# Bounded width problems and algebras 

László Zádori<br>University of Szeged<br>June 17, 2007

## CSP and algebras

- Let $A$ be finite relational structure of finite type. Let $\operatorname{CSP}(A)$ denote the constraint satisfaction problem over $A$.
- To each problem $\operatorname{CSP}(A)$ is associated an algebra $\mathbf{A}$ : base set of $\mathbf{A}=$ base set of $A$ operations of $\mathbf{A}=$ operations preserving the relations of $A$.
- This talk is focused on finite algebras that arise from so-called bounded width CSP's; problems of the form $\operatorname{CSP}(A)$ for which a particular local algorithm decides the problem in polynomial time.


## Structure of Talk

- Definition of bounded width
- Bounded strict width
- (I, $k$ )-tree duality
- The width 1 case
- Examples of width 2 and of no bounded width
- Bounded width and the Hobby-McKenzie types
- Related notions of width
- Results in the congruence distributive case


## Definition of bounded width

- In a 1998 paper Feder and Vardi studied a special type of CSP's termed problems of bounded width.
- Their original definition of these problems involves a logical programming language called Datalog, or comes equivalently via certain two-player games.
- Both of their definitions are proved to be equivalent to what follows.


## Definition of bounded width

- Let $k$ be a positive integer. The subsets of size at most $k$ of a set are called $k$-subsets.
- Fix a structure $A$ and integers $0 \leq I<k$.
(I, k)-algorithm

Input: Structure $I$ similar to $A$.
Initial step: To every $k$-subset $K$ of $I$ assign the relation $\rho_{K}=\operatorname{Hom}(K, A) \leq \mathbf{A}^{K}$.

## Iteration step:

- Choose, provided they exist, two $k$-subsets $H$ and $K$ of $I$ such that $|H \cap K| \leq I$ and there is a map $\varphi \in \rho_{H}$ with the property that $\left.\varphi\right|_{H \cap K}$ does not extend to any map in $\rho_{K}$.
- Then throw out all such maps from $\rho_{H}$.
- If no such $H$ and $K$ are found then stop and output the current relations assigned to the $k$-subsets of $l$.


## Definition of bounded width

- The relations given in the initial step are called the input relations of the $(I, k)$-algorithm.
- We refer to the relations $\rho_{K}$ obtained during the algorithm as $k$-relations.
- The $k$-relations obtained at the end of the algorithm are called the output relations.
- Observe that the $k$-relations are all subalgebras of a power of $\mathbf{A}$.
- Moreover, the output relations form an l-consistent system of relations, i.e., any two of them restricted to a common domain of size at most I are the same.


## Definition of bounded width

- Notice that the choice of the pair $H$ and $K$ in each iteration step of the algorithm is arbitrary.
- So the (I,k)-algorithm has several different versions depending on the method of the choice of the pair $H$ and $K$.
- By using induction one can prove that the output relations produced by the $(I, k)$-algorithm are the same for all versions of the algorithm.
- Since the number of $k$-subsets of $I$ is $O\left(\mid\| \|^{k}\right)$, and in each iteration step the sum of the sizes of the $k$-relations is decreasing, one can make the algorithm stop in polynomial time in the size of the structure $I$.


## Definition of bounded width

- Clearly, if the output relations of the $(I, k)$-algorithm for $I$ are empty then there is no homomorphism from I to $A$; however, it might be that the converse does not hold.
- We say that a problem $\operatorname{CSP}(A)$ has width $(I, k)$ if for any input structure $I$ there exists a homomorphism from I to $A$ whenever the output relations of the $(I, k)$-algorithm are nonempty.
- $\operatorname{CSP}(A)$ has width $l$ if it has width $(I, k)$ for some $k$
- $\operatorname{CSP}(A)$ has bounded width if it has width I for some I.
- Structure $A$ has width $(I, k)$, width $I$, bounded width if the related $\operatorname{CSP}(A)$ has the same properties.


## Definition of bounded width

- It follows that $\operatorname{CSP}(A)$ has bounded width if and only if for some choice of parameters $I$ and $k$ the $(I, k)$-algorithm correctly decides the problem $\operatorname{CSP}(A)$ : in particular, we get that $\operatorname{CSP}(A) \in \mathbf{P}$.
- Suppose that $(I, k) \leq\left(I^{\prime}, k^{\prime}\right)$. It can be easily verified that if $\operatorname{CSP}(A)$ has width $(I, k)$ then it has width $\left(I^{\prime}, k^{\prime}\right)$.


