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(Non Uniform) Counting CSP
-

Def. (Homomorphism formulation) T
Let B be a (finite) structure. #CSP(B) Is the comp. problem:

® Input: structure A
# Output: # homomorphisms from A to B
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(Non Uniform) Counting CSP
-

Def. (Homomorphism formulation) T
Let B be a (finite) structure. #CSP(B) Is the comp. problem:

® Input: structure A
# Output: # homomorphisms from A to B

Def. (Al formulation)
Let I be a set of relations over B. #CSP(I") Is the comp.
problem:

# Input: CSP instance P = (V, B, C') with constraint
relations in I"

# Output: # solutions of P
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Computational Complexity

o N

Def: A function problem is a function f : ¥* — N

Complexity Classes

® f c FPifis computed by a determ. polynomial-time TM

® f ¢ #P [Valiant 79] If exists a non deterministic
polynomial-time TM M s.t. f(z) IS the # of accepting
computations of M with input z.
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Computational Complexity

o N

Def: A function problem is a function f : ¥* — N

Complexity Classes

® f c FPifis computed by a determ. polynomial-time TM

® f ¢ #P [Valiant 79] If exists a non deterministic
polynomial-time TM M s.t. f(z) IS the # of accepting
computations of M with input z.

Note:

| FP=#P = P=NP |
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Computational Complexity (cont’d)

o N

Def. (Turing Reduction)

f reducesto g (f <tmg) If f can be computed by a
deterministic polynomial time TM with ¢ as oracle.
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Computational Complexity (cont’d)
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Def. (Turing Reduction)

f reducesto g (f <tmg) If f can be computed by a
deterministic polynomial time TM with ¢ as oracle.

Def: (#P-hard)
f i1s #P-hard if every problem in #P reduces to it.
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Computational Complexity (cont’d)

o N

Def. (Turing Reduction)

f reducesto g (f <tmg) If f can be computed by a
deterministic polynomial time TM with ¢ as oracle.

Def: (#P-hard)
f i1s #P-hard if every problem in #P reduces to it.

|ff§'|'|\/|gthen
geFP = [cFP

f e #P-hard = ¢ € #P-hard
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Seminal results

Theorem: [Creinou, Hermann 96]
Let B be a 2-element structure. Then #CSP(B) isin FP if B
IS Invariant under = + y + z. Otherwise is #P-complete.

|

The Complexity of the Counting CSP — p.5/23



Seminal results

o N

Theorem: [Creinou, Hermann 96]
Let B be a 2-element structure. Then #CSP(B) isin FP if B
IS Invariant under = + y + z. Otherwise is #P-complete.

Theorem: [Dyer, Greenhill 00]
Let B be a graph. Then #CSP(B) is in FP if all its
connected components are

1. a single vertex, or
2. a complete graph with all loops, or

3. a complete bipartite graph.
Otherwise is #P-complete.
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Algebraic approach
f[Bulatov, D. 07] T

The alg. approach to CSP can be parallelized for #CSP

#-tractability is preserved under:

1. taking relational clones (or alternatively under
pp-definability)

2. subalgebras, homomorphic images and direct powers

3. restriction to idempotent term operations (or
alternatively under adding constants)

o |
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Algebraic Approach (first stage)
B -

Lemma:

Re () = #CSP(TU{R})<tm#CSP(T)
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Algebraic Approach (first stage)
B -

Lemma:

Re () = #CSP(TU{R})<tm#CSP(T)

Proof
# R Is obtained without existential quantification. Trivial

® R=dyS(z,y), Sel. Byinterpolation
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Proof (1)
-

Let P be an instance of #CSP(I' U{R}):

P =P R(T),...,R(@m,)
where P’ does not contain R



Proof (1)
-

Let P be an instance of #CSP(I' U{R}):

P =P R(T),...,R(@m,)
where P’ does not contain R

For k > 0, let P* be the instance of #CSP(T'):

Pk — Pl7 S(x‘l)yl,l)? R S($m7y17m)

S(Q:l? yk,l)v ce ey S(:L’m, yk,m)
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Proof (I1). Consider P
-

Let R = {b1,...,b;}, let ¢ be a solution of P

Def: (my,...,m;) € N/ is the characteristic of ¢ if

m; = [{r € {1,...,m}e(@;) = b;}| forevery i =1, ...

