
The Complexity of the Counting
CSP

Vı́ctor Dalmau

Universitat Pompeu Fabra

The Complexity of the Counting CSP – p.1/23

(Non Uniform) Counting CSP

Def: (Homomorphism formulation)
Let B be a (finite) structure. #CSP(B) is the comp. problem:

Input: structure A

Output: # homomorphisms from A to B

Def: (AI formulation)
Let Γ be a set of relations over B. #CSP(Γ) is the comp.
problem:

Input: CSP instance P = (V,B,C) with constraint
relations in Γ

Output: # solutions of P

The Complexity of the Counting CSP – p.2/23

(Non Uniform) Counting CSP

Def: (Homomorphism formulation)
Let B be a (finite) structure. #CSP(B) is the comp. problem:

Input: structure A

Output: # homomorphisms from A to B

Def: (AI formulation)
Let Γ be a set of relations over B. #CSP(Γ) is the comp.
problem:

Input: CSP instance P = (V,B,C) with constraint
relations in Γ

Output: # solutions of P

The Complexity of the Counting CSP – p.2/23

Computational Complexity

Def: A function problem is a function f : Σ∗ → N

Complexity Classes

f ∈ FP if is computed by a determ. polynomial-time TM

f ∈ #P [Valiant 79] if exists a non deterministic
polynomial-time TM M s.t. f(x) is the # of accepting
computations of M with input x.

Note:
FP = #P ⇒ P = NP

The Complexity of the Counting CSP – p.3/23

Computational Complexity

Def: A function problem is a function f : Σ∗ → N

Complexity Classes

f ∈ FP if is computed by a determ. polynomial-time TM

f ∈ #P [Valiant 79] if exists a non deterministic
polynomial-time TM M s.t. f(x) is the # of accepting
computations of M with input x.

Note:
FP = #P ⇒ P = NP

The Complexity of the Counting CSP – p.3/23

Computational Complexity

Def: A function problem is a function f : Σ∗ → N

Complexity Classes

f ∈ FP if is computed by a determ. polynomial-time TM

f ∈ #P [Valiant 79] if exists a non deterministic
polynomial-time TM M s.t. f(x) is the # of accepting
computations of M with input x.

Note:
FP = #P ⇒ P = NP

The Complexity of the Counting CSP – p.3/23

Computational Complexity

Def: A function problem is a function f : Σ∗ → N

Complexity Classes

f ∈ FP if is computed by a determ. polynomial-time TM

f ∈ #P [Valiant 79] if exists a non deterministic
polynomial-time TM M s.t. f(x) is the # of accepting
computations of M with input x.

Note:
FP = #P ⇒ P = NP

The Complexity of the Counting CSP – p.3/23

Computational Complexity (cont’d)

Def: (Turing Reduction)
f reduces to g (f ≤TM g) if f can be computed by a
deterministic polynomial time TM with g as oracle.

Def: (#P-hard)
f is #P-hard if every problem in #P reduces to it.

If f ≤TM g then
g ∈ FP ⇒ f ∈ FP

f ∈ #P-hard ⇒ g ∈ #P-hard

The Complexity of the Counting CSP – p.4/23

Computational Complexity (cont’d)

Def: (Turing Reduction)
f reduces to g (f ≤TM g) if f can be computed by a
deterministic polynomial time TM with g as oracle.

Def: (#P-hard)
f is #P-hard if every problem in #P reduces to it.

If f ≤TM g then
g ∈ FP ⇒ f ∈ FP

f ∈ #P-hard ⇒ g ∈ #P-hard

The Complexity of the Counting CSP – p.4/23

Computational Complexity (cont’d)

Def: (Turing Reduction)
f reduces to g (f ≤TM g) if f can be computed by a
deterministic polynomial time TM with g as oracle.

Def: (#P-hard)
f is #P-hard if every problem in #P reduces to it.

