M1ZB3 Lecture 15 (CO2) Dr. Wolkowicz Feb. 7

January 31, 2020 10:01 PM

f 11.10 Jaylor & Maclauren Series.

How to find a p.s. given f(x).

Assume $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$

 $= c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots + c_n(x-a)^n + \cdots -$

To find Cn, n=0,1,2,-

 $f(a) = c_0$ $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2$ $+ \cdots + ncn(x-a)^{n-1}$

 $f'(a) = c_1$ $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + \cdots$ $+ \cdots + (h-i)(n)(h(x-a)^{h-2}$ $+ \cdots$

f"(a) = 202

$$f^{(3)}(x) = 2.3C_3 + ... +$$

Special Case: a = 0

Centred at x = 6. $f(x) = \underbrace{5}_{n=0} \underbrace{f^{(n)}(b)}_{n!} x^{n}$ is called Maclauren Series. Example. $f(x) = e^x$ Find Maclauren Series. $f(x) = e^{x}$ $f^{(n)}(x) =$ Solitor = Signal Series

is the Maclauren Series

for ex Question: If fix has derivatives of all orders when is f(x) equal to its Taylor series?

February 7, 2020 11:48 AM

Answer is Not Always

Example:
$$f(x) = \begin{cases} -\frac{1}{2} \\ x = 0 \end{cases}$$

has derivedives of ALL orders even at x=0.

$$f^{(n)}(6) = 0, n = 0, 1, 2, ...$$
(use l'Hospital's Rule)

:. Maclaurer Series is

February 7,2020 11:51 AM

When is $f(x) = \frac{2}{5} f(a) (x-a)^n$?

Dyine of partial pum $T_n(x) = \frac{2}{5} f^{(i)}(a) (x-a)^n$ $f^{(i)}(a) (x-a)^n$ $f^{(i)}(a) (x-a)^n$ Taylor Dolynomial i.e. $T_o(x) = f(a)$ f(a) = f(a) o' = 1 $T_{\nu}(x) = f(\alpha) + f'(\alpha)(x-\alpha)$ (Tangent line to f(x) at x=a) $T_2(x) = f(a) + f'(a)(x-c)$ $+ f''(a) (x-c)^2$ The REMAINDER. $R_n(x) = f(x) - T_n(x)$ tells how good Tn(x) approximates f(x)

thm If lim Rn(x) =0 for Ix-alcR where R>0 or so lim $T_n(x) = \lim_{n \to \infty} (f(x) - R_n(x))$ $n \to \infty$ = f(x) - 0 = f(x)Taylor Series. Cohimate $R_n(x)$.
How good is $T_n(x)$ as an estimate of f(x)? Taylor's Inequality. If $|f'(x)| \leq M$ for |x-a| < dthen $|R_n(x)| \leq M |x-a|^{m+1}$ (n+1)! for 1x-2/2d.

PC pg 762. 84 ad.
application of Taylor's Inequality
NOTE: We showed
2 ×n converges h=0 n! for all x.
using the Ratio Ter.
lim x" =0 (by the n=0 DIVERGENCE TEST)
Is $e^{\times} = \underbrace{\leq \times^{n}}_{n=0} \times \mathbb{R}$ By the Th ⁿ we need to sho
By the Th ⁿ we need to sho
lim Rn = 0.
Taylor's Inequality

February 7, 2020 12:09 PM $|P(x)| \leq |M| |X-\alpha|^{n+1}$ |P(n+1)| = |P(n+1)| = |P(n+1)| $|P(n+1)| \leq |P(n+1)| = |P(n+1)| =$ Fix any dER. $f(x) = e^{x}$ $f^{(n)}(x) = e^{x}$ $max\{|f^{(n+1)}(x)|:|x|< d\}$ $|R_n(x)| \leq e^{t} |d|^{n+1}$ (n+1)! if |x|< d. \rightarrow o as $n\rightarrow\infty$ if 1x1 < q d was arbitrary Rn(x) -> 0 as h->lo