J



Proof (11). Consider P
B -

Let R = {b1,...,b;}, let ¢ be a solution of P

Def: (my,...,m;) € N/ is the characteristic of ¢ if

m; = |{r € {1,...,m}p(Z;) = b;}| foreveryi=1,...

Def: Sol(my,...,m;) Is the set of solutions with
characteristic (mq,...,m;)
# of solutionsof P= > [Sol(my,...,m,)

mi+--+m;=m

LWe only need to compute |Sol(my,...,m; )| forall mq, ... ,mJJ
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Proof (111). Consider P*

For P* define analogously Sol”(mj, ... 1)

# of solutions of PX = >~ [Sol*(my,...,m)]

mi+---+m;=m

Fori=1,...,4, lete; be the number of extensions of b; in S

k. )
1Sol”(mq,...,mj)| = [Sol(mq,...,m;)|(e" - --emj)k
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Proof (1V)

o N

The values of |Sol(m;,...,m;)| are obtained solving the
linear system

Ny = Zm1+---+mj:m ]SOl(ml, c. ,mj)|(€71nl Cee G;-nj)
N, = Zml—i—---—I—mj:m ]SOl(ml, c. ,mj)‘(dlnl Ceey G;-nj)r

N, = # of solutions of P* (1=1,...,7r)

with .
r = # of choices for my,...,m;

LNote that the matrix iIs Vandermonde J
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Algebraic Approach (Second Stage)

o N

Def: An algebra B = (B, F') Is #-tractable if so is Inv(F)

Lemma: If (B, F') Is #-tractable then so Is every of its:
# subalgebras. Trivial

# direct powers. Trivial.

# homomorphic images. By interpolation.
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o N

Lemma: If (B, F') is #-tractable then so is (B, Fiq)

F,q = idempotent term operations of F
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Algebraic Approach (third stage)

o N

Lemma: If (B, F') is #-tractable then so is (B, Fiq)

F,q = idempotent term operations of F

Alternative formulation

Lemma: For every finite I'
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Proof (1)

o N

Let P be an instance of #CSP(I' U {{b} : b € B})

Construct an instance @ (from P) of #CSP(T") in the
following way:
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Proof (1)

o N

Let P be an instance of #CSP(I' U {{b} : b € B})

Construct an instance @ (from P) of #CSP(T") in the
following way:
# Add a new variable v, for every b € B

# Add constraint R(vy,, ..., v ) for every R € I' and every
(b1,...,b,) € R (l.e., we add a “copy” of I)
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Proof (1)

o N

Let P be an instance of #CSP(I' U {{b} : b € B})

Construct an instance @ (from P) of #CSP(T") in the
following way:
# Add a new variable v, for every b € B

# Add constraint R(vy,, ..., v ) for every R € I' and every
(b1,...,b,) € R (l.e., we add a “copy” of I)

# Replace every constraint {b}(a) by a = v,
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Proof (11)
-

The # of solutions of P is obtained by:
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Proof (11)

o N

The # of solutions of P is obtained by:

# First stage. Compute the number N of solutions of ()
that are injective on {v, : b € B}. How? Next slide

o |

The Complexity of the Counting CSP — p.15/23



Proof (11)

o N

The # of solutions of P is obtained by:

# First stage. Compute the number N of solutions of ()
that are injective on {v, : b € B}. How? Next slide

# Second stage (as in A. Krokhin talk)

N

solutions of P = .
# # automorphisms of I'

o |
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Proof (111). Finding N
- -

For every partition 6 of B, QY is obtained adding to Q the
constraints v, = vy, for every bob'.