If f ≤TM g then
g ∈ FP ⇒ f ∈ FP

f ∈ #P-hard ⇒ g ∈ #P-hard

The Complexity of the Counting CSP – p.4/23

Seminal results

Theorem: [Creinou, Hermann 96]
Let B be a 2-element structure. Then #CSP(B) is in FP if B

is invariant under x + y + z. Otherwise is #P-complete.

Theorem: [Dyer, Greenhill 00]
Let B be a graph. Then #CSP(B) is in FP if all its
connected components are

1. a single vertex, or

2. a complete graph with all loops, or

3. a complete bipartite graph.

Otherwise is #P-complete.

The Complexity of the Counting CSP – p.5/23

Seminal results

Theorem: [Creinou, Hermann 96]
Let B be a 2-element structure. Then #CSP(B) is in FP if B

is invariant under x + y + z. Otherwise is #P-complete.

Theorem: [Dyer, Greenhill 00]
Let B be a graph. Then #CSP(B) is in FP if all its
connected components are

1. a single vertex, or

2. a complete graph with all loops, or

3. a complete bipartite graph.

Otherwise is #P-complete.

The Complexity of the Counting CSP – p.5/23

Algebraic approach

[Bulatov, D. 07]

The alg. approach to CSP can be parallelized for #CSP

#-tractability is preserved under:

1. taking relational clones (or alternatively under
pp-definability)

2. subalgebras, homomorphic images and direct powers

3. restriction to idempotent term operations (or
alternatively under adding constants)

The Complexity of the Counting CSP – p.6/23

Algebraic Approach (first stage)

Lemma:

R ∈ 〈Γ〉 ⇒ #CSP(Γ ∪ {R})≤TM #CSP(Γ)

Proof

R is obtained without existential quantification. Trivial

R ≡ ∃yS(x, y), S ∈ Γ. By interpolation

The Complexity of the Counting CSP – p.7/23

Algebraic Approach (first stage)

Lemma:

R ∈ 〈Γ〉 ⇒ #CSP(Γ ∪ {R})≤TM #CSP(Γ)

Proof

R is obtained without existential quantification.

Trivial

R ≡ ∃yS(x, y), S ∈ Γ. By interpolation

The Complexity of the Counting CSP – p.7/23

Algebraic Approach (first stage)

Lemma:

R ∈ 〈Γ〉 ⇒ #CSP(Γ ∪ {R})≤TM #CSP(Γ)

Proof

R is obtained without existential quantification. Trivial

R ≡ ∃yS(x, y), S ∈ Γ. By interpolation

The Complexity of the Counting CSP – p.7/23

Algebraic Approach (first stage)

Lemma:

R ∈ 〈Γ〉 ⇒ #CSP(Γ ∪ {R})≤TM #CSP(Γ)

Proof

R is obtained without existential quantification. Trivial

R ≡ ∃yS(x, y), S ∈ Γ.

By interpolation

The Complexity of the Counting CSP – p.7/23

Algebraic Approach (first stage)

Lemma:

R ∈ 〈Γ〉 ⇒ #CSP(Γ ∪ {R})≤TM #CSP(Γ)

Proof

R is obtained without existential quantification. Trivial

R ≡ ∃yS(x, y), S ∈ Γ. By interpolation

The Complexity of the Counting CSP – p.7/23

Proof (I)

Let P be an instance of #CSP(Γ ∪ {R}):

P = P ′, R(x1), . . . , R(xm)

where P ′ does not contain R

For k > 0, let P k be the instance of #CSP(Γ):

P k = P ′, S(x1, y1,1), . . . , S(xm, y1,m)
...

...
S(x1, yk,1), . . . , S(xm, yk,m)

The Complexity of the Counting CSP – p.8/23

Proof (I)

Let P be an instance of #CSP(Γ ∪ {R}):

P = P ′, R(x1), . . . , R(xm)

where P ′ does not contain R

For k > 0, let P k be the instance of #CSP(Γ):

P k = P ′, S(x1, y1,1), . . . , S(xm, y1,m)
...