## Bounded strict width

- Let $k \geq 3$. A $k$-ary operation $t$ satisfying the identities $t(y, x, \ldots, x)=t(x, y, \ldots, x)=\cdots=t(x, \ldots, x, y)=x$ is called a near-unanimity operation.
- A structure $A$ is called $k$-near-unanimity if it admits a $k$-ary near-unanimity operation.
- If $A$ is $k$-near-unanimity then it is $k+1$-near-unanimity. Indeed, $s\left(x_{1}, \ldots, x_{k}, x_{k+1}\right)=t\left(x_{1}, \ldots, x_{k}\right)$ is a $(k+1)$-ary near-unanimity operation if $t$ is a $k$-ary nu operation.


## Bounded strict width theorem (Feder and Vardi)

Let $2 \leq I<k$.
(1) Every $(I+1)$-near-unanimity structure whose relations are at most $k$-ary has width $(I, k)$.
(2) Every $(I+1)$-near-unanimity structure has width $I$.

## Bounded strict width

Proof of the theorem for $I=2$ and $k=3$ :

- Let $A$ be a 3-near-unanimity structure with at most ternary relations.


## Bounded strict width

Proof of the theorem for $I=2$ and $k=3$ :

- Let $A$ be a 3-near-unanimity structure with at most ternary relations.
- Want to show that the $(2,3)$-algorithm works properly for any structure I similar to $A$.


## Bounded strict width

Proof of the theorem for $I=2$ and $k=3$ :

- Let $A$ be a 3-near-unanimity structure with at most ternary relations.
- Want to show that the $(2,3)$-algorithm works properly for any structure I similar to $A$.
- So we assume that the output relations of the (2,3)-algorithm applied to I are nonempty.


## Bounded strict width

Proof of the theorem for $I=2$ and $k=3$ :

- Let $A$ be a 3-near-unanimity structure with at most ternary relations.
- Want to show that the $(2,3)$-algorithm works properly for any structure I similar to $A$.
- So we assume that the output relations of the (2,3)-algorithm applied to I are nonempty.
- We shall define a nonempty set of homomorphisms from any $j$-element subset of $I$ to $A$, for every $j=3,4, \ldots,|I|$.


## Bounded strict width

Proof of the theorem for $I=2$ and $k=3$ :

- Let $A$ be a 3-near-unanimity structure with at most ternary relations.
- Want to show that the $(2,3)$-algorithm works properly for any structure I similar to $A$.
- So we assume that the output relations of the (2,3)-algorithm applied to I are nonempty.
- We shall define a nonempty set of homomorphisms from any $j$-element subset of $I$ to $A$, for every $j=3,4, \ldots,|I|$.
- When $j=3$ these nonempty sets are just the output relations of the (2,3)-algorithm.


## Bounded strict width

Proof of the theorem for $I=2$ and $k=3$ :

- Let $A$ be a 3-near-unanimity structure with at most ternary relations.
- Want to show that the (2,3)-algorithm works properly for any structure I similar to $A$.
- So we assume that the output relations of the (2,3)-algorithm applied to I are nonempty.
- We shall define a nonempty set of homomorphisms from any $j$-element subset of $I$ to $A$, for every $j=3,4, \ldots,|I|$.
- When $j=3$ these nonempty sets are just the output relations of the $(2,3)$-algorithm.
- Let $j=4,\{1,2,3,4\}$ any four element subset of $I$ and $(a, b, c)$ any tuple in the output relation $\rho_{\{1,2,3\}}$.

| 1 | $a$ |  | $a$ | $a$ | $a$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | $b$ | $b$ |  | $b$ | $b$ |
| 3 | $c$ | $c$ | $c$ |  | $c$ |
| 4 |  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d=t\left(d_{1}, d_{2}, d_{3}\right)$ |

## Bounded strict width

Proof of the theorem for $I=2$ and $k=3$ :

- Let $A$ be a 3-near-unanimity structure with at most ternary relations.
- Want to show that the $(2,3)$-algorithm works properly for any structure I similar to $A$.
- So we assume that the output relations of the (2,3)-algorithm applied to I are nonempty.
- We shall define a nonempty set of homomorphisms from any $j$-element subset of $I$ to $A$, for every $j=3,4, \ldots,|I|$.
- When $j=3$ these nonempty sets are just the output relations of the $(2,3)$-algorithm.
- Let $j=4,\{1,2,3,4\}$ any four element subset of $I$ and $(a, b, c)$ any tuple in the output relation $\rho_{\{1,2,3\}}$.

