1), since they may be viewed as “sources” of transient oscillations observed in
experiments (see, for example, Hansen and Hubbel [26]). Note that ES0 is on the
boundary of C+

2 . It is likely that solutions with positive initial data close to ES0

would also display transient oscillatory behaviour (see Fig. 7).

Remark 4.5. It is also interesting to note that any small amplitude periodic solution
obtained via Hopf bifurcation has period less than 2τ. Moreover, as we have dis-
cussed in Remark 4.4, the x-component of any such periodic solution must have
a zero in the interval [t, t + τ ], for any t ≥ 0, and must change sign there. In the
literature, this type of solution is referred to as a rapidly oscillating solution (see,
for example, [1]). It has been observed, both numerically and theoretically, that rap-
idly oscillating periodic solutions seem to be unstable for many delay differential
equations. Our result is consistent with this observation.

Note that Theorem 4.2 only gives the existence of periodic solutions near the
equilibrium ES0 . In what follows, we study the global continuation of these local
bifurcating periodic solutions. Our main technique is the global Hopf bifurcation
theorem proved by Erbe, Geba, Krawcewicz and Wu [20] for functional differential
equations. See also Chow and Mallet-Paret [11] and Krawcewicz, Xia and Wu [31].

We begin with the following lemma concerning a-priori bounds of possible
periodic solutions of (1.1).

Lemma 4.5. Let
(
S(t), x(t)

) ∈ C(R,R+ × R) be a periodic solution of (1.1). If
µ1(0) < ∞, then for all t ∈ R, we have

λ1(0) ≤ S(t) ≤ µ1(0), |x(t)| ≤ max{S0 − λ1(0), µ1(0)− S0}.
Proof. LetW(t) = S0 −S(t)−eDτ x(t+τ). ThenW ′(t) = −DW(t). SinceW(t)
is periodic, this implies that

S(t)+ eDτ x(t + τ) = S0, (4.16)

for all t ∈ R. Let y(t) = eDτ x(t + τ). Then y(t) + S(t) = S0 for all t ∈ R, and
y(t) satisfies the (scalar) delay differential equation

y′(t) = −Dy(t)+ α p
(
S0 − y(t)

)
y(t − τ). (4.17)
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Suppose that y(t) achieves its minimum at ξ. Then y′(ξ) = 0. By Remark 4.4, we
must have y(ξ) < 0. It now follows from (4.17) that

Dy(ξ) = α p
(
S0 − y(ξ)

)
y(ξ − τ) ≥ α p

(
S0 − y(ξ)

)
y(ξ).

Cancelling y(ξ) yields D ≤ α p
(
S0 − y(ξ)

)
, which implies that

S0 − y(ξ) ≤ µ1(τ ) ≤ µ1(0).

Thus y(ξ) ≥ S0 − µ1(0) and

x(t) = α y(t − τ) ≥ α
(
S0 − µ1(0)

) ≥ S0 − µ1(0). (4.18)

Similarly, if y(t) achieves its maximum at ζ, then y′(ζ ) = 0. As before, we may
assume that y(ζ ) > 0. Then (4.17) gives

Dy(ζ ) = α p
(
S0 − y(ζ )

)
y(ζ − τ) ≤ α p

(
S0 − y(ζ )

)
.

Thus D ≤ αp
(
S0 − y(ζ )

)
and S0 − y(ζ ) ≥ λ1(τ ) ≥ λ1(0) by assumption (3.3).

Therefore, y(ζ ) ≤ S0 − λ1(0) and

x(t) = α y(t − τ) = α
(
S0 − λ1(0

) ≤ S0 − λ1(0). (4.19)

Therefore, |x(t)| ≤ max{S0 − λ1(0), µ1(0) − S0}. That λ1(0) ≤ S(t) ≤ µ1(0)
follows from (4.16), (4.18) and (4.19).

This completes the proof. 	

Our next lemma excludes periodic solutions of (1.1) with certain periods. Its

proof uses an argument similar to that used by Chow and Mallet-Paret [11]. See
also Krawcewicz, Xia and Wu [31].

Lemma 4.6. System (1.1) has no nontrivial 2τ
m

-periodic solutions inC(R,R+×R)

for any positive integer m.

Proof. It suffices to prove the lemma for m = 1. Suppose that
(
S(t), x(t)

) ∈ C

(R,R+ × R) is a nontrivial 2τ -periodic solution. Let y(t) = eDτ x(t + τ). Then
y(t) is a nontrivial 2τ -periodic solution of equation (4.17). Let z(t) = y(t − τ). It
follows from (4.17) that

y′(t) = −Dy(t)+ α p
(
S0 − y(t)

)
z(t),

z′(t) = −Dz(t)+ α p
(
S0 − z(t)

)
y(t).

This two-dimensional system of ODEs has an invariant line 
 = {(y, z) ∈ R2;
y = z}. Since there are no nontrivial periodic solutions in one-dimensional auton-
omous ODEs, we must have y(t) > z(t) for all t ∈ R, or y(t) < z(t) for all t ∈ R.

In the former case, y(t) > y(t − τ) for all t ∈ R, so y(t − τ) > y(t − 2τ) = y(t).

This leads to z(t) > y(t), a contradiction. The other case leads to a contradic-
tion similarly. Therefore, system (1.1) has no nontrivial 2τ -periodic solutions. This
completes the proof. 	
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The following lemma is concerned with the global stability of a negative equi-
librium solution of (1.1). It is useful for describing periodic solutions around the
nonnegative equilibrium ES0 .

Lemma 4.7. Let
(
S(t), x(t)

) ∈ C(R,R+ ×R) be a solution of (1.1) with x(t) < 0
for all t ≥ −τ. Then

lim
t→∞

(
S(t), x(t)

) = (
µ1(τ ), α (S

0 − µ1(τ ))
)
.

Proof. First note that
(
S(t), x(t)

)
satisfies (3.5) and y(t) = eDτ x(t + τ) is a solu-

tion of (4.1). We claim that y(t) is bounded. Since x(t) < 0 for all t ≥ −τ, clearly
y(t) is bounded from above. Suppose now that it is unbounded from below. Let
ε > 0 be arbitrarily given. Find T > τ such that ρ(t) > −ε for all t ≥ T . Then for
any L < S0 − µ1 − ε, there exists t0 ≥ T > τ such that y(t0) < L. Define

M = min
t∈[t0−τ,t0]

y(t) < 0 and

t̄ = sup{t ≥ t0 − τ ; y(s) ≥ M for all s ∈ [t0 − τ, t]}.
Then t0 ≤ t̄ < ∞, M ≤ L < S0 − µ1 − ε, and

y(t) ≥ M, t ∈ [t0 − τ, t̄ ],
y(t̄) = M, y′(t̄) ≤ 0.

It now follows from (4.1) that

DM = D y(t̄) ≥ α p
(
S0 − y(t̄)+ ρ(t̄)

)
y(t̄ − τ)

≥ α p
(
S0 −M + ρ(t̄)

)
M.

Since M < 0, this implies that D ≤ α p
(
S0 −M + ρ(t̄)

)
. By assumption (3.3),

we obtain S0 −M + ρ(t̄) ≤ µ1. Therefore,

M ≥ S0 − µ1 + ρ(t̄) > S0 − µ1 − ε > L,

a contradiction. Hence y(t) is also bounded from below.
Let v(t) = −y(t). By (4.1), v(t) now satisfies

v′(t) = −D v(t)+ α p
(
S0 + v(t)+ ρ(t)

)
v(t − τ).

Note that v(t) > 0 and is bounded for t > 0. The following numbers are well-
defined:

a = lim inf
t→∞ v(t), b = lim sup

t→∞
v(t).

Then 0 ≤ a ≤ b < ∞. We now argue as in the proofs of Lemmas 3.4, 3.6 and
3.8 of Wolkowicz and Xia [51]. We find that a = b = µ1 − S0. Thus lim

t→∞ x(t) =
lim
t→∞α y(t) = α lim

t→∞
(−v(t)) = α (S0 −µ1).By (3.5), we obtain lim

t→∞ S(t) = µ1.

Therefore, lim
t→∞

(
S(t), x(t)

) = (
µ1, α(S

0 − µ1)
)
, and the proof is complete. 	
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We are now in the position to state and prove the following theorem about
the existence and multiplicity of global (i.e. large amplitude) periodic solutions of
(1.1). Note that when we say τ ∗ > 0 is a local Hopf bifurcation value we mean a
Hopf bifurcation occurs at τ = τ ∗.

