Jordan Canonical Form

Theorem:(Jordan Canonical Form) Any constant $n \times n$ matrix A is similar to a matrix J in Jordan canonical form. That is, there exists an invertible matrix P such that the $n \times n$ matrix $J=P^{-1} A P$ is in the canonical form

$$
J=\left[\begin{array}{llll}
J_{1} & & & 0 \\
& J_{2} & & \\
& & \ddots & \\
0 & & & J_{s}
\end{array}\right]
$$

where each Jordan block matrix J_{k} is an $n_{k} \times n_{k}$ matrix of the form

$$
J_{k}=\left[\begin{array}{ccccc}
\lambda_{k} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{k} & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{k} & 1 \\
0 & 0 & \cdots & 0 & \lambda_{k}
\end{array}\right], \quad(k=1,2, \ldots, s)
$$

The sum $n_{1}+n_{2}+\cdots+n_{s}=n$. The numbers $\lambda_{k}(\mathrm{k}=1,2, \ldots, \mathrm{~s})$ are the eigenvalues of A. If $p \neq q$ and λ_{p} appears on the diagonal of J_{p} and λ_{q} appears on the diagonal of J_{q}, then λ_{p} need not be different from λ_{q}. In fact, if m_{j} denotes the geometric multiplicity of the eigenvalue λ_{j} of A , then λ_{j} will appear on the diagonal of exactly m_{j} blocks of J of the form J_{j} of differing sizes $\left(n_{j_{1}} \times\right.$ $\left.n_{j_{1}}\right), \ldots,\left(n_{j_{m_{j}}} \times n_{j_{m_{j}}}\right)$ and the sum $n_{j_{1}}+\ldots+n_{j_{m_{j}}}=r_{j}$, where r_{j} denotes the algebraic multiplicity of the eigenvalue λ_{j}.

The linearly independent columns of the matrix P such that $P^{-1} A P=J$ are chosen as follows:

Each column of P that corresponds to the first column of each Jordan block $J_{k}, k=1, \ldots, s$ is an eigenvector of A corresponding to the eigenvalue λ_{k}. If we call these eigenvectors $p_{k, 1}$, the remaining columns of P (if any) are made up of generalized eigenvectors of A arranged in order of increasing grade and related to each other by

$$
\left(A-\lambda_{k} I\right) p_{k, g+1}=p_{k, g}, \quad g=1,2, . ., n_{k}-1,
$$

where $p_{k, g}$ denotes a generalized eigenvector of grade g corresponding to λ_{k}.