| 1 | $a$ |  | $a$ | $a$ | $a$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | $b$ | $b$ | $b^{\prime}$ | $b$ | $b$ |
| 3 | $c$ | $c$ | $c$ | $c^{\prime}$ | $c$ |
| 4 |  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d=t\left(d_{1}, d_{2}, d_{3}\right)$ |

## Bounded strict width

- Then any 3-projection of the 4-tuple $(a, b, c, d)$ is in the related ternary output relation. Hence $(a, b, c, d)$ is a homomorphism from $\{1,2,3,4\}$ to $A$.


## Bounded strict width

- Then any 3-projection of the 4-tuple $(a, b, c, d)$ is in the related ternary output relation. Hence $(a, b, c, d)$ is a homomorphism from $\{1,2,3,4\}$ to $A$.
- Then we replace the ternary $\rho$ relations with the 4 -ary relations that correspond to the four element subsets of $I$ and contain the tuples ( $a, b, c, d$ ) whose any 3-projection is in the related ternary output relation.


## Bounded strict width

- Then any 3-projection of the 4-tuple $(a, b, c, d)$ is in the related ternary output relation. Hence $(a, b, c, d)$ is a homomorphism from $\{1,2,3,4\}$ to $A$.
- Then we replace the ternary $\rho$ relations with the 4 -ary relations that correspond to the four element subsets of $I$ and contain the tuples ( $a, b, c, d$ ) whose any 3-projection is in the related ternary output relation.
- For $j=5$ we use these new 4-ary relations and a 4-ary nu operation.


## Bounded strict width

- Then any 3-projection of the 4-tuple $(a, b, c, d)$ is in the related ternary output relation. Hence $(a, b, c, d)$ is a homomorphism from $\{1,2,3,4\}$ to $A$.
- Then we replace the ternary $\rho$ relations with the 4 -ary relations that correspond to the four element subsets of $I$ and contain the tuples ( $a, b, c, d$ ) whose any 3-projection is in the related ternary output relation.
- For $j=5$ we use these new 4-ary relations and a 4-ary nu operation.
- Proceeding in this way, finally we get to a nonempty set of homomorphisms from I to A, Q.e.d..


## Bounded strict width

- Then any 3-projection of the 4-tuple $(a, b, c, d)$ is in the related ternary output relation. Hence $(a, b, c, d)$ is a homomorphism from $\{1,2,3,4\}$ to $A$.
- Then we replace the ternary $\rho$ relations with the 4 -ary relations that correspond to the four element subsets of $I$ and contain the tuples ( $a, b, c, d$ ) whose any 3-projection is in the related ternary output relation.
- For $j=5$ we use these new 4-ary relations and a 4-ary nu operation.
- Proceeding in this way, finally we get to a nonempty set of homomorphisms from I to A, Q.e.d..
- Actually, the above proof shows that every partial map from I to $A$ which satisfies the output relations extends to a full homomorphism.


## (I,k)-tree duality

- A relational structure is an $(I, k)$-tree if it is a union of certain substructures called nodes where the size of each node is at most $k$ and the nodes can be listed in such a way that the intersection of the $i$-th node and the union of the first $i-1$ nodes has at most $/$ elements and is contained in one of the the first $i-1$ nodes.
- A relational structure $A$ has an (I,k)-tree duality if for any I that admits no homomorphism to $A$ there exists an (l,k)-tree $T$ such that $T$ admits a homomorphism to $I$ and admits no homomorphism to $A$.


## Theorem (Feder and Vardi)

A structure $A$ has width ( $I, k$ ) if and only if it has an (I, $k$ )-tree duality.

## The width 1 case

- A relational structure is a tree if the tuples of its relations have no multiple component and the tuples can be listed in such a way that the $i$-th tuple intersects the union of the first $i-1$ tuples in one element. A forest is a disjoint union of trees.
- An n -ary operation $f$ is totally symmetric if $f\left(a_{1}, \ldots, a_{n}\right)=f\left(b_{1}, \ldots, b_{n}\right)$ whenever $\left\{a_{1}, \ldots, a_{n}\right\}=\left\{b_{1}, \ldots, b_{n}\right\}$.
- We define a relational structure $B_{A}$ of the same type as $A$. The base set of $B_{A}$ is the set of nonempty subsets of $A$ and for each $m$-ary relational symbol $r$
$\left(A_{1}, \ldots, A_{m}\right) \in r_{B_{A}}$ iff $r_{A} \cap \prod_{i=1}^{m} A_{i}$ is a subdirect product of the $A_{i}$.