Theorem 4.3. Let δ, N and δ0 be the numbers given in Lemmas 4.2 and 4.3, and
let γi(τ ) and f (τ) be the functions defined by (4.6) and (4.8). Assume that p(S0) >√

2D and f (δ0) �= γi(δ) for all 1 ≤ i ≤ N. Then the following conclusions hold:

(i) If γN(δ) < p(S0)
√
D δ

3
2 e−Dδ, then there exist exactly 2N local Hopf bifur-

cation values, namely, 0 < τ ∗
1 < τ ∗

2 < · · · < τ ∗
2N <

1
D

ln p(S0)
D

such that for
each τ ∈ (τ ∗

n , τ
∗
2N−n+1), 1 ≤ n ≤ N, system (1.1) has n periodic solutions

with periods in
(
τ/m, τ/(m− 1

2 )
)
, 1 ≤ m ≤ n, respectively.

(ii) If γN(δ) > p(S0)
√
D δ

3
2 e−Dτ , then there exist exactly 2K local Hopf bifur-

cation values, namely, 0 < τ ∗
1 < τ ∗

2 < · · · < τ ∗
2K <

1
D

ln p(S0)
D

such that for
each τ ∈ (τ ∗

n , τ
∗
2K−n+1), 1 ≤ n ≤ K, system (1.1) has n periodic solutions

with periods in
(
τ/m, τ/(m− 1

2 )
)
, 1 ≤ m ≤ K, respectively, where K is

either N − 1 or N.

Moreover, any periodic solution
(
S(t), x(t)

)
mentioned above surrounds the equi-

librium point ES0 in the S − x phase plane, and for any t ∈ R, x(t) has a zero in
the interval [t − τ, t] and changes sign there.

Proof. We consider system (1.1) in the Banach space X = C(R; R
+ × R) of

bounded and continuous functions with the usual supremum norm, and τ ∈ I :=
(
0, 1

D
ln p(S0)

D

)
is chosen as a bifurcation parameter. We apply the global Hopf

bifurcation theorem for delay differential equations (see Erbe, Geba, Krawcewicz
and Wu [20]). For terminology, we refer to [11].

We rewrite system (1.1) in the following form of a general FDE:

y′(t) = F(yt , τ ), (t, τ ) ∈ R × I, (4.20)

where y(t) = (
S(t), x(t)

)
, yt (θ) = y(t + θ) for θ ∈ (−∞, 0], and

F(ϕ, τ) =
( (

S0 − ϕ0(0)
)
D − ϕ1(0)p

(
ϕ0(0)

)

−Dϕ1(0)+ e−Dτp
(
ϕ0(−τ)

)
ϕ1(−τ)

)
, (4.21)

and ϕ = (ϕ0, ϕ1) ∈ X, τ ∈ I. By identifying the subspace of X consisting of all
constant functions from (−∞, 0] to R

+ × R with R
+ × R, we obtain a restricted

function

F̂ := F |R+×R×I : R
+ × R × I → R

2.

It can be seen from (4.21) that F̂ takes the form

F̂ (x0, x1, x2) =
(
(S0 − x0)D − x1p(x0)

−Dx1 + e−Dx2p(x0)x1

)
,
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where (x0, x1, x2) ∈ R
+ ×R×I.We define the set of stationary solutions of (4.20)

by

N(F) = {(x0, x1, x2) ∈ R
+ × R × I ; F̂ (x0, x1, x2) = 0}. (4.22)

It follows from assumption (3.3) and formula (4.22) that

N(F) = {(Eλ1 , τ ), (Eµ1 , τ ), (S
0, 0, τ ); τ ∈ I },

where

Eλ1 = (
λ1(τ ), e

Dτ
(
S0 − λ1(τ )

))
,

Eµ1 = (
µ1(τ ), e

Dτ
(
S0 − µ1(τ )

))
.

Let D(x0,x1)F̂ denote the derivative of F̂ with respect to the first two variables. A
direct calculation, together with assumption (3.3), gives

det
(
D(x0,x1)F̂ (x0, x1, x2)

)
= D

(
D − e−Dx3p(x0)+ x1p

′(x0)
) �= 0,

for any (x0, x1, x2) ∈ N(F). By the Implicit Function Theorem, there is no bifur-
cation of stationary solutions from N(F).

(i). Notice that for all τ ∈ I, Eλ1 and Eµ1 are hyperbolic and asymptotically
stable (see Theorem 3.1 and Lemma 4.7). We need only to look for centers in the
subset {(S0, 0, τ ); τ ∈ I } of N(F). Now if p(S0) >

√
2D and f (δ0) �= γi(δ0

for all 1 ≤ i ≤ N, Lemma 4.3 implies that system (4.20) has exactly 2N isolated
centers, namely, {(S0, 0, τ ∗

n ); 1 ≤ n ≤ 2N}.Moreover, it follows from Lemma 4.4
that the crossing number cn(S0, 0, τ ∗

n ) at each of these centers is

cn(S
0, 0, τ ∗

n ) = −Sign

(
d

dτ
Re (λ)|τ=τ∗

n

)

= −Sign
(
f ′(τ ∗

n )− γ ′
i (τ

∗
n )
)

=
{−1, if 1 ≤ n ≤ N,

1, if N + 1 ≤ n ≤ 2N,

where i ∈ {1, 2, . . . , N} is the unique integer such that f (τ ∗
n ) = γi(τ

∗
n ).

We now define a closed subset �(F) of X × I × R
+ by

�(F) = Cl{(y, τ, p) ∈ X × I × R
+;

y is a nontrivial p-periodic solution of system (4.20)}

and consider the connected component C(S0, 0, τ ∗
n , 2π/βn) of (S0, 0, τ ∗

n , 2π/βn)
in �(F) for each 1 ≤ n ≤ N, where βn =

√
A2(τ ∗)−D2. By Theorem 4.2,

C(S0, 0, τ ∗
n , 2π/βn) is a nonempty subset of �(F). To obtain more information

about C(S0, 0, τ ∗
n , 2π/βn), we apply the global bifurcation theorem (see Theorem

3.3 in [20]). It follows that either
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(a) C(S0, 0, τ ∗
n , 2π/βn) is unbounded in X × I × R

+, or
(b) C(S0, 0, τ ∗

n , 2π/βn) is bounded in X × I × R
+ and C(S0, 0, τ ∗

n , 2π/βn) ∩
{N(F) \ {(S0, 0, τ ∗)}} �= ∅,

where, for the sake of convenience, a closed subset of I is said to be unbounded in
I if it is non-compact relative to I.

We claim that if (a) occurs, then there exists a constant c > 0 such that the

projection of C(S0, 0, τ ∗
n , 2π/βn) onto the parameter space I is

(
c, 1

D
ln p(S0)

D

)
.

To see this, first note that by Lemma 4.6, system (4.20) has no nontrivial periodic
solutions with periods τ/n and 2τ/(2n− 1) = τ/(n− 1

2 ). Since

τ ∗

n
<

2π

βn
<

4τ ∗

4n− 1
<

τ ∗

n− 1
2

(see (4.15)), the connected component C(S0, 0, τ ∗
n , 2π/βn) must lie in the region

betweenp = τ/n andp = τ/(n− 1
2 ) in the spaceX×I×R

+.Using Lemma 4.5, we
find that the projection of C(S0, 0, τ ∗

n , 2π/βn) onto theX-space is bounded. There-
fore, in order for case (a) to occur, it follows that the projection C(S0, 0, τ ∗

n , 2π/βn)
onto I -space must be unbounded. Note that the functional F(ϕ, τ) is globally Lips-
chitz with respect to ϕ on any bounded subset of X with a Lipschitz constant inde-
pendent of τ ∈ I. By a result of Li [34] on the lower bounded on the period of
periodic solutions for delay equations, this projection is bounded from below in I.

Thus the projection C(S0, 0, τ ∗
n , 2π/βn)must be

(
c, 1

D
ln p(S0)

D

)
for some constant

c ∈ I. (In fact, the constant c can be chosen as (n− 1
2 )p0, where p0 > 0 is a lower

bound (independent of τ ) on the periods of periodic solutions of (4.20) inside the
ball ‖ϕ‖ ≤ max{µ1(0), S0 − λ1(0), µ1(0) − S0 }.) Therefore, for any τ > c,

system (4.20) has a nontrivial periodic solution with period in (τ/n, τ/(n − 1
2 )).