...
S(x1, yk,1), . . . , S(xm, yk,m)

The Complexity of the Counting CSP – p.8/23

Proof (II). Consider P

Let R = {b1, . . . , bj}, let ϕ be a solution of P

Def: (m1, . . . ,mj) ∈ Nj is the characteristic of ϕ if

mi = |{r ∈ {1, . . . ,m}|ϕ(xr) = bi}| for every i = 1, . . . , j

Def: Sol(m1, . . . ,mj) is the set of solutions with
characteristic (m1, . . . ,mj)

of solutions of P =
∑

m1+···+mj=m

|Sol(m1, . . . ,mj)|

We only need to compute |Sol(m1, . . . ,mj)| for all m1, . . . ,mj

The Complexity of the Counting CSP – p.9/23

Proof (II). Consider P

Let R = {b1, . . . , bj}, let ϕ be a solution of P

Def: (m1, . . . ,mj) ∈ Nj is the characteristic of ϕ if

mi = |{r ∈ {1, . . . ,m}|ϕ(xr) = bi}| for every i = 1, . . . , j

Def: Sol(m1, . . . ,mj) is the set of solutions with
characteristic (m1, . . . ,mj)

of solutions of P =
∑

m1+···+mj=m

|Sol(m1, . . . ,mj)|

We only need to compute |Sol(m1, . . . ,mj)| for all m1, . . . ,mj

The Complexity of the Counting CSP – p.9/23

Proof (III). Consider P k

For P k define analogously Solk(m1, . . . ,mj)

of solutions of P k =
∑

m1+···+mj=m

|Solk(m1, . . . ,mj)|

For i = 1, . . . , j, let ei be the number of extensions of bi in S

|Solk(m1, . . . ,mj)| = |Sol(m1, . . . ,mj)|(e
m1

1
· · · e

mj

j)k

The Complexity of the Counting CSP – p.10/23

Proof (III). Consider P k

For P k define analogously Solk(m1, . . . ,mj)

of solutions of P k =
∑

m1+···+mj=m

|Solk(m1, . . . ,mj)|

For i = 1, . . . , j, let ei be the number of extensions of bi in S

|Solk(m1, . . . ,mj)| = |Sol(m1, . . . ,mj)|(e
m1

1
· · · e

mj

j)k

The Complexity of the Counting CSP – p.10/23

Proof (III). Consider P k

For P k define analogously Solk(m1, . . . ,mj)

of solutions of P k =
∑

m1+···+mj=m

|Solk(m1, . . . ,mj)|

For i = 1, . . . , j, let ei be the number of extensions of bi in S

|Solk(m1, . . . ,mj)| = |Sol(m1, . . . ,mj)|(e
m1

1
· · · e

mj

j)k

The Complexity of the Counting CSP – p.10/23

Proof (IV)

The values of |Sol(m1, . . . ,mj)| are obtained solving the
linear system

N1 =
∑

m1+···+mj=m |Sol(m1, . . . ,mj)|(e
m1

1
. . . , e

mj

j)
...

...
Nr =

∑
m1+···+mj=m |Sol(m1, . . . ,mj)|(e

m1

1
. . . , e

mj

j)r

with
Nk = # of solutions of P k (l = 1, . . . , r)

r = # of choices for m1, . . . ,mj

Note that the matrix is Vandermonde

The Complexity of the Counting CSP – p.11/23

Algebraic Approach (Second Stage)

Def: An algebra B = (B,F) is #-tractable if so is Inv(F)

Lemma: If (B,F) is #-tractable then so is every of its:

subalgebras. Trivial

direct powers. Trivial.

homomorphic images. By interpolation.