## The width 1 case

## Width 1 Theorem (Feder and Vardi, Dalmau and Pearson)

TFAE:
(1) A has width 1.
(2) A has a $(1, k)$-tree duality for some $k$.
(3) A has a tree duality.
(4) $B_{A}$ admits a homomorphism to $A$.
(5) A admits a totally symmetric operation of arity the maximum size of the relations of $A$.

## The width 1 case

We define the notion of cycles of I similarly to hypergraphs:

- a tuple with multiple components is a cycle,
- two different tuples without multiple components form a cycle if they share at least two components,
- more than two tuples without multiple components form a cycle if they can be listed in a cyclic way that the consecutive ones share a single component and the nonconsecutive ones share no components.
The girth of $I$ is the length of its shortest cycle. If $I$ is a forest its girth is defined to be the infinity.
The hardest part of the proof of the Width 1 Theorem uses a generalization of a theorem of Erdős:


## Big girth lemma (Feder and Vardi)

For any I that admits no homomorphism to $A$ and any positve integer $n$ there exists a structure $J$ of girth at least $n$ such that $J$ admits a homomorphism to $I$, but not to $A$.

## The width 1 case

- Proof of $2 \Rightarrow 3$ in the Width 1 Theorem:


## The width 1 case

- Proof of $2 \Rightarrow 3$ in the Width 1 Theorem:
- Suppose that $A$ is a structure that admits a $(1, k)$-tree duality for some k.


## The width 1 case

- Proof of $2 \Rightarrow 3$ in the Width 1 Theorem:
- Suppose that $A$ is a structure that admits a $(1, k)$-tree duality for some k.
- Want to show that $A$ admits a tree duality.


## The width 1 case

- Proof of $2 \Rightarrow 3$ in the Width 1 Theorem:
- Suppose that $A$ is a structure that admits a $(1, k)$-tree duality for some k.
- Want to show that $A$ admits a tree duality.
- Need to show that for any I that does not map to $A$ there is a tree that maps to I but not to $A$.


## The width 1 case

- Proof of $2 \Rightarrow 3$ in the Width 1 Theorem:
- Suppose that $A$ is a structure that admits a $(1, k)$-tree duality for some k.
- Want to show that $A$ admits a tree duality.
- Need to show that for any I that does not map to $A$ there is a tree that maps to I but not to $A$.
- By the lemma we may assume that the girth of $l$ is at least $k+1$.


## The width 1 case

- Proof of $2 \Rightarrow 3$ in the Width 1 Theorem:
- Suppose that $A$ is a structure that admits a $(1, k)$-tree duality for some k.
- Want to show that $A$ admits a tree duality.
- Need to show that for any I that does not map to $A$ there is a tree that maps to I but not to $A$.
- By the lemma we may assume that the girth of $l$ is at least $k+1$.
- Since $A$ has $(1, k)$-tree duality, there is a ( $1, k$ )-tree $T$ that maps to $I$ under a homomorphism $f$ such that $T$ does not map to $A$.


## The width 1 case

- Proof of $2 \Rightarrow 3$ in the Width 1 Theorem:
- Suppose that $A$ is a structure that admits a $(1, k)$-tree duality for some k.
- Want to show that $A$ admits a tree duality.
- Need to show that for any I that does not map to $A$ there is a tree that maps to I but not to $A$.
- By the lemma we may assume that the girth of $l$ is at least $k+1$.
- Since $A$ has $(1, k)$-tree duality, there is a $(1, k)$-tree $T$ that maps to $I$ under a homomorphism $f$ such that $T$ does not map to $A$.
- Note that the $f$-image of each node of $T$ in $I$ is a forest because $I$ has large girth.


## The width 1 case

- Proof of $2 \Rightarrow 3$ in the Width 1 Theorem:
- Suppose that $A$ is a structure that admits a $(1, k)$-tree duality for some k.
- Want to show that $A$ admits a tree duality.
- Need to show that for any I that does not map to $A$ there is a tree that maps to I but not to $A$.
- By the lemma we may assume that the girth of $l$ is at least $k+1$.
- Since $A$ has $(1, k)$-tree duality, there is a $(1, k)$-tree $T$ that maps to $I$ under a homomorphism $f$ such that $T$ does not map to $A$.
- Note that the $f$-image of each node of $T$ in $I$ is a forest because $I$ has large girth.
- Let $T^{\prime}$ be the forest obtained from $T$ by replacing each node of $T$ by its $f$-image in I in the obvious manner (with the necessary gluing).