Clearly, c ≤ τ ∗
n , and so conclusion (i) follows from the fact that

(
τ ∗
i , τ

∗
2N−i+1

) ⊂ (
τ ∗
i−1, τ

∗
2N−i+2

)

for each 2 ≤ i ≤ N.

In case (b), we must have

C(S0, 0, τ ∗
n , 2π/βn) ∩ { (Eλ1 , τ ), (Eµ1 , τ ); τ ∈ I } = ∅,

since Eλ1 and Eµ1 are asymptotically stable for all τ ∈ I. Therefore,

C(S0, 0, τ ∗
n , 2π/βn) ∩ { (S0, 0, τ ∗

i ); i �= n } �= ∅.
Now, as we have shown above, C(S0, 0, τ ∗

n , 2π/βn) is trapped in the region between
p = τ/n and p = τ/(n − 1

2 ), and in this region there are two Hopf bifurcation
values, namely, τ ∗

n and τ ∗
2N−n+1.We are led to

C(S0, 0, τ ∗
n , 2π/βn) ∩N(F) = {(S0, 0, τ ∗

n ), (S
0, 0, τ ∗

2N−n+1)}.
This implies that for each τ ∈ (τ ∗

n , τ
∗
2N−n+1), system (4.20) has a nontrivial periodic

solution with period in (τ/n, τ/(n − 1
2 )). Consequently, in either case, condition

(i) holds.
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(ii). This can be proved in a similar manner to (i) by using Lemma 4.3 (ii).
It remains to show that any periodic solution

(
S(t), x(t)

)
of (4.20) with S(t) >

0, t ∈ R, surrounds the equilibrium ES0 . To see this, we first note that
(
S(t), x(t)

)

must satisfy (4.16) for all t ∈ R.Then S(t)−S0 must change sign since, otherwise,
x(t)will be of the same sign and, byTheorem 4.1 or Lemma 4.7, limt→∞

(
S(t), x(t)

)

= Eλ1 orEµ1 , a contradiction. The conclusion now follows from the positive invari-
ance ofC+

2 andC−
2 = {(S, x) ∈ R

+×R; x ≤ 0} and the global asymptotic stability
of Eλ1 and Eµ1 with respect to C+

2 and C−
2 , respectively.

The proof of the theorem is now complete. 	


5. The case λ1 < µ1 < S0

Recall that by assumption (3.2),p(S) attains its maximum value at S = η. Through-
out this section, we assume that

S0 > η and p(η) > D,

so that λ1(τ ) < µ1(τ ) < S0 for all τ ∈ (τmin, τmax), where

τmin = max

(
0,

1

D
ln
p(S0)

D

)
> 0, and τmax = 1

D
ln
p(η)

D
> 0.

Therefore, the three nonnegative equilibrium points Eλ1 , Eµ1 , and ES0 are all in
the nonnegative cone C+

2 for τmin ≤ τ < τmax.

As indicated in Theorem 3.1, in this case, Eλ1 and ES0 are both locally asymp-
totically stable, and Eµ1 is unstable. In this section, we show that the positive
equilibrium point Eµ1 is not always hyperbolic. As in Section 4, we look for crit-
ical values τ at which purely imaginary characteristic values appear and Hopf
bifurcation occurs.

Define a function

B(τ) = −α (S0 − µ1(τ )
)
p′(µ1(τ )

)
, τ ∈ [τmin, τmax], (5.1)

where α = e−Dτ . Since λ1(τ ) < µ1(τ ) < S0 for all τ ∈ (τmin, τmax), B(τ) is
always positive. By (3.7), the characteristic equation 
(λ) = 0 of the linearized
system at Eµ1 has a negative root λ = −D, and all other roots are determined by
the equation

λ+D − B(τ)−De−λτ = 0. (5.2)

Since B(τ) > 0, λ = 0 is not a root. We now look for purely imaginary roots.
Substitute λ = β i in (5.2), where β > 0. By isolating the real and imaginary parts
of equation (5.2), we obtain

cosβτ = D − B(τ)

D
, sin βτ = − β

D
. (5.3)
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Since sin βτ < 0, it follows that βτ ∈ ((2n − 1)π, 2nπ) for some positive
integer n. Squaring both sides of each equation in (5.3), adding them, and solving
for β we obtain

β =
√
B(τ)

(
2D − B(τ)

)
. (5.4)

Substituting (5.4) into (5.3), we obtain

cos
(
τ

√
B(τ)

(
2D − B(τ)

) ) = 1 − B(τ)

D
,

sin
(
τ

√
B(τ)

(
2D − B(τ)

) ) = −
√
B(τ)

(
2D − B(τ)

)

D
. (5.5)

We wish to find positive solutions τ of equation (5.5).
First we consider solutions of

sin x = − x

Dτ
, x ∈ ((2n− 1)π, 2nπ) (5.6)

for each positive integer n (see Fig. 3). For each fixed n, there is a unique solu-
tion of (5.6) if the intersection of the curve y = sin x and the line y = − x

Dτ

occurs at a point where the line is tangent to the curve, i.e., cos x = − 1
Dτ
. But

this implies that tan x = x at this unique solution. With this in mind, denote by ωn
the unique solution of tan x = x in the interval

(
(2n − 1)π, (4n − 1)π/2

)
. Since

1 = sin2(ωn)+ cos2(ωn) = ω2
n

(Dτ)2
+ 1

(Dτ)2
, solving for τ yields τ = √

ω2
n + 1/D.

Since the slope of the line y = − x
Dτ

is an increasing function of τ and y = sin x

is independent of τ , it is clear that for τ <
√
ω2
n + 1/D there are no solutions of

(5.6) in the interval ((2n − 1)π, 2nπ) and for τ >
√
ω2
n + 1/D there are always

exactly two solutions in the interval ((2n − 1)π, 2nπ), one less than ωn and one
larger than ωn (see Fig. 3).

Lemma 5.1. Let i be a positive integer and τ ≥
√
ω2
i + 1/D. Define γ2i−1 =

γ2i−1(τ ) to be the unique solution of

sin x = − x

Dτ
, x ∈ ((2i − 1)π, ωi

]
,

and γ2i = γ2i (τ ) to be the unique solution of

sin x = − x

Dτ
, x ∈ [ωi, 2iπ

)
.

Then γ 2i−1 and γ2i are differentiable functions of τ with domain
[√
ω2
i + 1/D,∞)

.

Moreover, γ2i−1 is strictly decreasing and γ2i is strictly increasing with

γ2i−1
(√
ω2
i + 1/D

) = γ2i
(√
ω2
i + 1/D

) = ωi, (5.7)

γ2i−1(∞) = (2i − 1)π, γ2i (∞) = 2iπ, (5.8)

γ ′
2i−1

(√
ω2
i + 1/D

) = −∞, γ ′
2i

(√
ω2
i + 1/D

) = ∞. (5.9)
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Fig. 3. Solutions of sin x = − x

Dτ
.

Proof. That γ2i−1(τ ) and γ2i (τ ) are well defined, γ2i−1 is strictly decreasing and
γ2i is strictly increasing, and (5.7) and (5.8) hold follow immediately from the
discussion in the paragraph before the statement of the lemma. Also see Fig. 3. By
the Implicit Function Theorem, γj (τ ), j = 2i − 1 or 2i is differentiable and

γ ′
j (τ ) = γj (τ )

τ
(
1 +Dτ cos(γj (τ ))

) . (5.10)

Noting that cos x is increasing on ((2i − 1)π, 2iπ) and

cos(γj (τ ))

∣∣∣∣τ= 1
D

√
ω2
i +1

= cos(ωi) = − 1

Dτ

∣∣∣∣
τ= 1

D

√
ω2
i +1

,

it follows that cos(γ2i−1(τ )) < cos(ωi) and cos(γ2i (τ )) > cos(ωi), for τ >

1
D

√
ω2
i + 1. Hence (5.9) holds. This establishes the lemma. 	


