\$ 14.3 Partial Derivatives.

IMPLICIT DIFFERENTIAMON.

 $x^3 + y^3 + Z^3 + xyZ = 1$.

Implicitly defines Z as a function of x and y. Z(x,y).

Find 32.

Soln:

0 + 3y² + 3z² dz + xz + xy 2z=0

(3z2+xy) 22 =-(3y+x2)

Show $\partial z = -(3x^2 + yz)$ ∂x $\partial z = -(3x^2 + yz)$

Function of more than two variables.

$$Z = f(x_1, x_2, ..., x_n)$$

$$f_{x:} = 2f \approx 2z = Df = Df$$

$$= \lim_{h \to \infty} f(x_1, x_2, \dots, x_{i+h}, \dots, x_{n}) - f(x_{i})$$

Differentiate wrt xi, regarding All other variables

Example.
$$f(x,y,z) = x^2 e^{y^3 z^4}$$

$$OL = 2x e^{y^3 z^4}$$

$$2f = 2 \times 2^{3} z^{4}$$

$$2f = x^{2} e^{3} z^{4}$$

$$2f = x^{2} e^{3} z^{4}$$

$$3y^{2}$$

$$2f = x^{2} u^{3} z^{4}$$
07

Example:

$$f(x_1, x_2, ..., x_n) = \sum_{i=1}^{n} x_i^2 = x_{i+x_2+...+x_n}^2$$

March 22, 2020
$$j = 2 \times j$$
, $j = 1, 2, ..., n$.

$$e.9.$$

$$0 \times j$$

HICHER DRDER DERIVATIVES,

f(x,y) has 4 kirds of 2nd order partial derivatives.

$$(f_{x})_{x} = f_{xx} = 3 (2f) = 2^{2}f$$

$$(f_{y})_{y} = f_{yy} = 2 (2f) = 2^{2}f$$

$$(f_{x})_{y} = f_{xy} = 2^{2}f$$

$$(f_{x})_{y} = f_{xy}$$

$$(f_y)_x = f_{yx} = \frac{2}{2}(2f) = \frac{2^2f}{2x^2y}$$
left toright. $-ight$ to left

Example. $f(x,y) = x^4 + 3x^2y^3 + y^4$ $f_x = 4x^3 + 6xy^3$, $f_y = 9x^2y^2 + Jy^6$ $f_{xx} = 12x^2 + 6y^3$; $f_{yy} = 18x^2y + 42y^5$ $f_{xy} = 18 \times y^2$, $f_{yx} = 18 \times y^2$ by clair aut of the m. gual. CLAIRAUT Thm (1713-1765) Let V = { (x,y): (x-a) + (y-b) < r2} be the open disk of radius r centred at (a, b). If f(x,y) is a red value of function defined on Vpuch that both
fxy and fyx are
continuous on V,
then fxy = fyx on V.

Note: For "most" functions

We see in practice

fxy = fyx Sometimes one is easier to evaluate than the other. e.g. $f(x,y) = \hat{x} \cos(x^2) + y$ fyx is easier to evaluate. 3rd order derivatives. f(x,y) has 8, 3rd order derivatives fxxx fxxy fxxx fxxx pame by Clairant (if the patris fied. fyzy fyzy fyzx fxyy

March 2020 10:52 AM $f(x,y) = x^2y^5$ $f_{x} = 2xy^{2}$ $f_y = 3x^2y^2$ $f^{xx} = 3\lambda_3$ $fy = 6 \times^2 y$ $f_{xy} = 6 \times y^2$ $f_{yx} = 6 \times y^2$ t*** = 0 $fyyy = 6x^2$ $f_{xxy} = 6y^2 = f_{xyx} = f_{yxx}$ $f_{yy} = 12xy = f_{yxy} = f_{xyy}$ A PARMAL DIFFERENTIAL EQUATION (PDE) is an equation involving a function of several y variables and its partial derivatives. Laplace egmi fxx +fyy = 0

(2nd order PDE) Sol'h . of a PDE is all functions that satisfy the PDE.

(i)
$$f(x,y) = x^2 - y^2$$

$$f_{x} = 2x \qquad f_{y} = 2y$$

$$f_{xx} = 2 \qquad f_{yy} = 2$$

$$f_{xx} + f_{yy} = 2 - 2 = 0.$$
(ii) $f(x,y) = x^3 - 3xy^2$

$$f_{x} = 3x^2 - 3y^2 \qquad f_{y} = -6xy$$

$$f_{xx} = 6x \qquad f_{yy} = -6x$$

$$f_{xx} + f_{yy} = 6x - 6x = 0$$
(iii) $f(x,y) = x \cos(y) \qquad f_{y} = -x \sin(y)$

$$f_{x} = x \cos(y) \qquad f_{yy} = -x \cos(y)$$

$$f_{xx} + f_{yy} = 0$$
Wave Equation $f(x,t)$

$$f_{xx} + f_{yy} = 0$$
Wave Equation $f(x,t)$

$$f_{xx} + f_{yy} = 0$$

check.

HEAT EDUATION.

f(x,t)

ft = kfxx kro constant.