The Complexity of the Counting CSP – p.12/23

Algebraic Approach (third stage)

Lemma: If (B,F) is #-tractable then so is (B,Fid)

Fid = idempotent term operations of F

Alternative formulation

Lemma: For every finite Γ

#CSP(Γ ∪ {{b} : b ∈ B})≤TM #CSP(Γ)

The Complexity of the Counting CSP – p.13/23

Algebraic Approach (third stage)

Lemma: If (B,F) is #-tractable then so is (B,Fid)

Fid = idempotent term operations of F

Alternative formulation

Lemma: For every finite Γ

#CSP(Γ ∪ {{b} : b ∈ B})≤TM #CSP(Γ)

The Complexity of the Counting CSP – p.13/23

Proof (I)

Let P be an instance of #CSP(Γ ∪ {{b} : b ∈ B})

Construct an instance Q (from P) of #CSP(Γ) in the
following way:

Add a new variable vb for every b ∈ B

Add constraint R(vb1
, . . . , vbr

) for every R ∈ Γ and every
(b1, . . . , br) ∈ R (i.e., we add a “copy” of Γ)

Replace every constraint {b}(a) by a = vb

The Complexity of the Counting CSP – p.14/23

Proof (I)

Let P be an instance of #CSP(Γ ∪ {{b} : b ∈ B})

Construct an instance Q (from P) of #CSP(Γ) in the
following way:

Add a new variable vb for every b ∈ B

Add constraint R(vb1
, . . . , vbr

) for every R ∈ Γ and every
(b1, . . . , br) ∈ R (i.e., we add a “copy” of Γ)

Replace every constraint {b}(a) by a = vb

The Complexity of the Counting CSP – p.14/23

Proof (I)

Let P be an instance of #CSP(Γ ∪ {{b} : b ∈ B})

Construct an instance Q (from P) of #CSP(Γ) in the
following way:

Add a new variable vb for every b ∈ B

Add constraint R(vb1
, . . . , vbr

) for every R ∈ Γ and every
(b1, . . . , br) ∈ R (i.e., we add a “copy” of Γ)

Replace every constraint {b}(a) by a = vb

The Complexity of the Counting CSP – p.14/23

Proof (I)

Let P be an instance of #CSP(Γ ∪ {{b} : b ∈ B})

Construct an instance Q (from P) of #CSP(Γ) in the
following way:

Add a new variable vb for every b ∈ B

Add constraint R(vb1
, . . . , vbr

) for every R ∈ Γ and every
(b1, . . . , br) ∈ R (i.e., we add a “copy” of Γ)

Replace every constraint {b}(a) by a = vb

The Complexity of the Counting CSP – p.14/23

Proof (I)

Let P be an instance of #CSP(Γ ∪ {{b} : b ∈ B})

Construct an instance Q (from P) of #CSP(Γ) in the
following way:

Add a new variable vb for every b ∈ B

Add constraint R(vb1
, . . . , vbr

) for every R ∈ Γ and every
(b1, . . . , br) ∈ R (i.e., we add a “copy” of Γ)

Replace every constraint {b}(a) by a = vb

The Complexity of the Counting CSP – p.14/23

Proof (II)

The # of solutions of P is obtained by:

First stage. Compute the number N of solutions of Q

that are injective on {vb : b ∈ B}. How? Next slide

Second stage (as in A. Krokhin talk)

solutions of P =
N

automorphisms of Γ

The Complexity of the Counting CSP – p.15/23

Proof (II)

The # of solutions of P is obtained by:

First stage. Compute the number N of solutions of Q

that are injective on {vb : b ∈ B}. How? Next slide

Second stage (as in A. Krokhin talk)

solutions of P =
N

automorphisms of Γ

The Complexity of the Counting CSP – p.15/23

Proof (II)

The # of solutions of P is obtained by:

First stage. Compute the number N of solutions of Q

that are injective on {vb : b ∈ B}. How? Next slide

Second stage (as in A. Krokhin talk)

solutions of P =
N

automorphisms of Γ

The Complexity of the Counting CSP – p.15/23

Proof (III). Finding N

For every partition θ of B, Qθ is obtained adding to Q the
constraints vb = vb′, for every bθb′.

N is obtained using the Möbius inversion formula:

N =
∑

θ

w(θ) · (# solutions of Qθ)

where

w(0B) = 1

w(θ) = −
∑

θ′�θ w(θ′)

The Complexity of the Counting CSP – p.16/23

Proof (III). Finding N

For every partition θ of B, Qθ is obtained adding to Q the
constraints vb = vb′, for every bθb′.