Lemma 5.2. LetN > 0 be the largest integer such that
√
ω2
N + 1 < Dτmax.Define

a function

g(τ) = τ

√
B(τ)

(
2D − B(τ)

)
. (5.11)

Then the following hold:

(i) If τ = τ ∗ where τmin < τ ∗ < τmax is a solution of (5.5), then the curve
y = g(τ) must intersect one of the curves y = γj (τ ), 1 ≤ j ≤ 2N, at
τ = τ ∗;
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(ii) If y = g(τ) intersects y = γj (τ ), 1 ≤ j ≤ 2N, (j = 2i − 1 or j = 2i for
some integer 1 ≤ i ≤ N ), at τ = τ ∗ where τmin < τ ∗ < τmax, then τ = τ ∗ is
a solution of (5.5) if and only if

{
B(τ ∗) ≥ D, when j = 2i − 1, i.e., j is odd,(
γj (τ

∗)− (4i−1)π
2

)(
D − B(τ ∗)

) ≥ 0, when j = 2i, i.e., j is even.
(5.12)

(iii) If solutions of

(
B(τ)−D

)(
τB ′(τ )+ g′(τ )g(τ )

) = 0, τ ∈ (τmin, τmax) (5.13)

are isolated, then there are only a finite number of positive solutions of (5.5).

Proof. (i). If τ = τ ∗, where τmin < τ ∗ < τmax, is a solution of (5.5), then

cos
(
g(τ ∗)

) = 1 − B(τ ∗)
D

, sin
(
g(τ ∗)

) = −g(τ
∗)

Dτ ∗ ,

and so g(τ ∗) is a positive solution of sin x = −x/(Dτ ∗). Thus g(τ ∗) = γj (τ
∗)

where j = 2i − 1 or j = 2i for some integer i ≥ 1. Note that the domain of γj

is [
√
ω2
i + 1/D,∞). Since τ ∗ < τmax, it follows that j ≤ 2N and hence (i) holds

(see Fig. 4).
(ii). If y = g(τ) and y = γj (τ ), 1 ≤ j ≤ 2N, intersects at τ = τ ∗ where

τmin < τ ∗ < τmax, then sin
(
g(τ ∗)

) = −g(τ ∗)/(Dτ ∗). This implies that τ ∗ > 0
satisfies the second equation of (5.5).

If j is odd, by (5.11) B(τ ∗) > D. Then γj (τ ∗) ∈ (
(2i − 1)π, ωi

]
. Thus

g(τ ∗) ∈ (
(2i − 1)π, ωi

]
, sin

(
g(τ ∗)

) = −g(τ ∗)/(Dτ ∗), and cos(g(τ ∗)) < 0.
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Fig. 4. Intersections of g(τ) and γi(τ ).
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Therefore,

cos
(
g(τ ∗)

) = −
√

1 − sin2
(
g(τ ∗)

)

= −
√

1 − g2(τ ∗)/(Dτ ∗)2

= − 1

D

√
D2 − B(τ ∗)

(
2D − B(τ ∗)

)

= − 1

D

√
(D − B(τ ∗)2)

= −B(τ
∗)−D

D

= 1 − B(τ ∗)
D

.

So τ ∗ also satisfies the first equation of (5.5). Therefore, τ ∗ is a positive solution
of (5.5).

Now if j is even, from (5.11), either (B(τ ∗) > D and γj (τ ∗) ∈ [
ωi, (4i −

1)π/2
)
) or (B(τ ∗) < D and γj (τ ∗) ∈ (

(4i − 1)π/2, 2iπ
)
). In the former case

cos(g(τ ∗) < 0 and the proof is the same as in the previous case. In the latter case
the proof is similar provided one notes that cos(g(τ ∗) > 0 and so one takes the
positive square root and one recalls that B(τ ∗) < D when eliminating the square
root.

If (5.12) does not hold, then the sign of the first equation in (5.5) is violated and
hence τ ∗ is not a solution. This completes the proof of (ii).

(iii). Suppose that y = g(τ) and y = γj (τ ), 1 ≤ j ≤ 2N, (j = 2i−1 or j = 2i
for some integer 1 ≤ i ≤ N ), intersect at τ = τ ∗ where τmin < τ ∗ < τmax. On the
domain of definition of g (see equation (5.11)), g(τ ∗) > 0 and so B(τ ∗) < 2D.

Without loss of generality, assume that τ ∗ �=
√
ω2
i + 1/D. Then γ ′

j (τ
∗) exists and

by (5.10), the first equation of (5.5), and the monotonicity of γj (see Lemma 5.1),

γ ′
j (τ

∗) = γj (τ
∗)

τ ∗(1 +Dτ ∗ cos(γj (τ ∗)))
=

√
B(τ ∗)(2D − B(τ ∗))

1 + (D − B(τ ∗))τ ∗

= (−1)j
√
B(τ ∗)(2D − B(τ ∗))

|1 + (D − B(τ ∗))τ ∗| .

Therefore,

g′(τ ∗)− γ ′
j (τ

∗) =
√
B(2D − B)

(
1 + τ(D − B)B ′

B(2D − B)
− 1

1 + (D − B)τ

)∣∣∣∣
τ=τ∗

=
√
B(2D − B)

(
τ(D − B)B ′

B(2D − B)
+ (D − B)τ

1 + (D − B)τ

)∣∣∣∣
τ=τ∗

= (D − B)(τB ′ + g′(τ )g(τ ))
(1 + (D − B)τ)

√
B(2D − B)

∣∣∣
∣
τ=τ∗

= (−1)j (D − B)(τB ′ + g′(τ )g(τ ))
|1 + (D − B)τ |√B(2D − B)

∣
∣∣∣
τ=τ∗

(5.14)
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whereB = B(τ) andB ′ = B ′(τ ).Now if solutions to (5.13) are isolated, there are at
most a finite number of intersection points of y = g(τ) and y = γj (τ ) at which the
two graphs are tangent. This implies that y = g(τ) and y = γj (τ ), 1 ≤ j ≤ 2N,
intersect at only a finite number of points. The conclusion in (iii) now follows from
(i).

This completes the proof. 	

Remark 5.1. (i) If B(τ) > 2D for some τ ∈ (τmin, τmax), then the domain of g(τ)
is not the whole interval [τmin, τmax]. Since B(τmax) = 0 (because p′(τmax) = 0),
in this case, the curve y = g(τ) has more than one disjoint branch and each
branch terminates at a point (τ̄ , g(τ̄ )) = (τ̄ , 0) with τmin < τ̄ < τmax satisfying
B(τ̄ ) = 2D;

(ii) It follows from Lemma 5.2 (i) that if y = g(τ) does not intersect y =
γj (τ ), 1 ≤ j ≤ 2N, then the equilibrium Eµ1 is hyperbolic.

Lemma 5.3. Let λ(τ) = R(τ) + iI (τ ) be a root of (5.2) for each τ near τ ∗ and
R(τ ∗) = 0, I (τ ∗) = β > 0. Then

Sign(
d

dt
R(τ ∗)) = Sign(B ′(τ ∗)τ ∗ + g′(τ ∗)g(τ ∗)). (5.15)

Proof. Note that λ(τ) satisfies equation (5.2). Differentiating both sides of (5.2)
with respect to τ gives

λ′(τ ) = B ′(τ )− λDe−λτ

1 + τDe−λτ
.

Since De−λτ = λ+D − B, it follows that

λ′(τ ∗) = B ′(τ )− λ(λ+D − B(τ))

1 + τ(λ+D − B(τ))

∣∣∣∣
τ=τ∗

= B ′(τ ∗)− βi(βi +D − B(τ ∗))
1 + τ ∗(βi +D − B(τ ∗))

= B ′(τ ∗)(D − B(τ ∗)− βi)− βi(β2 + (D − B(τ ∗))2)
(D − B(τ ∗)− βi)+ τ ∗(β2 + (D − B(τ ∗))2)

.

We now use (5.3) to obtain β2 + (D − B(τ ∗))2 = D2. It then follows that

d

dt
R(τ ∗) = Re

(
λ′(τ ∗)

)

= Re

(
B ′(τ ∗)(D − B(τ ∗)− βi)−D2βi

D − B(τ ∗)− βi +D2τ ∗

)

= Re

(
B ′(τ ∗)(D − B(τ ∗))− (B ′(τ ∗)+D2)βi

E(τ ∗)− βi

)

= 1

E2(τ ∗)+ β2 (B
′(τ ∗)(D − B(τ ∗))E(τ ∗)+ β2(B ′(τ ∗)+D2))

= D2

E2(τ ∗)+ β2 (B
′(τ ∗)(1 + (D − B(τ ∗))τ ∗)+ β2), (5.16)
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where E(τ ∗) = D2τ ∗ +D − B(τ ∗). Note that from (5.4) and (5.11), we have

β2 = B(τ ∗)(2D − B(τ ∗))

and

g′(τ ∗)g(τ ∗) = τ ∗(B ′(τ ∗)(D − B(τ ∗))+ B(τ ∗)(2D − B(τ ∗)))
= τ ∗(B ′(τ ∗)(D − B(τ ∗))τ ∗ + β2).

