Michael Chrichton (1969)
 The Andromeda Strain

"The mathematics of uncontrolled growth are frightening. A single cell of E. coli would under ideal circumstance, divide every 20 minutes. That is not particularly disturbing until you think about it, but the fact is that bacteria multiply geometrically: one becomes 2,2 becomes 4,4 becomes 8 , and so on. In this way, it can be shown that in a single day, one cell of E. coli could produce a super-colony in size and weight equal to the entire planet earth."

Actually, it would take approximately $\mathbf{2}$ days.

Average mass of 1 E coli cell is approx. 10 gm

24
Mass of the earth is approx. (5.9763) 10 kg

Lecture 29
99.3. Example: Orthogond Trajectories.

Consider lines.

$$
\begin{aligned}
& y=m_{1} x+b_{1} \\
& y=m_{2} x+b_{2}
\end{aligned}
$$

They encorthogonal (or perpendicular)

$$
\text { if } m_{2}=-\frac{1}{m_{1}}
$$

ODE: $\quad \frac{d y}{d x}=F(x, y)$

$F(\bar{x}, \bar{y})$ is the slope of $y(x)$ at x,
Curves that cross 1 have slope $\frac{1}{F(x, y)}$,
AIm: Jive a family of curves, Find the or-thogonal trajectories, ie. the family of curves that cross these curves orthogonally.
Example. Find the orthogond trajectorie. to the family of curves: $x=k y^{2}$.
(1) Find the slop of
Method $I: \frac{x}{y^{2}}=k$

Use implicit differentiation. thinking if y, as a fonchim of x.

$$
\begin{aligned}
& \frac{1 y^{2}-2 y}{y^{4}} y^{\prime} x=0 \\
& y\left(y-2 y^{\prime} x\right)=0 \Rightarrow y^{\prime}=\frac{y}{2 x}=F(x, y)
\end{aligned}
$$

Mechod II.

$$
\begin{aligned}
& x=k y^{2} \quad \Rightarrow \quad \text { Implicit diff. } \\
& \Downarrow=\frac{\downarrow}{k} y^{2} \Rightarrow \frac{d y}{d x}=\frac{1}{2 k y}=\frac{1}{2 \frac{x}{y^{3}} y}=\frac{y}{2 x}=F(x, y) \\
& \therefore \quad \frac{d y}{d x}=\frac{y}{2 x}<F(x, y)
\end{aligned}
$$

Family of orthogonal trajectories has
slope

$$
\begin{aligned}
d y & =-\frac{1}{F(x, y)}=-\frac{2 x}{y} \\
\frac{d y}{d x} & =-\frac{2 x}{y}
\end{aligned}
$$

Separable.

$$
\begin{aligned}
& \int y d y=\int-2 x d x \\
& y^{2}=-\not 2 \frac{x^{2}}{2}+C, C a b \\
& x^{2}+\frac{y^{2}}{2}=C, C \text { Family of slip }
\end{aligned}
$$

Family of ellipses.
gives the orthogond trajectories,

Example $=$ Mixing Problem.
Brine containing $3 \mathrm{~kg} / \mathrm{L}$ of salt enters a tank fitted with 400 L of water containing 20 kg salt.
Brine enters at $10 \mathrm{~L} / \mathrm{min}$. Mixture is well-stirred Mixture leaves at the same rate.
Question: How much pals is in the tank after 10 minutes?

Soln Define variables,
Let $A(t)$ denote the amount of salt (ing) in the tank at time t (in minutes).

$$
\begin{gathered}
10 \mathrm{~L} / \mathrm{min} \longrightarrow \\
3 \mathrm{~kg} / \mathrm{L}
\end{gathered} \begin{gathered}
A(t) \\
400 \mathrm{~L} \\
A(0)=20 \mathrm{~kg} \mathrm{~L} \\
T
\end{gathered} 10 \mathrm{~L} / \mathrm{min}
$$

Change it in amount $=$ rate of amt - race of aunt

$$
\text { IVf }\left\{\begin{array}{c}
\frac{d A}{d t}=30-\frac{A(t)}{40} \\
A(0)=20 \\
A(10)=?
\end{array}\right.
$$

$$
\int \frac{40 d A d t}{1200-A}=\int \frac{1200-A(t)}{40}
$$

$$
\begin{aligned}
& \Rightarrow-40 \ln | | 200-A \mid=t+C \quad \text { anb } \\
& \ln ||200-A|=-\frac{1}{40} t\left(-\frac{1}{40} C\right. \\
& \ln |1200-A|=-\frac{1}{40} t+K \\
&||200-A|=e^{-\frac{1}{40} t} e^{K} \\
& \mid 200-A= \pm e^{-\frac{1}{40} t} e^{K} \\
& \mid 200-A=\widetilde{K} e^{-\frac{1}{40} t} \quad \tilde{K} \neq 0, \text { anb } \\
& A(t)=1200-\tilde{K} e^{-\frac{1}{40} t}
\end{aligned}
$$

Jo find k, use the I.C. $A(0)=20$.

$$
\begin{aligned}
20=A(0) & =1200-\tilde{k} e^{-\frac{1}{40} \cdot 0} \\
20 & =1200-\tilde{k} \\
\tilde{k} & =1180 . \\
\therefore A(t) & =1200-1180 e^{-t / 40} \mathrm{~kg} .
\end{aligned}
$$

Ans. Ofter 10 minutes the amount of salt is the tark i)

$$
A|0\rangle=1200-1180 e^{-10 / 40} \mathrm{~kg}
$$

$\approx 281 \mathrm{~kg}$.