N is obtained using the Möbius inversion formula:

N =
∑

θ

w(θ) · (# solutions of Qθ)

where

w(0B) = 1

w(θ) = −
∑

θ′�θ w(θ′)

The Complexity of the Counting CSP – p.16/23

A necessary condition: Mal’tsev algebras

Theorem: [Bulatov, D. 07]
If (B,F) does not have a Mal’tsev term operation then it is
#P-complete.

The Complexity of the Counting CSP – p.17/23

Sketch of the proof

#CSP(R1)≤TM #CSP(Γ) for some R1 reflex. & not sym.
Proof: Direct from [Hageman, Mitschke 73]

#CSP(R2)≤TM #CSP(R1) for some R2 in normal form
Proof: R2 is pp-definable from R1

R2 ⊆ B2 in NF if R = B2 \ B0 × B1 with B0 ∩ B1 6= ∅

#CSP(R3)≤TM #CSP(R2) for some R3 in NF and
|B0| = |B1| = 1, |B \ (B0 ∪ B1)| ≤ 1.
Proof: By interpolation

#CSP(≤)≤TM #CSP(R3) where ≤ is the boolean
implication.
Proof: By interpolation

The Complexity of the Counting CSP – p.18/23

Sketch of the proof

#CSP(R1)≤TM #CSP(Γ) for some R1 reflex. & not sym.
Proof: Direct from [Hageman, Mitschke 73]

#CSP(R2)≤TM #CSP(R1) for some R2 in normal form
Proof: R2 is pp-definable from R1

R2 ⊆ B2 in NF if R = B2 \ B0 × B1 with B0 ∩ B1 6= ∅

#CSP(R3)≤TM #CSP(R2) for some R3 in NF and
|B0| = |B1| = 1, |B \ (B0 ∪ B1)| ≤ 1.
Proof: By interpolation

#CSP(≤)≤TM #CSP(R3) where ≤ is the boolean
implication.
Proof: By interpolation

The Complexity of the Counting CSP – p.18/23

Sketch of the proof

#CSP(R1)≤TM #CSP(Γ) for some R1 reflex. & not sym.
Proof: Direct from [Hageman, Mitschke 73]

#CSP(R2)≤TM #CSP(R1) for some R2 in normal form
Proof: R2 is pp-definable from R1

R2 ⊆ B2 in NF if R = B2 \ B0 × B1 with B0 ∩ B1 6= ∅

#CSP(R3)≤TM #CSP(R2) for some R3 in NF and
|B0| = |B1| = 1, |B \ (B0 ∪ B1)| ≤ 1.
Proof: By interpolation

#CSP(≤)≤TM #CSP(R3) where ≤ is the boolean
implication.
Proof: By interpolation

The Complexity of the Counting CSP – p.18/23

Sketch of the proof

#CSP(R1)≤TM #CSP(Γ) for some R1 reflex. & not sym.
Proof: Direct from [Hageman, Mitschke 73]

#CSP(R2)≤TM #CSP(R1) for some R2 in normal form
Proof: R2 is pp-definable from R1

R2 ⊆ B2 in NF if R = B2 \ B0 × B1 with B0 ∩ B1 6= ∅

#CSP(R3)≤TM #CSP(R2) for some R3 in NF and
|B0| = |B1| = 1, |B \ (B0 ∪ B1)| ≤ 1.
Proof: By interpolation

#CSP(≤)≤TM #CSP(R3) where ≤ is the boolean
implication.
Proof: By interpolation

The Complexity of the Counting CSP – p.18/23

2-element case revisited

Theorem: [Creignou, Hermann 96]
Let B be a 2-element structure. If B is invariant under
x + y + z then #CSP(B) is in FP. Otherwise is #P-complete.