Substituting this into (5.16), we obtain

d

dt
R(τ ∗) = D2(B ′(τ ∗)τ ∗ + g′(τ ∗)g(τ ∗))

τ ∗(E2(τ ∗)+ β2)
, (5.17)

which immediately yields (5.15).
This completes the proof. 	


Corollary 5.1. Under the conditions of Lemma 5.2 (i), there exists a unique integer
1 ≤ j ≤ 2N (where j = 2i − 1 or j = 2i for some integer 1 ≤ i ≤ N,) such that

the curves y = g(τ) and y = γj (τ ) intersect at τ = τ ∗. Moreover, if τ �=
√
ω2
i +1

D

or (4i−1)π
2D , then

Sign

(
d

dt
R(τ ∗)

)
=




Sign(γ ′

j (τ
∗)− g′(τ ∗)), if τ ∗ ∈ (

√
ω2
i +1

D
,
(4i−1)π

2D ),

Sign(g′(τ ∗)− γ ′
j (τ

∗)), otherwise.
(5.18)

Proof. The first point follows directly Lemma 5.2 (i). To obtain (5.18), we first note
that it follows from (5.14) and (5.15) that

Sign

(
d

dt
R(τ ∗)

)
= Sign((−1)j (D − B(τ ∗))(g′(τ ∗)− γ ′

j (τ
∗))). (5.19)

If j is odd, then τ ∗<
√
ω2+1
D

and by Lemma 5.2 (ii),D−B(τ ∗)≤0. ButD �= B(τ ∗),
because otherwise cos(γj (τ ∗)) = 0, and so γj (τ ∗) = (4i−1)π

2 implying by (5.6)

that τ ∗ = (4i−1)π
2D . Thus D − B(τ ∗) < 0 and (−1)j (D − B(τ ∗)) > 0. Therefore,

Sign

(
d

dt
R(τ ∗)

)
= Sign(g′(τ ∗)− γ ′

j (τ
∗)). (5.20)

Now if j is even and τ ∗ > (4i−1)π
2D , then γj (τ ∗) > (4i−1)π

2 . By Lemma 5.2 (ii),
D − B(τ ∗) > 0 and thus (−1)j (D − B(τ ∗)) > 0. So (5.19) holds. Similarly, if

τ ∗ ∈
(√

ω2
i +1

D
,
(4i−1)π

2D

)

, then j is even and γj (τ ∗) ∈
(
ωi,

(4i−1)π
2

)
. Applying

Lemma 5.2 (ii) leads to (−1)j (D − B(τ ∗)) < 0, and (5.18) now follows from
(5.19).

This completes the proof. 	
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We are now ready to give the following local Hopf bifurcation result for model
(1.1) in the case that λ1(τ ) < µ1(τ ) < S0.

Theorem 5.1. Assume that τ ∗ > τmin is a solution of (5.5). Then there exists a
unique integer n ≥ 1 such that g(τ ∗) = γn(τ

∗). If τ ∗B ′(τ ∗)+ g′(τ ∗)g(τ ∗) �= 0,
g′(τ ∗) �= γ ′

n(τ
∗) where n = 2i − 1 or n = 2i for some positive integer i and

τ ∗ �=
√
ω2
i +1

D
or (4i−1)π

2D , then there is a Hopf bifurcation of the equilibrium Eµ1 at
τ = τ ∗. Any bifurcating periodic solutions have small amplitude, are positive and
unstable, and have period in

(
4τ ∗

2n+ 1
,

2τ ∗

n

)
if n is odd, (5.21)

(
2τ ∗

n
,

2τ ∗

n− 1

)
if n is even. (5.22)

Proof. The first part follows directly from Lemma 5.3, Corollary 5.1, and the local
Hopf bifurcation theorem for delay differential equations (see, for example, [27]).
Since Eµ1 is a positive equilibrium and these small amplitude periodic orbits are
near Eµ1 , they must be positive, too. Note that the characteristic equation always
has a positive real root and so as in Theorem 4.2, any such bifurcating periodic
solutions are unstable. Let λ = βi, β > 0 be an imaginary root of (5.2) at τ = τ ∗.
Then by (5.4), β = g(τ ∗)/τ ∗, and let n = 2i − 1 or n = 2i for some positive
integer i. If n = 2i−1, i.e., n is odd, then g(τ ∗) = γn(τ

∗) ∈ (nπ, ωi] and therefore

2π

ωi
<

2π

β
= 2πτ ∗

g(τ ∗)
<

2τ ∗

n
.

Note that ωi < 2n+1
2 π. The above inequalities imply that (5.21) holds. If n is even,

a similar argument shows that (5.22) holds.
This completes the proof. 	


In what follows, we consider the global continuation of the periodic solutions
bifurcating from the equilibriumEµ1 . In order to apply the global Hopf bifurcation
theorem, we need to derive apriori bounds on possible periodic solutions to (1.1)
for any τ ∈ (0, τmax).We will require the following notation. Define

‖ϕ‖∞ = sup
t∈R

|ϕ(t)|,

where ϕ is a continuous periodic (scalar) function.

Lemma 5.4. If (S(t), x(t)) is a nonconstant positive periodic solution of (1.1), then

S(t) ≥ λ1(τ ) and x(t) ≤ S0 − λ1(τ ), for all t ∈ R, τ ∈ (τmin, τmax).

(5.23)
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Proof. Let y(t) = eDτ x(t + τ). Then y(t) is a solution of (4.17). Let ξ > 0 satisfy
y(ξ) = ‖y‖∞. Then y′(ξ) = 0, and so (4.17) gives

Dy(ξ) = e−Dτp(S0 − y(ξ))y(ξ − τ) ≤ e−Dτp(S0 − y(ξ))y(ξ).

Since y(ξ) > 0, from the above inequality it follows that p(S0 − y(ξ)) ≥ DeDτ ,

which implies that S0 − y(ξ) ≥ λ1(τ ) ≥ λ1(0). Thus y(ξ) ≤ S0 − λ1(τ ) and
x(t) = e−Dτy(t − τ) ≤ y(ξ) ≤ S0 − λ1(τ ). The first inequality in (5.23) follows
from the fact that S(t)+ y(t) = S0 for all t ∈ R.

This completes the proof. 	

We can also show that all positive periodic solutions are bounded away from

zero in the ‖ · ‖∞ norm.

Lemma 5.5. Assume that µ1(τ ) < S0. Then

‖S − S0‖∞ ≥ S0 − µ1(τ ), ‖x‖∞ ≥ e−Dτmax(S0 − µ1(τ ))

for any nonconstant positive solution (S(t), x(t)) of (1.1) with τ ∈ (τmin, τmax),

Proof. Let y(t) = eDτ x(t + τ).As in Lemma 5.4, it follows that p(S0 − y(ξ)) ≥
DeDτ ,which leads to S0 −y(ξ) ≤ µ1(τ ) ≤ µ1(0). Thus y(ξ) ≥ S0 −µ1(τ ). This
implies that

‖x‖∞ = e−Dτ‖y‖∞ ≥ e−Dτmax(S0 − µ1(τ )).

Note that y(t) = S0 − S(t), and so ‖S(t)− S0‖∞ = ‖y(t)‖∞ ≥ S0 − µ1(τ ).

This completes the proof. 	

We are now ready to state and prove the following global Hopf bifurcation the-

orem for model (1.1). In what follows, for the ease of exposition, if b < a, then
the notation (a, b), should be interpreted as the open interval (b, a).

