
ALGEBRAS WITH FEW SUBPOWERS ARE

TRACTABLE

joint work with J. Berman, P. Idziak, R. McKenzie, M. Valeriote
and R. Willard

1



1 GMM operation

1.1 Definition

We call a k-ary operation g on the set A a generalized
majority-minority operation (GMM for short) when for
all {a, b} ⊆ A, g on the entries from {a, b} satisfies either
the near-unanimity equations

g(y, x, x, . . . , x) = x

g(x, y, x, . . . , x) = x
...

...
g(x, x, . . . , x, y) = x

or the Mal’cev-like equations

g(y, x, x, . . . , x) = y

g(x, x, . . . , x, y) = y.
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1.2 Generation

Let a pair of elements f, g ∈ An be such that for some
1 ≤ i ≤ n f(i) 6= g(i), {f(i), g(i)} is a minority pair and
for all 1 ≤ j < i, f(j) = g(j). We call such a pair (f, g) a
splitting and the triple (i, a, b) the index of this splitting.
We will also say that the pair (f, g) witnesses the index
(i, a, b) in the same situation.

In subpower B ≤ An of an algebra with such a term
operation, we define the representation of this subpower
to be a subset X ⊆ B such that for all I ⊆ {1, 2, . . . , n}
with |I| < k, projI(X) = projI(B) and the sets of indices
witnessed in B2 and X2 are the same. We will say that
the representation is compact when |X| ≤

(
n

k−1

)
|A|k−1 +

2n|A|2.

Lemma 1. If X ⊆ B is a representation of the subpower
B ≤ An, then the subalgebra of An generated by X is B.
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1.3 Dalmau’s algorithm

The main procedure of the algorithm starts with a com-
pact representation of An and imposes the constraints
one by one. The main part is the procedure Next, which
for a constraint Ci = ((s1, s2, . . . , smi

), Si) and a compact
representation of the subalgebra of Bi−1 ≤ An produces
a compact representation of the subalgebra of Bi ≤ Bi−1

of all elements of f ∈ Bi−1 such that projs1,s2,...,smi
(f) ∈

Si.

To make the procedure Next work, one does a simi-
lar thing to each input constraint, by replacing Si with
projs1

(Si), then with proj(s1,s2)(Si) and so on. This way,
in each step the number of data being calculated remains
small and manageable in polynomial time both in |A| and
n.

4



2 Few subpowers

2.1 A picture of some Mal’cev conditions

I don’t know how to draw in LaTeX, so
look at the chalkboard!
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2.2 Three invariants

We introduce three spectrum-like functions for a finite
algebra A:

• sA(n) = log2 |Sub(An)|;

• gA(n) = max
B∈Sub(A)

min
〈X〉=B

|X|, the least number of ele-

ments we need to be able to generate any subalgebra
of An;

• iA(n) is the maximal size of an independent subset
of An (that is, none of its elements are in the sub-
universe generated by the other elements).

Lemma 2. The following are easy observations:

• gA(n) ≤ iA(n) ≤ sA(n) ≤ log2(|A|) · ngA(n).

• If B ∈ V(A) and |B| < ∞, then there exist constants
ci, di > 0 such that sB(n) ≤ sA(c1n + d1), gB(n) ≤
gA(c2n + d2) and iB(n) ≤ iA(c3n + d3).

The first item tells us that when one of the three func-
tions is smaller than a polynomial, then all three are. In
this situation, we will say that the algebra A has few
subpowers.
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2.3 How to prove the existence of Mal’cev terms

We saw in the tutorial by R. Willard that we need to
look at the free algebra with three generators in order to
prove that congruence permutability implies existence of
a Mal’cev term. Instead we look at the free algebra with
two free generators FV(x, y) =: F in a variety V with per-
mutable congruences and at its appropriate subpower.
Namely, let G ≤ F2 be the subalgebra generated by the

vectors

[
y

x

]
,

[
y

y

]
and

[
x

y

]
.

We denote the projection homomorphisms in F2 by π1

and π2. Let ηi := kerπi ∩ G2 be the restrictions of the
kernels of these projections to G. Therefore, we have[

y

x

]
η1

[
y

y

]
η2

[
x

y

]
.

Clearly, by the permutability, there must be an ele-

ment

[
a

b

]
∈ G such that[

y

x

]
η2

[
a

b

]
η1

[
x

y

]
.

But, this means that a = b = x and that there must
be some term m such that in G

m

([
y

x

]
,

[
y

y

]
,

[
x

y

])
=

[
x

x

]
.

