Symmetric Datalog \neq Linear Datalog

László Egri ${ }^{1}$,
joint work with Benoît Larose ${ }^{2}$ and Pascal Tesson ${ }^{3}$

${ }^{1}$ McGill University
${ }^{2}$ Concordia University
${ }^{3}$ Université Laval

UA and CSP, Nashville June 2007

Introduction

- Symmetric Datalog (LE, Larose, Tesson, 2007)

Introduction

- Symmetric Datalog (LE, Larose, Tesson, 2007)
- In logarithmic space (using Reingold, 2005)

Introduction

- Symmetric Datalog (LE, Larose, Tesson, 2007)
- In logarithmic space (using Reingold, 2005)
- Boolean domains + standard complexity assumptions \rightarrow all CSPs in L are in symmetric Datalog

Introduction

- Symmetric Datalog (LE, Larose, Tesson, 2007)
- In logarithmic space (using Reingold, 2005)
- Boolean domains + standard complexity assumptions \rightarrow all CSPs in L are in symmetric Datalog
- Conjecture: all CSPs in L are in symmetric Datalog

Introduction

- Symmetric Datalog (LE, Larose, Tesson, 2007)
- In logarithmic space (using Reingold, 2005)
- Boolean domains + standard complexity assumptions \rightarrow all CSPs in L are in symmetric Datalog
- Conjecture: all CSPs in L are in symmetric Datalog
\square Undirected st-connectivity is definable in symmetric Datalog

Introduction

- Symmetric Datalog (LE, Larose, Tesson, 2007)
- In logarithmic space (using Reingold, 2005)

Ь Boolean domains + standard complexity assumptions \rightarrow all CSPs in L are in symmetric Datalog

- Conjecture: all CSPs in L are in symmetric Datalog
\square Undirected st-connectivity is definable in symmetric Datalog
Directed st-connectivity is not definable in symmetric Datalog

Introduction

- Symmetric Datalog (LE, Larose, Tesson, 2007)
- In logarithmic space (using Reingold, 2005)
- Boolean domains + standard complexity assumptions \rightarrow all CSPs in L are in symmetric Datalog
- Conjecture: all CSPs in L are in symmetric Datalog
- Undirected st-connectivity is definable in symmetric Datalog

Directed st-connectivity is not definable in symmetric Datalog
\checkmark Reflexive transitive closure of a binary relation is not definable in symmetric Datalog

Introduction

- Symmetric Datalog (LE, Larose, Tesson, 2007)
- In logarithmic space (using Reingold, 2005)
- Boolean domains + standard complexity assumptions \rightarrow all CSPs in L are in symmetric Datalog
- Conjecture: all CSPs in L are in symmetric Datalog
\square Undirected st-connectivity is definable in symmetric Datalog
Directed st-connectivity is not definable in symmetric Datalog
- Reflexive transitive closure of a binary relation is not definable in symmetric Datalog
- $\operatorname{CSP}(\langle\{0,1\} ; \leq,\{0\},\{1\}\rangle)$ is not definable in symmetric Datalog

Outline

- Recap symmetric Datalog through an example

Outline

- Recap symmetric Datalog through an example
- Definitions: free derivation path, the free structure

Outline

- Recap symmetric Datalog through an example
- Definitions: free derivation path, the free structure
- Overview of the general proof

Outline

- Recap symmetric Datalog through an example
- Definitions: free derivation path, the free structure
- Overview of the general proof
- The main idea through an example

Datalog and Derivation Path Example

Input Vocabulary:

$$
S^{1}, T^{1}, E^{2}
$$

Linear (Symmetric) Program:
EDB: Extensional Database Predicate IDB: Intensional Database Predicate

$$
\begin{aligned}
I(y) & \leftarrow S(y) \\
I(y) & \leftarrow I(x) ; E(x, y) \\
(I(x) & \leftarrow I(y) ; E(x, y)) \\
G & \leftarrow I(y) ; T(y)
\end{aligned}
$$

Input Structure:

$$
S=\left\{v_{5}\right\}, T=\left\{v_{4}\right\}
$$

> Derivation Path:

The Free Derivation Path

Symmetric Program \mathfrak{D} :

$I(y) \leftarrow S(y)$
$I(y) \leftarrow I(x) ; E(x, y)$
$I(x) \leftarrow I(y) ; E(x, y)$
(Rename the vars: $I(y) \leftarrow I(x) ; E(y, x)$)

$$
G \leftarrow I(y) ; T(y)
$$

$$
S=\{s\}, T=\{t\}
$$

Derivation Path:

The Free Structure

Free Derivation Path \mathcal{F} :

The free structure \mathbf{F} is accepted by \mathfrak{D}

Free Structure F:

Domain: $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$

$$
S^{\mathbf{F}}=\left\{x_{5}\right\}, T^{\mathbf{F}}=\left\{x_{1}\right\}
$$

Proof Strategy

- Assume \mathfrak{D} works

Proof Strategy

- Assume \mathfrak{D} works
- Input: long enough path

Proof Strategy

- Assume \mathfrak{D} works
- Input: long enough path
abstract away, i.e. take the free derivation path \mathcal{F}

Proof Strategy

- Assume \mathfrak{D} works
- Input: long enough path
- Abstract away, i.e. take the free derivation path \mathcal{F}
\square Using the symmetricity of \mathfrak{D}, "zig-zag" on \mathcal{F} to create a new free derivation path \mathcal{F}^{\prime} such that:

Proof Strategy

- Assume \mathfrak{D} works
- Input: long enough path
- Abstract away, i.e. take the free derivation path \mathcal{F}
- Using the symmetricity of \mathfrak{D}, "zig-zag" on \mathcal{F} to create a new free derivation path \mathcal{F}^{\prime} such that:
- In \mathcal{F}^{\prime}, there is no path from the vertex in S to the vertex in T

Proof Strategy

- Assume \mathfrak{D} works
- Input: long enough path
- Abstract away, i.e. take the free derivation path \mathcal{F}
\square Using the symmetricity of \mathfrak{D}, "zig-zag" on \mathcal{F} to create a new free derivation path \mathcal{F}^{\prime} such that:
- In \mathcal{F}^{\prime}, there is no path from the vertex in S to the vertex in T
$\checkmark \mathcal{F}^{\prime}$ is a valid derivation path for \mathfrak{D} over the free structure of \mathcal{F}^{\prime}

Proof Strategy

- Assume \mathfrak{D} works
- Input: long enough path
- Abstract away, i.e. take the free derivation path \mathcal{F}
- Using the symmetricity of \mathfrak{D}, "zig-zag" on \mathcal{F} to create a new free derivation path \mathcal{F}^{\prime} such that:
- In \mathcal{F}^{\prime}, there is no path from the vertex in S to the vertex in T
$\checkmark \mathcal{F}^{\prime}$ is a valid derivation path for \mathfrak{D} over the free structure of \mathcal{F}^{\prime}

Contradiction

Zig-Zag (Simple Example)
Free Derivation Path \mathcal{F} :
Zig-zag (mirror) the yellow segment:

$$
\begin{aligned}
& I(y) \leftarrow S(y) \\
& I(y) \leftarrow I(x) ; E(x, y) \\
& I(x) \leftarrow I(y) ; E(x, y) \\
& G \leftarrow I(y) ; T(y)
\end{aligned}
$$

1. $I\left(x_{3}\right)^{I\left(x_{2}\right)} E\left(x_{3}, x_{2}\right)$
2.

$$
\begin{aligned}
& I\left(x_{2}\right)^{I\left(x_{3}\right)} E\left(x_{3}, x_{2}\right) \\
& E\left(x_{3}, x_{2}\right) \\
& \hline
\end{aligned}
$$

3.

$$
\begin{gathered}
I\left(x_{3} \int_{-}^{I\left(x_{2}\right)} E\left(x_{3}, x_{2}\right)\right. \\
I\left(x_{3}\right)^{I\left(x_{2}\right)^{I}} E\left(x_{3}, x_{2}\right)
\end{gathered}
$$

Zig-Zag Continued (Simple Example)

About The General Proof

Two main complications:

About The General Proof

Two main complications:

- There could be more than one path from the vertex in S to the vertex in T in a free derivation path. See free structure.

About The General Proof

Two main complications:

- There could be more than one path from the vertex in S to the vertex in T in a free derivation path. See free structure.
- We disconnect each

About The General Proof

- Two main complications:
- There could be more than one path from the vertex in S to the vertex in T in a free derivation path. See free structure.
- We disconnect each
- Careful, we do not want to create new paths when we disconnect a path

About The General Proof

- Two main complications:
- There could be more than one path from the vertex in S to the vertex in T in a free derivation path. See free structure.
- We disconnect each
- Careful, we do not want to create new paths when we disconnect a path
- A bit technical

About The General Proof

- Two main complications:
- There could be more than one path from the vertex in S to the vertex in T in a free derivation path. See free structure.
- We disconnect each
- Careful, we do not want to create new paths when we disconnect a path
- A bit technical
- Arity of the IDBs can be arbitrary (but fixed). See our example program.

About The General Proof

- Two main complications:
- There could be more than one path from the vertex in S to the vertex in T in a free derivation path. See free structure.
- We disconnect each
- Careful, we do not want to create new paths when we disconnect a path
- A bit technical
- Arity of the IDBs can be arbitrary (but fixed). See our example program.
- We give an intuition how to handle higher arities.

The UV-Path Following Diagram

Zig-Zag

Questions

${ }^{\circ}$

Questions