Theorem 5.2. Let N > 0 be the integer defined in Lemma 5.2. Assume that (5.5)
has only a finite number of positive solutions. Then the following conclusions hold:

(i) For each 1 ≤ i ≤ N such that g(τ) intersects γj (τ ), j = 2i − 1 or j = 2i,
there exist an integer m ≥ 1 and an increasing sequence {τ ∗

n,i}mn=1 such that
τ ∗
n,i ∈ (τmin, τmax), 1 ≤ n ≤ m, are all solutions of (5.5) with (2i − 1)π <
g(τ ∗

n,i) < 2iπ.
(ii) For the sequence {τ ∗

n,i}mn=1 in (i), define

σn,i = Sign
(
B ′(τ ∗

n,i)τ
∗
n,i + g′(τ ∗

n,i)g(τ
∗
n,i)
)
,

for each 1 ≤ n ≤ m, and let τ ∗
0,i = τmin, τ

∗
m+1,i = τmax. If σn,i �= 0 for all

1 ≤ n ≤ m, then for each 1 ≤ n ≤ m, there exists an integer ñ �= n, 0 ≤ ñ ≤
m + 1, such that for every τ ∈ (τ ∗

n,i , τ
∗
ñ,i
), τ �= τ ∗

k,i , 0 ≤ k ≤ m + 1, (1.1)

has a nonconstant positive periodic solution with period p ∈
(
τ
i
, 2τ

2i−1

)
.
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Proof. (i). This follows immediately from Lemma 5.2.
(ii). We proceed as in the proof of Theorem 4.3. Let Z = C(R,R2) be the

Banach space of bounded and continuous functions with the usual supremum norm.
We consider system (1.1) in the open subset Y = C(R; R

+
2 ) of Z, and choose

τ ∈ J := (
τmin, τmax

)
as the bifurcation parameter, where R

+
2 = (0,∞)× (0,∞).

Rewrite (1.1) in the following form:

y′(t) = F(yt , τ ), (t, τ ) ∈ R × J, (5.24)

where y(t), yt ,and F(ϕ, τ) with ϕ ∈ Y, are defined as in (4.20) and (4.21). By
considering the restricted function F̂ := F |

R
+
2 ×J , the set of stationary solutions

of (5.24) is given by

N(F) = {x ∈ R
+
2 × J ; F̂ (x) = 0 } = {(Eλ1 , τ ), (Eµ1 , τ ), (ES0 , τ ); τ ∈ J }.

Note that λ1(τ ) < µ1(τ ) < S0 for all τ ∈ J. The equilibrium points Eλ1 and ES0

are hyperbolic, and λ = 0 is not a root of the characteristic equation 
(λ) = 0
at Eµ1 , where 
(λ) is given by (3.7). This implies that there is no bifurcation of
stationary solutions of N(F).

We now look for centers in the setN(F). SinceEλ1 andES0 are asymptotically
stable for all τ ∈ J, any centers must belong to the subset {(Eµ1 , τ ); τ ∈ J } of
N(F). Now for each 1 ≤ i ≤ N such that g(τ) intersects γj (τ ), j = 2i − 1 or
j = 2i, by (i), system (5.24) has exactlym isolated centers {(E∗

µ1
, τ ∗
n,i

)}mn=1,where

E∗
µ1

= (
µ1(τ

∗
n,i), e

−Dτ∗
n,i (S0 − µ1(τ

∗
n,i)
)
, 1 ≤ n ≤ m.

Note that σn,i �= 0 for any 1 ≤ n ≤ m. It follows from Lemma 5.3 and [20], that
the crossing number cn(E∗

µ1
, τ ∗
n,i) at each of these m centers is

cn(E
∗
µ1
, τ ∗
n,i) = −Sign

(
d

dτ
Re (λ)|τ=τ∗

n,i

)

= −Sign
(
B ′(τ ∗

n,i)τ
∗
n,i + g′(τ ∗

n,i)g(τ
∗
n,i)
)

= −σn,i �= 0.

Next, we define the closed subset �(F) of Y × J × R+ by

�(F) = Cl{(y, τ, p) ∈ Y × J × R+; y is a nontrivial

p-periodic solution of system (5.24)}
and consider the connected componentC(E∗

µ1
, τ ∗
n,i , 2π/βn,i)of (E∗

µ1
, τ ∗
n,i , 2π/βn,i)

in �(F) for each fixed 1 ≤ n ≤ m, where βn,i =
√
B(τ ∗

n,i)(2D − B(τ ∗
n,i). By the

local Hopf bifurcation theorem (Theorem 5.1), we know that C(E∗
µ1
, τ ∗
n,i , 2π/βn,i)

is nonempty. Applying the global bifurcation theorem (Theorem 3.3 in [20]), either

(a) C(E∗
µ1
, τ ∗
n,i , 2π/βn,i) is unbounded in Y × J × R+, or

(b) C(E∗
µ1
, τ ∗
n,i , 2π/βn,i) is bounded in Y × J × R+ and the finite set � =

C(E∗
µ1
, τ ∗
n,i , 2π/βn,i) ∩ {N(F) \ {(E∗

µ1
, τ ∗
n,i)}} �= ∅.
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Here, a closed subset of J or R+ is said to be unbounded in J or in R+ if it
is non-compact relative to J or R+. A closed subset S of Y is called bounded if
it is bounded and closed in the Banach space Z; S is called unbounded if it is not
bounded.

Suppose that (a) holds. We claim that the projection P(J ) of C(E∗
µ1
, τ ∗
n,i ,

2π/βn,i) onto the bifurcation parameter J−space is unbounded. To see this, first
note that by Lemma 4.6, system (5.24) has no nontrivial periodic solutions with

periods τ/i and 2τ/(2i − 1). By Theorem 5.1, we have 2π/βn,i ∈ (
τ∗
n,i

i
,

2τ∗
n,i

2i−1 ).

This implies that the connected component C(E∗
µ1
, τ ∗
n,i , 2π/βn,i) must lie in the

region between p = τ/i and p = τ/(2i − 1) in the space Y × J × R+. If
P(J ) is bounded, then by Lemmas 5.4 and 5.5, we see that the projection P(X)
of C(E∗

µ1
, τ ∗
n,i , 2π/βn,i) onto X−space must be bounded. Note that the func-

tional F(ϕ, τ) is also globally Lipschitz with respect to ϕ on any bounded sub-
set of Y with a Lipschitz constant independent of τ ∈ J. As in the proof of
Theorem 4.3, it follows that there is a positive lower bound on the period of
periodic solutions of (5.24) in any bounded subset of Y. As a result, the projec-
tion P(p) of C(E∗

µ1
, τ ∗
n,i , 2π/βn,i) onto the period parameter R+-space is also

bounded. Hence C(E∗
µ1
, τ ∗
n,i , 2π/βn,i) is bounded, contradicting (a). Therefore,

P(J ) must be unbounded. We finally define ñ to be 0 if P(J ) is bounded away
from τmax, and m + 1, otherwise. Then (τ ∗

n,i , τ
∗
ñ,i
) ⊂ P(J ). This implies that for

every τ ∈ (τ ∗
n,i , τ

∗
ñ,i
), τ �= τ ∗

k,i , 1 ≤ k ≤ m, system (5.24), and hence (1.1),
has a nonconstant periodic solution. Since the periodic solution is in Y , it must be
positive.

Now suppose that (b) holds. In this case, we must have

C(E∗
µ1
, τ ∗
n,i , 2π/βn,i) ∩ { (Eλ1 , τ ), (ES0 , τ ); τ ∈ J } = ∅,

since Eλ1 and ES0 are asymptotically stable for all τ ∈ J. Therefore,

� = C(E∗
µ1
, τ ∗
n,i , 2π/βn,i) ∩ { (E∗

µ1
, τ ∗
k,i); k �= 0, n,m+ 1 } �= ∅.

Using the argument as in case (a), we can also show that the connected com-
ponent C(E∗

µ1
, τ ∗
n,i , 2π/βn,i) lies in the the region between p = τ/i and p =

τ/(2i − 1). Note that in this region there are exactly m local Hopf bifurcation val-
ues, namely, {τ ∗

n,i}mn=1. It follows that there must exist 1 ≤ k ≤ m, k �= n, such that
(E∗

µ1
, τ ∗
k,i2π/βk,i) ∈ �. Define ñ to be any such k that maximizes |k − n|. Then

we have (τ ∗
n,i , τ

∗
ñ,i
) ⊂ P(J ), and so (ii) also follows. Therefore, in either case, (ii)

must hold.
This completes the proof. 	