## The width 1 case

- Proof of $2 \Rightarrow 3$ in the Width 1 Theorem:
- Suppose that $A$ is a structure that admits a $(1, k)$-tree duality for some k.
- Want to show that $A$ admits a tree duality.
- Need to show that for any I that does not map to $A$ there is a tree that maps to I but not to $A$.
- By the lemma we may assume that the girth of $l$ is at least $k+1$.
- Since $A$ has $(1, k)$-tree duality, there is a ( $1, k$ )-tree $T$ that maps to $I$ under a homomorphism $f$ such that $T$ does not map to $A$.
- Note that the $f$-image of each node of $T$ in $I$ is a forest because $I$ has large girth.
- Let $T^{\prime}$ be the forest obtained from $T$ by replacing each node of $T$ by its $f$-image in I in the obvious manner (with the necessary gluing).
- Clearly, $T^{\prime}$ maps homorphically into $I$.


## The width 1 case

- Proof of $2 \Rightarrow 3$ in the Width 1 Theorem:
- Suppose that $A$ is a structure that admits a $(1, k)$-tree duality for some k.
- Want to show that $A$ admits a tree duality.
- Need to show that for any I that does not map to $A$ there is a tree that maps to I but not to $A$.
- By the lemma we may assume that the girth of $l$ is at least $k+1$.
- Since $A$ has $(1, k)$-tree duality, there is a $(1, k)$-tree $T$ that maps to $I$ under a homomorphism $f$ such that $T$ does not map to $A$.
- Note that the $f$-image of each node of $T$ in $I$ is a forest because $I$ has large girth.
- Let $T^{\prime}$ be the forest obtained from $T$ by replacing each node of $T$ by its $f$-image in $I$ in the obvious manner (with the necessary gluing).
- Clearly, $T^{\prime}$ maps homorphically into $I$.
- Moreover $T$ maps into $T^{\prime}$, hence $T^{\prime}$ cannot map into $A$.


## The width 1 case

- Proof of $2 \Rightarrow 3$ in the Width 1 Theorem:
- Suppose that $A$ is a structure that admits a $(1, k)$-tree duality for some k.
- Want to show that $A$ admits a tree duality.
- Need to show that for any I that does not map to $A$ there is a tree that maps to I but not to $A$.
- By the lemma we may assume that the girth of $l$ is at least $k+1$.
- Since $A$ has $(1, k)$-tree duality, there is a $(1, k)$-tree $T$ that maps to $I$ under a homomorphism $f$ such that $T$ does not map to $A$.
- Note that the $f$-image of each node of $T$ in $I$ is a forest because $I$ has large girth.
- Let $T^{\prime}$ be the forest obtained from $T$ by replacing each node of $T$ by its $f$-image in $I$ in the obvious manner (with the necessary gluing).
- Clearly, $T^{\prime}$ maps homorphically into $I$.
- Moreover $T$ maps into $T^{\prime}$, hence $T^{\prime}$ cannot map into $A$.
- Thus, some tree component of $T^{\prime}$ maps to $I$ but does not map to $A$, Q.e.d.


## Example of a structure of width 2 but not of width 1

- Let $A=\left(\{0,1\} ;\{0,1\}^{2} \backslash\{(0,0)\},\{0,1\}^{2} \backslash\{(1,1)\}\right)$.
- The clone of $A$ is generated by the ternary nu operation.
- By the Bounded Strict Width Theorem $A$ has width $(2,3)$.
- The only binary operations in the clone of $A$ are the projections.
- There is no totally symmetric operation $f$ in the clone for any arity. For otherwise $g(x, y)=f(x, y, \ldots, y)$ would be a binary commutative operation in the clone.
- Hence by the Width 1 Theorem $A$ is not a structure of width 1.


## Open questions

- Let $I<k$. Is it decidable that a finite structure of finite type has width $(I, k)$ ?
- Let $I \geq 2$. Is it decidable that a finite structure of finite type has width $I$ ?
- Is it decidable that a finite structure of finite type has bounded width?
- Is it decidable that a finite structure of finite type is near unanimity (has bounded strict width)?
- Does there exist a structure for every $i$ that has width $i+1$ but not width $i$ ?