Proof (111). Finding N
- -

For every partition 6 of B, QY is obtained adding to Q the
constraints v, = vy, for every bob'.

N Is obtained using the Mdobius inversion formula:

N = Z w(0) - (# solutions of QY)

where
9 w(OB) =1
® w(0) > gr<gw(0)

I .
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A necessary condition: Mal’tsev algebras

o N

Theorem: [Bulatov, D. 07]
If (B, F') does not have a Mal’tsev term operation then it is
#P-complete.
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Sketch of the proof

o N

® #CSP(R;) <tm #CSP(I') for some R; reflex. & not sym.
Proof: Direct from [Hageman, Mitschke 73]



Sketch of the proof
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® #CSP(R;) <tm #CSP(I') for some R; reflex. & not sym.
Proof: Direct from [Hageman, Mitschke 73]

® #CSP(R2) <tm #CSP(R;) for some Ry in normal form
Proof: R Is pp-definable from R;

Re C B2inNFif R = B?\ By x By with Byn By # 0
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Sketch of the proof
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® #CSP(R;) <tm #CSP(I') for some R; reflex. & not sym.
Proof: Direct from [Hageman, Mitschke 73]

® #CSP(R2) <tm #CSP(R;) for some Ry in normal form
Proof: R Is pp-definable from R;

Re C B2inNFif R = B?\ By x By with Byn By # 0
® #CSP(R3) <ym #CSP(R2) for some Rs3 in NF and

[Bo| = |Bi| =1, |B\ (BoU By)| < 1.
Proof: By interpolation
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Sketch of the proof
-

#CSP(R;) <tm #CSP(I") for some R; reflex. & not sym.
Proof: Direct from [Hageman, Mitschke 73]

#CSP(R2) <tm #CSP(R;) for some Ry in normal form
Proof. Ry Is pp-definable from R;

Ry C B2inNFif R = B\ By x By with ByN By #
#CSP(R3) <tm #CSP(R3) for some R3 In NF and

[Bo| = |Bi| =1, |B\ (BoU By)| < 1.
Proof: By interpolation

#CSP(<) <tm #CSP(R3) where < is the boolean
implication.
Proof: By interpolation J
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2-element case revisited

-

Theorem: [Creignou, Hermann 96] T
Let B be a 2-element structure. If B is invariant under
r 4+ y + z then #CSP(B) is in FP. Otherwise is #P-complete.
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Theorem: [Creignou, Hermann 96] T
Let B be a 2-element structure. If B is invariant under
r 4+ y + z then #CSP(B) is in FP. Otherwise is #P-complete.

Proof:

#® The #-tractability part is straightforward
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2-element case revisited

-

Theorem: [Creignou, Hermann 96] T
Let B be a 2-element structure. If B is invariant under
r 4+ y + z then #CSP(B) is in FP. Otherwise is #P-complete.

Proof:

#® The #-tractability part is straightforward

#® The #P-hardness part is a conseguence of

Theorem [Post 41] If a 2-element algebra has a Mal’tsev
termthenitalsohas z +vy + 2
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Graphs revisited

o N

Theorem: [Dyer, Greenhill 00]

Let B be a connected graph. Then #CSP(B) isin FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.
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Graphs revisited
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Theorem: [Dyer, Greenhill 00]

Let B be a connected graph. Then #CSP(B) isin FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof: (#P-hardness)

# If G contains a loop then all elements have loops
Proof: Let ¢ with a loop and b adjacent to a
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Graphs revisited

o N

Theorem: [Dyer, Greenhill 00]

Let B be a connected graph. Then #CSP(B) isin FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof: (#P-hardness)

# If G contains a loop then all elements have loops
Proof: Let ¢ with a loop and b adjacent to a

(b, a
(a,
(a,b
(b, b

S
N— | N ~—r ~—r

|
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Graphs revisited

o N

Theorem: [Dyer, Greenhill 00]

Let B be a connected graph. Then #CSP(B) isin FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof. (#P-hardness)