6. Numerical simulations

In this section, we present some numerical simulations to demonstrate our the-
oretical results established in this paper and show how to get various transient
oscillations via step changes on initial data. We consider

S′(t) = (
S0 − S(t)

)
D − p

(
S(t)

)
x(t),

x′(t) = −Dx(t)+ αp
(
S(t − τ)

)
x(t − τ), (6.1)
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where D = 0.2079, and the inhibitory response function p(S) is given by

p(S) = aS

S2 + bS + c

with a = 34.711, b = 0.25, c = 0.04. The other two parameters S0 and τ will be
given in the specific computer simulations later. It is easily seen thatp(S) is increas-
ing when S ∈ [0, η) and decreasing when S ∈ (η,∞), where η = 0.2 and we have
λ1 = λ1(τ ) < η < µ1 = µ1(τ ) whenever τ ∈ (0, 1

D
ln p(η)

D
) = (0, 26.69). Let

(S(t), x(t)) be a given solution (not necessarily nonnegative) of (6.1). It follows
from (3.5), that

S(t − τ)+ eDτ x(t) → S0 as t → ∞.

Therefore, in our numerical simulations, we can in fact work on the set {S(t− τ)+
eDτ x(t) = S0}, which results in the following equations

x′(t) = −Dx(t)+ e−Dτx(t − τ)p(S0 − eDτ x(t)). (6.2)

By the change of the variable y(t) = x(τ t), we can convert (6.2) to the following
delay differential equation with unit delay.

y′(t) = −Dτy(t)+ τe−Dτy(t − 1)p(S0 − eDτ y(t)). (6.3)

All numerical simulations presented here are for system (6.3) and were programmed
in Matlab using Euler’s method with step size h = 0.001 (We also used the Runga-
kutta method of 4th order and the results were similar).

We consider three cases: 1) S0 < λ1 < µ1; 2)λ1 < S0 < µ1; 3)λ1 < µ1 < S0.
Case 1): S0 < λ1 < µ1. By Theorem 3.2, the dynamic is very simple in this

case: ES0 = (S0, 0) is globally asymptotically stable with respect to C+
2 . For in-

stance, if we choose S0 = 0.1, τ = 26.5, then we have S0 = 0.1 < λ1 = 0.1397 <
µ1 = 0.2862 and we conclude thatS(t) converges toS0 and the species x eventually
goes to extinction. The figure for the numerical simulation is omitted here.

Case 2): λ1 < S0 < µ1. Take S0 = 1.4 and τ = 19.725. We can numerically
check that λ1 = 0.0160 < S0 = 1.4 < µ1 = 2.4987. Theorem 4.1 predicts all
positive solutions converge to the equilibriumEλ1 as t → ∞. This can be seen from
Fig. 7, where each positive x(t) converges to x∗ = α(S0 −λ1) = 0.0229. By Theo-
rem 4.3 (i), we know that there are exactly 12 local Hopf bifurcation values, namely,

0 < τ ∗
1 = 0.6024 < τ ∗

2 < · · · < τ ∗
12 = 19.7262 < τmax = 1

D
ln p(S0)

D
= 26.6885

(see Fig. 5).
Note also that τ = 19.725 ∈ (τ ∗

1 , τ
∗
12) = (0.6024, 19.7262) (i.e., n = 1 in

Theorem 4.3(i)), by Theorem 4.3, there is a periodic solution for system (6.1)
which surrounds the equilibrium ES0 and for any t ∈ R, x(t) has a zero in the
interval [t − τ, t] and changes sign there. This is confirmed in Fig. 6.

As mentioned in Section 1, the unstable periodic solutions bifurcating from
ES0 may be regarded as the source of the transient oscillations in solutions that
are expected if the initial data are close enough to the unstable manifold of one
of these unstable periodic solutions. In fact, our numerical simulations show that
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Fig. 5. Intersections of f (τ) and γi(τ ). This gives the solutions τ ∗
i , i = 1, 2, . . . , 12, of

(4.5).

(6.1) has varying degrees of transient oscillatory behaviour that can be controlled
by step changes in the initial data. To this end, we pick the initial data at the mesh
points in the following way: y(θ) = −0.03 for θ = −1 + ih, i = 0, 1, . . . , 100
and take y(θ) = y0 at the other mesh points. We make step changes on y0 for each
numerical experiment to obtain various degrees of transient oscillatory behaviour
and we also detect the existence of a periodic solution. This is shown in Fig. 6,
where we used 1) y0 = 0.0024; 2) y0 = 0.002359525; 3) y0 = 0.0021. The figure
was plotted in terms of x(t) (i.e., y( t

τ
)) vs t . Here x(t) obtained from the first set

of initial data converges to α(S0 − λ1) = 0.0229 with transient oscillations, the
x(t) from the second initial data seems to be a periodic solution oscillating about
0 and the third solution converges to α(S0 −µ1) = −0.0182, again with transient
oscillations.

In Fig. 7, two sets of positive initial data 1) y(θ) = 0.001, θ < 0 and y(0) =
0.01; 2) y(θ) = 0.001, θ < 0 and y(0) = 0.005 are used to show that every
positive solution converges to α(S0 − λ1) = 0.0229 and the transient oscillation
happens when the initial data is quite close to unstable manifold of the periodic
solution.

Case 3): λ1 < µ1 < S0. Take S0 = 1.4 and τ = 24.89. Then λ1 = 0.0634
and µ1 = 0.6314. By Theorem 3.1, we know that ES0 and Eλ1 are both locally
stable and Eµ1 is unstable. We can show that the integer defined in Lemma 5.2
is N = 1. As can be seen in Fig. 8, (5.5) has only 4 positive solutions, namely,
τ ∗

1,1 = 23.9105, τ ∗
2,1 = 24.8883, τ ∗

3,1 = 26.6190, τ ∗
4,1 = 26.6769, such that τ ∗

n,1 ∈
(τmin, τmax) = (22.1251, 26.6885). Note that τ = 24.89 ∈ (τ ∗

2,1, τ
∗
3,1). By Theo-

rem 5.2, there exists a nonconstant positive periodic solution for (6.1) with period
p ∈ (τ, 2τ) = (24.89, 49.98). Changing the initial data slightly, we may obtain
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Fig. 6. λ1 < S0 < µ1: Transient oscillatory solutions and an unstable periodic solution
of (6.1). Euler’s method with step size 0.001 was used. Each curve was generated by a
different set of initial data. Curve 1: x(θ) = −0.03, θ ∈ [−19.725,−17.753] and x(θ) =
0.0024, θ ∈ (−17.753, 0]; Curve 2: x(θ) = −0.03, θ ∈ [−19.725,−17.753] and x(θ) =
0.002359125, θ ∈ (−17.753, 0]; Curve 3: x(θ) = −0.03, θ ∈ [−19.725,−17.753] and
x(θ) = 0.0021, θ ∈ (−17.753, 0].

0 50 100
0

0.01

0.02

0.03
x(t)

 t 

curve 1 

curve 2 

Fig. 7. λ1 < S0 < µ1: Transient oscillations in positive solutions of (6.1) Euler’s method
with step size 0.001 was used. For Curve 1, The initial data is: x(θ) = 0.001, θ ∈
[−19.725, 0) and x(0) = 0.001; For Curve 2, The initial data is: x(θ) = 0.001, θ ∈
[−19.725, 0) and x(0) = 0.005.

various transient oscillatory solutions for (6.1). Using the same idea as in Case 2), we
obtained the numerical simulations, shown in Figure 9, where we let y(θ) = 0.004
for θ < 0 at the mesh points and y(0) = y0. Step changes were made on y0 and three
sets were used: 1) y0 = 0.0055; 2) y0 = 0.0054636757314; 3) y0 = 0.005459.
In the first experiment, x(t) converges to α(S0 − λ1) = 0.00756 with transient
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Fig. 8. Intersections of g(τ) and γi(τ ). This gives the solutions τ ∗
n,1, n = 1, 2, 3, 4, of (5.5).
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Fig. 9. λ1 < µ1 < S0: Transient oscillatory solutions and an unstable positive periodic
solution of (6.1). Euler’s method with step size 0.001 was used. We used three sets of initial
data to get the three curves. Curve 1: x(θ) = 0.04, θ ∈ [−24.89, 0) and x(0) = 0.0055;
Curve 2: x(θ) = 0.04, θ ∈ [−24.89, 0) and x(θ) = 0.0054636757314; Curve 3: x(θ) =
0.04, θ ∈ [−24.89, 0) and x(θ) = 0.005459.

oscillations, in the second experiment, x(t) is a positive periodic solution. In the
third, the solution converges to 0 also with transient oscillations.

