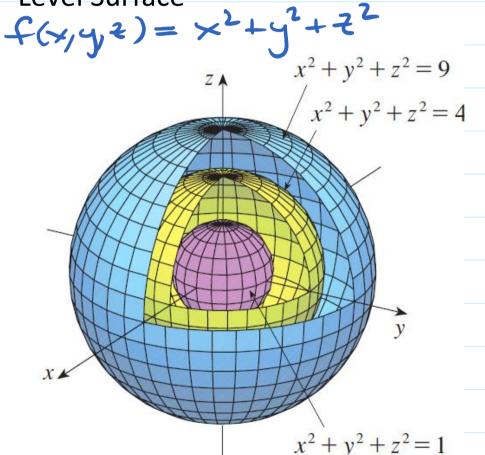

M1ZB3 Lecture 28 Part 2 (CO2) Dr. Wolkowicz March 17

March 8, 2020 11:39 AM

git.1 cont'd. (You can ask questions on thursday at 11:30-12:30 Using WebEx about Lecture 28 parts 1 \$2. Look for an e: mail from me)

Dy'n Level Curve of a function foxy) with Domain DER2 are curves { (x,y) & D: f(x,y) = a } Level sets Care constants

Image from our text book by Jim Stewart


March 17, 2020 8:22 AM $F:D = \mathbb{R}^3 \to \mathbb{R}$.

Defin. LEVEL SURFACE of a function f(x,y,z) with Doman De IR3 is a set of the form

 $S_c = \{(x,y,z) \in D \mid f(x,y,z) = c\}$ where care constants.

Level Surface

Image from our textbook by Jim Steward

From a colleague in California who teaches quantum computing	
Online Discussions and Office Hours	I
Hi all,	
as you probably already anticipated, I will move my discussion sections and office hours online, starting tomorrow. I'm sure your biggest concern right now is how we can continue to have class.	
Don't worry I am prepared:	
 The default method we'll use is Zoom – you'll have to download the client at https://zoom.us. I will post the data you need 	
 to join the meeting on bcourses. In case Zoom doesn't work for some reason (e.g. because the service is overloaded), we 	
will use Google Meet. If that happens, I'll announce it beforehand. If you don't use an @berkeley.edu email address, I will have to	
 invite you individually, so keep that in mind. If Google Meet also doesn't work anymore, I'll use a site called 	
https://explaineverything.com, which is hosted AWS. You'll be able to see a whiteboard and talk to me directly in your web	
 browser, but there's no video. In case that also ceases to work, we'll have audio-only discussion sections on my 	
mumble server. I will send the details when it comes to that. In the case of bigger infrastructure	
disruptions (like a large scale power outage), we're going to have sections using amateur radio: I will use the Mt Diablo repeater station at 147.060 MHz with a PL tone of 100 Hz. My	
 call sign is KN6CDY. In case the Bay area becomes uninhabitable, I will move to the wilderness. I plan to still be 	
reachable via APRS, but we'll probably have to move sections to shortwave. In that case, we'll use CW transmission, so practice your	
Morse code. Note that a nuclear attack in the upper atmosphere can create very strong	
electromagnetic fields, so if you want to prepare for that, either use vacuum tube based radios, or store them in a Faraday	
cage.	
I hope this assures you that no matter what happens this semester, I will not let it prevent you from learning quantum mechanics.	