Proof:

The #-tractability part is straightforward

The #P-hardness part is a consequence of

Theorem [Post 41] If a 2-element algebra has a Mal’tsev
term then it also has x + y + z

The Complexity of the Counting CSP – p.19/23

2-element case revisited

Theorem: [Creignou, Hermann 96]
Let B be a 2-element structure. If B is invariant under
x + y + z then #CSP(B) is in FP. Otherwise is #P-complete.

Proof:

The #-tractability part is straightforward

The #P-hardness part is a consequence of

Theorem [Post 41] If a 2-element algebra has a Mal’tsev
term then it also has x + y + z

The Complexity of the Counting CSP – p.19/23

2-element case revisited

Theorem: [Creignou, Hermann 96]
Let B be a 2-element structure. If B is invariant under
x + y + z then #CSP(B) is in FP. Otherwise is #P-complete.

Proof:

The #-tractability part is straightforward

The #P-hardness part is a consequence of

Theorem [Post 41] If a 2-element algebra has a Mal’tsev
term then it also has x + y + z

The Complexity of the Counting CSP – p.19/23

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let B be a connected graph. Then #CSP(B) is in FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof: (#P-hardness)

The Complexity of the Counting CSP – p.20/23

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let B be a connected graph. Then #CSP(B) is in FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof: (#P-hardness)

If G contains a loop then all elements have loops

The Complexity of the Counting CSP – p.20/23

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let B be a connected graph. Then #CSP(B) is in FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof: (#P-hardness)

If G contains a loop then all elements have loops
Proof: Let a with a loop and b adjacent to a

(b, a)

(a, a)

(a, b)

The Complexity of the Counting CSP – p.20/23

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let B be a connected graph. Then #CSP(B) is in FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof: (#P-hardness)

If G contains a loop then all elements have loops
Proof: Let a with a loop and b adjacent to a

(b, a)

(a, a)

(a, b)

(b, b)

The Complexity of the Counting CSP – p.20/23

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let B be a connected graph. Then #CSP(B) is in FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof: (#P-hardness)

If G contains a loop then its is a complete graph

The Complexity of the Counting CSP – p.20/23

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let B be a connected graph. Then #CSP(B) is in FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof: (#P-hardness)

If G contains a loop then its is a complete graph
Proof: Let a, b, c a path

(a, a)

(b, a)

(b, c)

(a, c)

The Complexity of the Counting CSP – p.20/23

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let B be a connected graph. Then #CSP(B) is in FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof: (#P-hardness)

If G does not contain a loop then is bipartite

The Complexity of the Counting CSP – p.20/23

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let B be a connected graph. Then #CSP(B) is in FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof: (#P-hardness)

If G does not contain a loop then is bipartite
Proof: Let a1, a2, a3, a4, . . . , an = a1 be an odd cycle

(a1, a2)

(a3, a2)

(a3, a4)

(a1, a4)

The Complexity of the Counting CSP – p.20/23

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let B be a connected graph. Then #CSP(B) is in FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof: (#P-hardness)

If G does not contain a loop then is a complete bipartite
graph

The Complexity of the Counting CSP – p.20/23

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let B be a connected graph. Then #CSP(B) is in FP if B is
and isolated node, a complete graph with all loops, or a
complete bipartite graph.

Proof: (#P-hardness)

If G does not contain a loop then is a complete bipartite
graph
Proof:

(a1, b1)

(a1, b2)

(a2, b2)

(a2, b1)

The Complexity of the Counting CSP – p.20/23

Indeed,

Theorem: Let B be a graph or a 2-element structure. Then
#CSP(B) in FP if B is invariant under a Mal’tsev operation
and #P-complete otherwise.

The existence of a Mal’tsev term alone is not enough to
guarantee tractability even in the case of directed acyclic
graphs.

Partial classifications:
[Dyer, Golberg, Paterson 05] give a complete classification
for DAGs
[Klima, Larose, Tesson] give a complete classification for
systems of equations over semigroups

The Complexity of the Counting CSP – p.21/23

Indeed,

Theorem: Let B be a graph or a 2-element structure. Then
#CSP(B) in FP if B is invariant under a Mal’tsev operation
and #P-complete otherwise.