7. Discussion

In this paper, we considered a model of microbial growth in the chemostat and stud-
ied its transient dynamics, as well as its asymptotic behaviour. The model discussed
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incorporates a time delay in the growth response that describes the lag involved in the
nutrient conversion process. Both monotone response functions and nonmonotone
inhibitory response functions were considered. By applying local and global Hopf
bifurcation theorems, we proved that unstable periodic solutions exist for certain
parameter values. At first thought one might dismiss these solutions as irrelevant,
since unstable periodic solutions are themselves not observable in experiments, and
these particular periodic solutions may even involve negative values. However, it
may in fact be important to understand them. From the continuous dependence of
solutions on initial data, it follows that any solution that starts in a neighbourhood
of an unstable periodic solution would have transient oscillatory behaviour and the
closer the initial data the more oscillatory. Therefore these unstable periodic solu-
tions may be viewed as the source of certain actual transient oscillations observed
in chemostat experiments. Since it is well known that if delay is not included in the
model, even in the case of nonmonotone response functions, no periodic orbits are
possible (see e.g., [2], [3], [6], [7], [8], [29], [50], and [54]). We conclude that the
delay involved in the the nutrient conversion process might help to account for the
transient oscillations observed in chemostat experiments.

Our results can be summarized as follows. First, if λ1 > S0, we showed that
the unique non-negative washout equilibrium ES0 is gobally asymptotically stable
with respect to the non-negative cone. In this case, the population will eventually
be washed out of the chemostat. On the other hand, if λ1 < S0 < µ1, then we
proved that the unique positive equilibrium Eλ1 , is globally asymptotically stable
with respect to the non-negative cone. However, it was also shown that unstable
periodic solutions exist, that bifurcate from the washout equilibriumES0 , and these
unstable periodic solutions can persist, even if the delay parameter moves far from
the critical (local) bifurcation values. Finally, if λ1 < µ1 < S0, then there exist
two positive equilibrium points Eλ1 and Eµ1 . The equilibrium Eλ1 is locally stable
and Eµ1 is unstable. In this case, we showed that positive unstable periodic solu-
tions are created that surround Eµ1 , as the delay parameter passes through certain
bifurcation values, and these periodic solutions may also persist when the delay
parameter moves far from the critical bifurcation values. We also provided numer-
ical simulations of the model to demonstrate the existence of the unstable periodic
solutions, and showed that the model has varying degrees of transient oscillatory
behaviour that can be tuned by choosing appropriate initial data with a step change.

Others have considered transient dynamics of microbial growth modelled using
nonmonotone (inhibitory) growth response functions (see [7], [10], [40] and the
references cited therein). In particular, Edward [18] discussed various mechanisms
causing nutrient inhibition at high concentrations and tested five models against a
variety of experimental data for the dependence of the growth rate on an inhibi-
tory nutrient. Chi and Howell [10] also studied transient dynamics experimentally
and developed a model describing the transient behaviour of microbial growth in
the case of nutrient inhibition. Bush and Cook [7] considered both the effect of
a time delay in the growth response and the effect of inhibitory nutrient at high
concentrations. While the model of Bush and Cook also predicts oscillations, their
model admits stable periodic solutions. However, sustained oscillatory behaviour
has not usually been observed in experiments. The results in this paper provide more
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support for the argument discussed in [19], [51], [52] and [53] that model (1.1) is
a more appropriate way of incorporating time delay in the model since we have
shown that it can be used to describe both the steady state asymptotic behaviour
as well as the transient dynamics of microbial growth in the chemostat. In particu-
lar, we proved analytically that unstable periodic solutions exist in the model and
our numerical simulations indicate that global periodic solutions also appear to be
unstable. This important and useful property of the model, as we discussed above,
significantly distinguishes our modeling approach from the approaches taken in
[7], [9], [13], [21] and [22] who also incorporate delay in their models.

Note also that discrete delay models can be viewed as the limiting case of
certain distributed delay models with kernels given by gamma distributions (see
Appendix of [52]). By using the linear chain trick technique [36], these distributed
delay models can be converted to systems of ordinary differential equations. Hence,
the single discrete time delay in model (1.1) may also be considered to simulate
infinitely many intermediate stages in the cell, coupled by a linear chain.

Admittedly, the time delay in model (1.1) may still appear to be too simplistic
to model the many complex biochemical pathways, or many different kinetic and
genetic interactions within the cell, as we do not use any specific cell physiology in
deriving the delay term. Multi-compartment models, or structured models, as men-
tioned in the Introduction, may be more appropriate and more accurate in describing
complex pathways and interactions at different organizational levels of cell con-
trol. However, as Cunningham and Maas [13] pointed out, there can be a danger in
developing and using such models. Firstly, as they try to treat growth phenomena
at a higher and more detailed level of sophistication, these approaches necessarily
lead to models of greater complexity. Many compartments or subsections have to
be included in these models, involving parameters and variables that cannot be
measured. This introduces a large number of parameters that make testing of the
models difficult. Secondly, these models would likely involve many differential
equations resulting in models that may become analytically intractable. Although
numerical solutions can be attempted, many important biological principles rely on
an analytical and global analysis of the models. Thirdly, as the number of compart-
ments or the level of the cell structure introduced increases, these models become
too specific to apply to a general class of populations. In contrast, our delay differ-
ential equations model (1.1) involves only a few parameters that can be measured
(see, e.g., [18] for the measurements of inhibitory growth rate, and [19] and [51]
for a discussion of how to measure the delay parameter). While the model still
may not be satisfactory on a quantitative level, it appears to be an appropriate and
generic model that is capable of capturing both asymptotic and transient dynamics
observed in experiments, and may be applied to treat a broad range of chemostat
populations, since no specific assumptions are made in the model on the internal
cell-division process.

Many experimental scientists studying transient dynamics have used the input
nutrient concentration S0 and the dilution rateD as environmental parameters, that
they have suddenly perturbed after the chemostat has reached steady state. On the
other hand, in our numerical examples shown in Section 6, we produced transient
oscillatory solutions through step changes in the initial data. These two approaches
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are related. In fact, the effect of changing the input nutrient concentration S0, for
example, can be achieved by an appropriate step change of the initial data. To see
this, suppose that the chemostat has attained a steady state, say, E∗ = (S∗, x∗),
from time t = t0. Then u(t) = (

S(t), x(t)
) = E∗, t ≥ t0, is an equilibrium solu-

tion of (1.1), i.e., F(ϕ∗, τ ) = 0 for all relevant τ, where F(ϕ, τ) is the functional
defined in (4.20), and ϕ∗ = (S∗, x∗) is a constant function. Let T ≥ t0 + τ be
arbitrarily given. If we change S0 by an amount 
S0 at the instant T , then model
(1.1) becomes the new system

V ′(t) = F̃ (Vt , τ ), t ≥ T (7.1)

where F̃ (ϕ, τ ) is the same functional as defined in (4.20), except that S0 is replaced
by S0 +
S0. Due to the step change in S0, the equilibrium solution u(t) of (1.1)
can be considered to undergo a sudden change at time T , and then it continues to
evolve as a new solution that has as the governing system, (7.1). Denote this new
solution by v(t). Then it follows that v(θ) = u(θ) = E∗, T − τ ≤ θ < T, and the
right derivative of v(t) at T is

v′
+(T ) = F̃ (vT , τ ) =

((
S+
S0 − S∗)D − x∗p(S∗)

−Dx∗ + e−Dτp(S∗)x∗
)

=
(

S0D

0

)
�= 0. (7.2)

From (7.2), we know that v(t) begins to change from u(t) at t = T . Now choose a
number δ > 0, and define the initial data ψ as follows

ψ(θ) =
{
E∗, for T − τ + δ ≤ θ < T

v(θ), for T ≤ θ ≤ T + δ.

As such, the function ψ has a “sudden” change at T + δ if δ is small. However, by
the uniqueness of solutions, the solutionw(t), t ≥ T + δ,with initial dataψ,must
be the same as v(t), since the two solutions agree on the interval [T −τ+δ, T +δ].
Therefore, any transient behaviour of v(t)must also appear inw(t), and vice versa.
Consequently, studying solutions obtained after a step change in S0, can also be
done by studying solutions that start with initial data with the appropriate step
change.

We remark that although we have proved the existence of periodic solutions
which are all unstable when the delay parameter is near the critical bifurcation
values, we only have numerical evidence that indicates that global periodic solu-
tions are also unstable. It is still an open problem to show analytically that this is
indeed the case. Moreover, the question as to whether or not the unstable periodic
solutions are unique and how stable and unstable manifolds are connected is still
not resolved.
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