Test 1 Information

Date: Mon. Feb. 10, 2020

Time: 7:00-8:30pm & 9:00-10:30pm

Duration: 1.5hrs (90 min)

Location: find where on childsmath

Request an alternate test (if conflict)

Format: ~19 Multiple Choice

Topics: Anything covered in class up to & including the section on radius and intervals of convergence.

This includes: 8th ed. of Textbook 7.5, 7.8, App. E, 11.1-11.6, 11.8

Look over all lecture notes, sections of the textbook, current assignments, and go over Sample Tests for test #1.

NO CALCULATORS

Test 1 Reviews Session

Seating #1

Date: Thurs. Feb. 6

Time: 3:30-5:20pm

Room: PGCLL B138

Seating #2

Date: Fri. Feb. 7

Time:3:30-5:20pm

Room: CNH104

February 3, 2020 8 3:23 PM Let R denote Radius of Convergence. Example. Find R for $\sum_{n=0}^{\infty} n! x^n$.
example find R for 2 n'x".
Use RATIO TEST:
$\lim_{N\to\infty} \left \frac{(n+1)! \times n+1}{n! \times n} \right $
$= \lim_{n \to \infty} n+1 x = \infty, x \neq 0.$
$\sim \rightarrow \sim$
Converges at $x = 0$. Useless series.
Converges at x = 0
useless series.
Example. $S = \underbrace{\times}_{n=0}^{\infty} \underbrace{\times}_{n!}^{n}$ Find R. lim $\underbrace{\times}_{n\to\infty}^{n+1} \underbrace{\times}_{n+1}^{n+1} \underbrace{\times}_{n+1}^{n} \underbrace{\times}_{n+1}^{n}$ Test
$0.$ $1 \sim 0.$
lum (Katis /
Test
= lim $\left \frac{n!}{(n+1)!} \times \frac{n+1}{x^n} \right = \lim_{n \to \infty} \left \frac{1}{n+1} \right x $
$n\rightarrow\infty$ $(n+1)!$ \times $n\rightarrow\infty$ $(n+1)!$
= n for all x.
$= 0 \text{ for all } \times .$ $\therefore R = \infty \text{i.e. series converges all } \times .$ $\text{i.e.} \times (-\infty, \infty) \text{i.e.} \times (\times \infty).$
1.1. × 6 (-00, 70) 1.1. × 6 < × 600.

February 4, 2020 11:37 AM We will per that Remark: $e^{X} = \underbrace{5}_{n=0}^{\infty} \underbrace{\times}_{n}^{n} for all \times ETR$ Example. $\leq (x-1)^n$. Find R h=1 n dinterval

Series (c=0) convergence

Rober Text Raho Test $\lim_{n\to\infty} \frac{(x-1)^{n+1}}{(n+1)^{2^{n+1}}} \frac{(x-1)^{n}}{n^{2^{n}}}$ $=\lim_{n\to\infty} \left(\frac{2^n}{2^{n+1}} \left(\frac{n}{n+1}\right) \frac{(x-1)^{n+1}}{(x-1)^n}\right)$ = $\lim_{n\to\infty} \frac{1}{2} \frac{n}{n+1} (x-1) = \frac{1}{2} |x-1| < 1$ $\frac{1}{2} |x-1| < 1$ $\frac{1}{2} |x-1| < 1$ $\frac{1}{2}|x-1|<1 \Rightarrow |x-1|<2=R.$

February 4, 2020 11:58 AM = $\leq^{\infty} (2(x-\frac{1}{2}))''$ n=1 5n In $= \sum_{n=1}^{\infty} 2^{n} (x-\frac{1}{2})^{n}$ Series is centred at x = = Raho Test on (3) $\lim_{n\to\infty} \frac{(2\times-1)^{n+1}}{5^{n+1}} \frac{(2\times-1)^{n}}{5^{n}}$ = $\lim_{n\to\infty} \left| \frac{\sqrt{n}}{\sqrt{n+1}} \right| \left| \frac{1}{2} \right| \left| \frac{1}{2} \right| = \lim_{n\to\infty} \left| \frac{\sqrt{n}}{\sqrt{n+1}} \right| \left| \frac{1}{2} \right| \left| \frac{1}{2} \right| \left| \frac{1}{2} \right| \left| \frac{1}{2} \right| = \lim_{n\to\infty} \left| \frac{1}{2} \right| = \lim_{n\to\infty} \left| \frac{1}{2} \right| = \lim_{n\to\infty} \left| \frac{1}{2} \right| \left| \frac$

 $\frac{12:05 \text{ PM}}{-5} < 2 \times -1 < 5 / R = \frac{1}{2} \text{ length}$ ⇒ -4 < 2× < 6
⇒ -2 < × < 3 .. Interval of convergence contains (-2,3) BUT MUST CHECK END POINTS =-2 , 5° (-5)ⁿ

=-2 , 5° (-5)ⁿ Converges by $\frac{5}{5^{n}} = \frac{5^{n}}{5^{n}} = \frac{1}{5^{n}}$ $n=1 \frac{5}{5^{n}} = \frac{1}{5^{n}}$ Divergent p-series ($p = \frac{1}{2} < 1$). $\therefore R = \frac{5}{2}$ and Interval of convergence is [-2,3).

Example. Assume the series 2^{∞} Converges at $x = 5$. $n = 0$
1. Does it converge at x=0?
Centred at $x = 2$. $\frac{-1}{2} = \frac{1}{5}$ $\therefore R \ge 3$
2. Does series Converge at x=-1? -need more information.
x=-1 might be an und point of the interval of convergence.
3. Does series converge at $x = -2$? - don't know the radius of convergence could be bigger than 3.
could be bigger 4hon 3.