## Structures of no bounded width

- The first examples of structures of no bounded width are due to Feder and Vardi.
- They introduced the structures with the ability to count and proved that they do not have bounded width.
- Example:

Let $(A,+)$ be an Abelian group, $a \in A, a \neq 0$. Then the structure $(A ;\{0\},\{(x, y, z): x+y+z=a\})$ has the ability to count and so it does not have bounded width.

## Bounded width and the Hobby-McKenzie types

- We say that a finite algebra $\mathbf{A}$ has bounded width if for every relational structure $B$ (of finite type) whose base set coincides with the universe of $\mathbf{A}$ and whose relations are subalgebras of finite powers of $\mathbf{A}$, the structure $B$ has bounded width.
- If a relational structure $A$ has bounded width then the related algebra

A has bounded width.

## Lemma (Larose and Zádori)

Every finite algebra in the variety generated by a bounded width algebra has bounded width.

- The variety $\mathcal{V}(\mathbf{A})$ interprets in the variety $\mathcal{V}(\mathbf{B})$ if there exists a clone homomorphism from the clone of term operations of $\mathbf{A}$ to the clone of term operations of $\mathbf{B}$.
- Equivalently: $\mathcal{V}(\mathbf{A})$ interprets in $\mathcal{V}(\mathbf{B})$ if there is an algebra in $\mathcal{V}(\mathbf{A})$ with the same universe as $\mathbf{B}$, all of whose term operations are term operations of $\mathbf{B}$.


## Bounded width and the Hobby-McKenzie types

## Theorem (Larose and Zádori)

If $\mathbf{A}$ and $\mathbf{B}$ are finite algebras such that $\mathcal{V}(\mathbf{A})$ interprets in $\mathcal{V}(\mathbf{B})$ and $\mathbf{A}$ has bounded width then $\mathbf{B}$ also has bounded width.

## Lemma

For a locally finite idempotent variety $\mathcal{V}$ the following are equivalent:

- $\mathcal{V}$ omits types 1 and 2 .
(3) $\mathcal{V}$ does not interpret in any variety generated by an affine algebra.


## Theorem (Larose and Zádori)

If $\mathbf{A}$ is a finite idempotent algebra of bounded width then $\mathcal{V}(\mathbf{A})$ omits types 1 and 2.

## Bounded width and the Hobby-McKenzie types

## Proof:

- Let $\mathbf{A}$ be any finite idempotent algebra such that $\mathcal{V}(\mathbf{A})$ admits type 1 or 2.


## Bounded width and the Hobby-McKenzie types

## Proof:

- Let $\mathbf{A}$ be any finite idempotent algebra such that $\mathcal{V}(\mathbf{A})$ admits type 1 or 2.
- Then by the preceding lemma $\mathcal{V}(\mathbf{A})$ interprets in the variety generated by an affine algebra $\mathbf{C}$.


## Bounded width and the Hobby-McKenzie types

## Proof:

- Let $\mathbf{A}$ be any finite idempotent algebra such that $\mathcal{V}(\mathbf{A})$ admits type 1 or 2.
- Then by the preceding lemma $\mathcal{V}(\mathbf{A})$ interprets in the variety generated by an affine algebra $\mathbf{C}$.
- Since $\mathcal{V}(\mathbf{A})$ is idempotent, it interprets in $\mathcal{V}(\mathbf{B})$ where $\mathbf{B}$ is an algebra on the base set of $\mathbf{C}$ and the clone of term operations of $\mathbf{B}$ coincides with the clone of idempotent term operations of $\mathbf{C}$.


## Bounded width and the Hobby-McKenzie types

## Proof:

- Let $\mathbf{A}$ be any finite idempotent algebra such that $\mathcal{V}(\mathbf{A})$ admits type 1 or 2.
- Then by the preceding lemma $\mathcal{V}(\mathbf{A})$ interprets in the variety generated by an affine algebra $\mathbf{C}$.
- Since $\mathcal{V}(\mathbf{A})$ is idempotent, it interprets in $\mathcal{V}(\mathbf{B})$ where $\mathbf{B}$ is an algebra on the base set of $\mathbf{C}$ and the clone of term operations of $\mathbf{B}$ coincides with the clone of idempotent term operations of $\mathbf{C}$.
- Let us consider the structure $B^{\prime}=(B ;\{0\},\{(x, y, z): x+y+z=a\})$ where $B$ is the base set of $B$ and $a$ is a fixed non-zero element of $B$.