# |If G contains a loop then its Is a complete graph
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Graphs revisited

o N

Theorem: [Dyer, Greenhill 00]

Let B be a connected graph. Then #CSP(B) isin FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof. (#P-hardness)

# |If G contains a loop then its Is a complete graph
Proof: Let a, b, c a path

~~
L
S

"~
o

@.\.@
Q
[ O

~~
L
)

|
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Graphs revisited

o N

Theorem: [Dyer, Greenhill 00]

Let B be a connected graph. Then #CSP(B) isin FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof. (#P-hardness)

# |f G does not contain a loop then is bipartite
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Graphs revisited

fTheorem: [Dyer, Greenhill 00] T

Let B be a connected graph. Then #CSP(B) isin FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof: (#P-hardness)

# |f G does not contain a loop then is bipartite
Proof: Let ay,a9,a3,a4,...,a, = a; be an odd cycle
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Graphs revisited

o N

Theorem: [Dyer, Greenhill 00]

Let B be a connected graph. Then #CSP(B) isin FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof: (#P-hardness)

o |If G does not contain a loop then is a complete bipartite
graph
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Graphs revisited

o N

Theorem: [Dyer, Greenhill 00]

Let B be a connected graph. Then #CSP(B) isin FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof: (#P-hardness)

o |If G does not contain a loop then is a complete bipartite

graph

Proof:
(a1,01)
(a1, b2)
(a2, b2)
(az, b1)

|

The Complexity of the Counting CSP — p.20/23



-

-

Indeed,

Theorem: Let B be a graph or a 2-element structure. Then
#CSP(B) in FP if B Is invariant under a Mal’tsev operation
and #P-complete otherwise.
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Indeed, T

Theorem: Let B be a graph or a 2-element structure. Then
#CSP(B) in FP if B Is invariant under a Mal’tsev operation
and #P-complete otherwise.

The existence of a Mal’tsev term alone is not enough to
guarantee tractability even in the case of directed acyclic

graphs.
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fIndeed, T

Theorem: Let B be a graph or a 2-element structure. Then
#CSP(B) in FP if B Is invariant under a Mal’tsev operation
and #P-complete otherwise.

The existence of a Mal’tsev term alone is not enough to

guarantee tractability even in the case of directed acyclic
graphs.

Partial classifications:

[Dyer, Golberg, Paterson 05] give a complete classification
for DAGS

[Klima, Larose, Tesson] give a complete classification for
systems of equations over semigroups
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Second necessary condition: singularity
f ., A and T

Let o, 6 equivalence relations with classes Ay, ..
Bi..... By
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Second necessary condition: singularity

f ., A and T

Let o, 6 equivalence relations with classes Ay, ..
Bi..... By

Theorem: [Bulatov, Grohe 05]
If
rank(M(«, 3)) > # of classes of a vV

then #CSP({«, B}) Is #-complete.

M (a, B) 1s the k x | matrix wth M («, 8);; = |A; N By
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Second necessary condition: singularity

f ., A and T

Let o, 6 equivalence relations with classes Ay, ..
Bi..... By

Theorem: [Bulatov, Grohe 05]
If
rank(M(«, 3)) > # of classes of a vV

then #CSP({«, B}) Is #-complete.
M (a, B) 1s the k x | matrix wth M («, 8);; = |A; N By

Def. An algebra is congruence singular if for any two of its

congruences the previous condition is satisfied.

o |
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Complete classification

o N

Fact: If V(B) is congruence singular then 5 has a Mal'tsev
term.



Complete classification

o N

Fact: If V(B) is congruence singular then 5 has a Mal'tsev
term.

Putting toguether all results we have

Theorem: An algebra B is #P-complete if V(B;q) is not
congruence singular.
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Complete classification

o N

Fact: If V(B) is congruence singular then 5 has a Mal'tsev
term.

Putting toguether all results we have
Theorem: An algebra B is #P-complete if V(B;q) is not

congruence singular.

Theorem [Bulatov 07]
Otherwise, B Is #-tractable.

o |
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