The existence of a Mal’tsev term alone is not enough to
guarantee tractability even in the case of directed acyclic
graphs.

Partial classifications:
[Dyer, Golberg, Paterson 05] give a complete classification
for DAGs
[Klima, Larose, Tesson] give a complete classification for
systems of equations over semigroups

The Complexity of the Counting CSP – p.21/23

Indeed,

Theorem: Let B be a graph or a 2-element structure. Then
#CSP(B) in FP if B is invariant under a Mal’tsev operation
and #P-complete otherwise.

The existence of a Mal’tsev term alone is not enough to
guarantee tractability even in the case of directed acyclic
graphs.

Partial classifications:
[Dyer, Golberg, Paterson 05] give a complete classification
for DAGs
[Klima, Larose, Tesson] give a complete classification for
systems of equations over semigroups

The Complexity of the Counting CSP – p.21/23

Second necessary condition: singularity

Let α, β equivalence relations with classes A1, . . . , Ak and
B1, . . . , Bl

Theorem: [Bulatov, Grohe 05]
If

rank(M(α, β)) > # of classes of α ∨ β

then #CSP({α, β}) is #-complete.

M(α, β) is the k × l matrix wth M(α, β)i,j = |Ai ∩ Bj |

Def: An algebra is congruence singular if for any two of its

congruences the previous condition is satisfied.

The Complexity of the Counting CSP – p.22/23

Second necessary condition: singularity

Let α, β equivalence relations with classes A1, . . . , Ak and
B1, . . . , Bl

Theorem: [Bulatov, Grohe 05]
If

rank(M(α, β)) > # of classes of α ∨ β

then #CSP({α, β}) is #-complete.

M(α, β) is the k × l matrix wth M(α, β)i,j = |Ai ∩ Bj |

Def: An algebra is congruence singular if for any two of its

congruences the previous condition is satisfied.

The Complexity of the Counting CSP – p.22/23

Second necessary condition: singularity

Let α, β equivalence relations with classes A1, . . . , Ak and
B1, . . . , Bl

Theorem: [Bulatov, Grohe 05]
If

rank(M(α, β)) > # of classes of α ∨ β

then #CSP({α, β}) is #-complete.

M(α, β) is the k × l matrix wth M(α, β)i,j = |Ai ∩ Bj |

Def: An algebra is congruence singular if for any two of its

congruences the previous condition is satisfied.

The Complexity of the Counting CSP – p.22/23

Complete classification

Fact: If V(B) is congruence singular then B has a Mal’tsev
term.

Putting toguether all results we have

Theorem: An algebra B is #P-complete if V(Bid) is not
congruence singular.

Theorem [Bulatov 07]
Otherwise, B is #-tractable.

The Complexity of the Counting CSP – p.23/23

Complete classification

Fact: If V(B) is congruence singular then B has a Mal’tsev
term.

Putting toguether all results we have

Theorem: An algebra B is #P-complete if V(Bid) is not
congruence singular.

Theorem [Bulatov 07]
Otherwise, B is #-tractable.

The Complexity of the Counting CSP – p.23/23

Complete classification

Fact: If V(B) is congruence singular then B has a Mal’tsev
term.

Putting toguether all results we have

Theorem: An algebra B is #P-complete if V(Bid) is not
congruence singular.

Theorem [Bulatov 07]
Otherwise, B is #-tractable.

The Complexity of the Counting CSP – p.23/23

	(Non Uniform)
Counting CSP
	Computational Complexity
	Computational Complexity (cont'd)
	Seminal results
	Algebraic approach
	Algebraic Approach (first stage)
	Proof (I)
	Proof (II).
Consider P
	Proof (III).
Consider P^k
	Proof (IV)
	Algebraic Approach (Second Stage)
	Algebraic Approach (third stage)
	Proof (I)
	Proof (II)
	Proof (III).
Finding N
	A necessary condition: Mal'tsev algebras
	Sketch of the proof
	2-element case revisited
	Graphs revisited
	
	Second necessary condition: singularity
	Complete classification