## Bounded width and the Hobby-McKenzie types

## Proof:

- Let $\mathbf{A}$ be any finite idempotent algebra such that $\mathcal{V}(\mathbf{A})$ admits type 1 or 2.
- Then by the preceding lemma $\mathcal{V}(\mathbf{A})$ interprets in the variety generated by an affine algebra $\mathbf{C}$.
- Since $\mathcal{V}(\mathbf{A})$ is idempotent, it interprets in $\mathcal{V}(\mathbf{B})$ where $\mathbf{B}$ is an algebra on the base set of $\mathbf{C}$ and the clone of term operations of $\mathbf{B}$ coincides with the clone of idempotent term operations of $\mathbf{C}$.
- Let us consider the structure $B^{\prime}=(B ;\{0\},\{(x, y, z): x+y+z=a\})$ where $B$ is the base set of $B$ and $a$ is a fixed non-zero element of $B$.
- The relations of $B^{\prime}$ are preserved by all operations of $\mathbf{B}$ and $B^{\prime}$ is a structure which has the ability to count.


## Bounded width and the Hobby-McKenzie types

## Proof:

- Let $\mathbf{A}$ be any finite idempotent algebra such that $\mathcal{V}(\mathbf{A})$ admits type 1 or 2.
- Then by the preceding lemma $\mathcal{V}(\mathbf{A})$ interprets in the variety generated by an affine algebra $\mathbf{C}$.
- Since $\mathcal{V}(\mathbf{A})$ is idempotent, it interprets in $\mathcal{V}(\mathbf{B})$ where $\mathbf{B}$ is an algebra on the base set of $\mathbf{C}$ and the clone of term operations of $\mathbf{B}$ coincides with the clone of idempotent term operations of $\mathbf{C}$.
- Let us consider the structure $B^{\prime}=(B ;\{0\},\{(x, y, z): x+y+z=a\})$ where $B$ is the base set of $B$ and $a$ is a fixed non-zero element of $B$.
- The relations of $B^{\prime}$ are preserved by all operations of $\mathbf{B}$ and $B^{\prime}$ is a structure which has the ability to count.
- So $B^{\prime}$ has no bounded width.


## Bounded width and the Hobby-McKenzie types

## Proof:

- Let $\mathbf{A}$ be any finite idempotent algebra such that $\mathcal{V}(\mathbf{A})$ admits type 1 or 2.
- Then by the preceding lemma $\mathcal{V}(\mathbf{A})$ interprets in the variety generated by an affine algebra $\mathbf{C}$.
- Since $\mathcal{V}(\mathbf{A})$ is idempotent, it interprets in $\mathcal{V}(\mathbf{B})$ where $\mathbf{B}$ is an algebra on the base set of $\mathbf{C}$ and the clone of term operations of $\mathbf{B}$ coincides with the clone of idempotent term operations of $\mathbf{C}$.
- Let us consider the structure $B^{\prime}=(B ;\{0\},\{(x, y, z): x+y+z=a\})$ where $B$ is the base set of $B$ and $a$ is a fixed non-zero element of $B$.
- The relations of $B^{\prime}$ are preserved by all operations of $\mathbf{B}$ and $B^{\prime}$ is a structure which has the ability to count.
- So $B^{\prime}$ has no bounded width.
- Hence B does not have bounded width.


## Bounded width and the Hobby-McKenzie types

## Proof:

- Let $\mathbf{A}$ be any finite idempotent algebra such that $\mathcal{V}(\mathbf{A})$ admits type 1 or 2.
- Then by the preceding lemma $\mathcal{V}(\mathbf{A})$ interprets in the variety generated by an affine algebra $\mathbf{C}$.
- Since $\mathcal{V}(\mathbf{A})$ is idempotent, it interprets in $\mathcal{V}(\mathbf{B})$ where $\mathbf{B}$ is an algebra on the base set of $\mathbf{C}$ and the clone of term operations of $\mathbf{B}$ coincides with the clone of idempotent term operations of $\mathbf{C}$.
- Let us consider the structure $B^{\prime}=(B ;\{0\},\{(x, y, z): x+y+z=a\})$ where $B$ is the base set of $\mathbf{B}$ and $a$ is a fixed non-zero element of $B$.
- The relations of $B^{\prime}$ are preserved by all operations of $\mathbf{B}$ and $B^{\prime}$ is a structure which has the ability to count.
- So $B^{\prime}$ has no bounded width.
- Hence B does not have bounded width.
- Now, the preceding theorem implies that A does not have bounded width either, Q.e.d..