But this exactly means that m is a Mal’cev term, since
we calculate the operations in G by coordinate and since
F is a free algebra. The basic idea of this proof is most
useful in many of our proofs which follow.
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2.4 Cube terms and edge terms

We define a Mal’cev-style term with 2k−1 variables and
k equations we call the k-dimensional cube term. For
k = 3 it looks like:

c(y, y, y, y, x, x, x) = x

c(y, y, x, x, y, y, x) = x

c(y, x, y, x, y, x, y) = x.

We also define a special kind of a cube term with all
but k+1 many variables deleted (non-essential) which we
call the k-dimensional edge term. For k = 3 we ‘delete’
the first, third and fifth variable and get

e(y, y, x, x) = x

e(y, x, y, x) = x

e(x, x, x, y) = x.

Notice that the edge term, if we would ‘delete’ its first
variable as well would be a k-ary near-unanimity term.
On the other hand, if we ‘deleted’ all but the first three
variables it would be a Mal’cev term (with permuted
variables). So, this term generalizes both near-unanimity
and congruence permutability. On the other hand, the
cube term implies congruence modularity (by a syntac-
tical argument).
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2.5 Few subpowers imply a cube term

Theorem 1. Let A be a finite algebra. If for any c, d >

0, iA(cn + d) ≤ nk for almost all n, then A has a k-
dimensional cube term.

Idea of the proof. By the second part of Lemma 2
we know that the assumptions hold also for the V(A)-
free algebra of two generators F. Take an appropriately
large n so that iF(kn) < nk. Select a set S of nk many
{x, y}-valued tuples in Fkn in such a way that for any
of them there exist k many coordinates where this is the
only tuple which projects as the member of {x}k, while
all other possible projections are achieved by the other
tuples. As this set can’t be independent, there will be
a tuple f which is in the subalgebra generated by all
other tuples. Project to the ‘special’ k coordinates for
the tuple f and by the idea for proving the existence of
the Mal’cev term finish the proof.
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2.6 Cube term implies edge term

Theorem 2. Let A be a finite algebra. If A has a k-
dimensional cube term, then A has a k-dimensional edge
term.

Idea of the proof. Here we use heavily the idea of
section 2.3 to inductively eliminate variables one by one.
For example, assume that the algebra A has a 5-ary term
s which satisfies the equations

s(y, y, y, x, x) = x

s(y, x, x, y, x) = x

s(x, y, x, x, y) = x.

We desire to eliminate the second variable to obtain a
3-edge term. So assume that F(x, y) is the 2-generated
free algebra and that G ≤ F3 is generated by vectors y

y

x

 ,

 y

x

x

 ,

 x

y

x

 and

 x

x

y

 . If

 x

x

x

 ∈ G, we are

done.
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So, take α = s(x, x, y, x, x) and

s

 x x y x x

y x x y x

x y x x y

 =

 α

x

x

 ,

s

 x x y x x

y y y y y

x x x x x

 =

 α

y

x

 and

s

 x x y x x

y y y x x

x x x y y

 =

 α

x

y



Now, just calculate

s

 α α α x x

y x x y x

x y x x y

 =

 x

x

x

 .
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2.7 Edge terms imply few subpowers and tractability

The proofs in this subsection are quite ingenious (my co-
authors did them). I’ll just say both are too hard for the
purposes of this talk.

Lemma 3. Let A be a finite algebra with a k-dimensional
edge term e. Then A also has terms s(x1, x2, . . . , xk) and
p(x, y, z) such that

p(x, y, y) = x

s(y, x, x, x, . . . , x, x) = p(y, y, x)
s(x, y, x, x, . . . , x, x) = x

s(x, x, y, x, . . . , x, x) = x
...

s(x, x, x, x, . . . , x, y) = x.

Moreover, p(y, y, p(y, y, x)) = p(y, y, x).

We will call an ordered pair (a, b) ∈ A2 such that
p(a, a, b) = b a minority pair. In other words, for the
minority pair (with x evaluated as a and y as b) we get
both the near-unanimity and the Mal’cev operations on
this evaluation.
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We define minority splitting, index, representation and
so on in the same way as in Dalmau’s GMM case. Then
prove that

Theorem 3. If X ⊆ B is a representation of the sub-
power B ≤ An, then the subalgebra of An generated by
X is B.

Note that this means that gA(n) ∈ O(nk−1), so A
has few subpowers. Now we can apply exactly the same
algorithm to prove that a finite idempotent algebra A is
tractable when it has few subpowers.
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THANK YOU FOR YOUR PA-
TIENCE!
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