## Related notions of width

- The notion of relational width is due to Bulatov.
- An algebra $\mathbf{A}$ has relational width $k$, if for all $I$ and $H \subseteq 2^{\prime}$ every $k$-consistent system of nonempty relations $\rho_{L} \leq \mathbf{A}^{L}, L \in H$ admits a solution, i.e., there exists a $\operatorname{map} \varphi: I \rightarrow A$ such that $\left.\varphi\right|_{L} \in \rho_{L}$ for all $L \in H$.
- A has bounded relational width if it has relational width $k$ for some $k$.


## Theorem (Bulatov)

If $\mathbf{A}$ is a finite idempotent algebra of bounded relational width then $\mathcal{V}(\mathbf{A})$ omits types 1 and 2.

## Fact

If an algebra $\mathbf{A}$ has bounded relational width then it has bounded width.

## Related notions of width

- The intersection property of algebras was introduced by Valeriote.
- Let $\mathbf{A}$ be an algebra. Two subalgebras of $\mathbf{A}^{\prime}$ are $k$-equal if their restrictions to any $k$-subset of $I$ agree.
- $\mathbf{A}$ has the $k$-intersection property if for every finite $I$ and subalgebra $\mathbf{B}$ of $\mathbf{A}^{\prime}$ the intersection of the subalgebras of $\mathbf{A}^{\prime}$ that are $k$-equal to $\mathbf{B}$ is nonempty.
- We say that A has the intersection property if it has the $k$-intersection property for some $k$.


## Fact (Valeriote)

If a finite idempotent algebra A has bounded relational width then it has the intersection property.

## Theorem (Valeriote)

If a finite idempotent algebra $\mathbf{A}$ has the intersection property then $\mathcal{V}(\mathbf{A})$ omits types 1 and 2 . .

## Related notions of width

By the previous results the following implications hold for a finite idempotent algebra $\mathbf{A}$ :

A has bounded relational width $\Longrightarrow \mathbf{A}$ has the intersection property


- None of the reverse implications are known to hold.
- A reasonable goal is to test them in special cases.


## Results in the congruence distributive case

- A nontrivial case occurs when $\mathcal{V}(\mathbf{A})$ is a congruence distributive variety, i.e. the congruence lattices of the algebras in $\mathcal{V}(\mathbf{A})$ are distributive.
- It is well known that if $\mathcal{V}(\mathbf{A})$ is CD then $\mathcal{V}(\mathbf{A})$ omits types 1 and 2.
- The property that $\mathcal{V}(\mathbf{A})$ is CD is characterized by the existence of a nontrivial idempotent Malcev condition.
- This Malcev condition is thought to be a sequence of sets of identities indexed by $n=1,2,3, \ldots$.
- For each $n$ the terms satisfying the $n$-th set of identities are called the n-th Jónsson terms.


## Results in the congruence distributive case

$n$-th Jónsson terms:

$$
\begin{array}{cc}
n=1: & x=y \\
n=2: & p(x, x, y)=p(x, y, x)=p(y, x, x)=x \\
n=3: & p_{1}(x, y, x)=p_{1}(x, x, y)=p_{2}(x, y, x)=p_{2}(y, y, x)=x, \\
& p_{1}(x, y, y)=p_{2}(x, y, y)
\end{array}
$$

## Theorem (Kiss and Valeriote)

If a finite algebra A admits 3rd Jónsson terms then it has bounded relational width.

## Results in the congruence distributive case

- Recall: A has the $k$-intersection property if for every finite $I$ and subalgebra $\mathbf{B}$ of $\mathbf{A}^{\prime}$ the intersection of the subalgebras of $\mathbf{A}^{\prime}$ that are $k$-equal to $\mathbf{B}$ is nonempty.
- A weaker property: A has the $k$-complete intersection property if for every finite $I$ the intersection of the subalgebras of $\mathbf{A}^{\prime}$ that are $k$-equal to $\mathbf{A}^{\prime}$ is nonempty.


## Theorem (Valeriote)

If a finite algebra $\mathbf{A}$ admits Jónsson terms (or equivalently $\mathcal{V}(\mathbf{A})$ is $C D$ ) then it has the 2-complete intersection property.

