The Complexity of the Counting csp

Víctor Dalmau

Universitat Pompeu Fabra

(Non Uniform) Counting CSP

Def: (Homomorphism formulation)
Let \mathbf{B} be a (finite) structure. $\# \operatorname{CSP}(\mathbf{B})$ is the comp. problem:

- Input: structure A
- Output: \# homomorphisms from A to B

(Non Uniform) Counting CSP

Def: (Homomorphism formulation)
Let \mathbf{B} be a (finite) structure. $\# \operatorname{CSP}(\mathbf{B})$ is the comp. problem:

- Input: structure A
- Output: \# homomorphisms from A to B

Def: (Al formulation)
Let Γ be a set of relations over B. $\# \operatorname{CSP}(\Gamma)$ is the comp. problem:

- Input: CSP instance $P=(V, B, C)$ with constraint relations in Γ
- Output: \# solutions of P

Computational Complexity

Def: A function problem is a function $f: \Sigma^{*} \rightarrow \mathbb{N}$

Computational Complexity

Def: A function problem is a function $f: \Sigma^{*} \rightarrow \mathbb{N}$
Complexity Classes

- $f \in \mathrm{FP}$ if is computed by a determ. polynomial-time TM

Computational Complexity

Def: A function problem is a function $f: \Sigma^{*} \rightarrow \mathbb{N}$

Complexity Classes

- $f \in \mathrm{FP}$ if is computed by a determ. polynomial-time TM
- $f \in \# \mathrm{P}$ [Valiant 79] if exists a non deterministic polynomial-time TM M s.t. $f(x)$ is the \# of accepting computations of M with input x.

Computational Complexity

Def: A function problem is a function $f: \Sigma^{*} \rightarrow \mathbb{N}$

Complexity Classes

- $f \in \mathrm{FP}$ if is computed by a determ. polynomial-time TM
- $f \in \# \mathrm{P}$ [Valiant 79] if exists a non deterministic polynomial-time TM M s.t. $f(x)$ is the \# of accepting computations of M with input x.

Note:

$$
F P=\# P \Rightarrow P=N P
$$

Computational Complexity (cont'd)

Def: (Turing Reduction)
f reduces to $g(f \leq$ тм $g)$ if f can be computed by a deterministic polynomial time TM with g as oracle.

Computational Complexity (cont'd)

Def: (Turing Reduction)
f reduces to $g\left(f \leq_{\text {тм }} g\right)$ if f can be computed by a deterministic polynomial time TM with g as oracle.

Def: (\#P-hard)
f is \#P-hard if every problem in \# P reduces to it.

Computational Complexity (cont'd)

Def: (Turing Reduction)
f reduces to $g\left(f \leq_{\text {тм }} g\right)$ if f can be computed by a deterministic polynomial time TM with g as oracle.

Def: (\#P-hard)
f is \#P-hard if every problem in \#P reduces to it.

If $f \leq т м \quad g$ then

$$
\begin{aligned}
g \in \mathrm{FP} & \Rightarrow f \in \mathrm{FP} \\
f \in \# \mathrm{P} \text {-hard } & \Rightarrow g \in \# \mathrm{P} \text {-hard }
\end{aligned}
$$

Seminal results

Theorem: [Creinou, Hermann 96]
Let B be a 2-element structure. Then $\# \operatorname{CSP}(\mathbf{B})$ is in FP if \mathbf{B} is invariant under $x+y+z$. Otherwise is \#P-complete.

Seminal results

Theorem: [Creinou, Hermann 96]
Let B be a 2-element structure. Then $\# \operatorname{CSP}(\mathbf{B})$ is in FP if \mathbf{B} is invariant under $x+y+z$. Otherwise is $\# \mathrm{P}$-complete.

Theorem: [Dyer, Greenhill 00] Let B be a graph. Then $\# \operatorname{CSP}(\mathbf{B})$ is in FP if all its connected components are

1. a single vertex, or
2. a complete graph with all loops, or
3. a complete bipartite graph.

Otherwise is \#P-complete.

Algebraic approach

[Bulatov, D. 07]
The alg. approach to CSP can be parallelized for \#CSP
\#-tractability is preserved under:

1. taking relational clones (or alternatively under pp-definability)
2. subalgebras, homomorphic images and direct powers
3. restriction to idempotent term operations (or alternatively under adding constants)

Algebraic Approach (first stage)

Lemma:

$$
R \in\langle\Gamma\rangle \Rightarrow \# \operatorname{CSP}(\Gamma \cup\{R\}) \leq \text { тм } \# \operatorname{CSP}(\Gamma)
$$

Algebraic Approach (first stage)

Lemma:

$$
R \in\langle\Gamma\rangle \Rightarrow \# \operatorname{CSP}(\Gamma \cup\{R\}) \leq \text { тм } \# \operatorname{CSP}(\Gamma)
$$

Proof

- R is obtained without existential quantification.

Algebraic Approach (first stage)

Lemma:

$$
R \in\langle\Gamma\rangle \Rightarrow \# \operatorname{CSP}(\Gamma \cup\{R\}) \leq \text { тм } \# \operatorname{CSP}(\Gamma)
$$

Proof

- R is obtained without existential quantification. Trivial

Algebraic Approach (first stage)

Lemma:

$$
R \in\langle\Gamma\rangle \Rightarrow \# \operatorname{CSP}(\Gamma \cup\{R\}) \leq \text { тм } \# \operatorname{CSP}(\Gamma)
$$

Proof

- R is obtained without existential quantification. Trivial
- $R \equiv \exists \bar{y} S(\bar{x}, \bar{y}), S \in \Gamma$.

Algebraic Approach (first stage)

Lemma:

$$
R \in\langle\Gamma\rangle \Rightarrow \# \operatorname{CSP}(\Gamma \cup\{R\}) \leq \text { тм } \# \operatorname{CSP}(\Gamma)
$$

Proof

- R is obtained without existential quantification. Trivial
- $R \equiv \exists \bar{y} S(\bar{x}, \bar{y}), S \in \Gamma$. By interpolation

Proof (I)

Let P be an instance of $\# \operatorname{CSP}(\Gamma \cup\{R\})$:

$$
P=P^{\prime}, R\left(\overline{x_{1}}\right), \ldots, R\left(\overline{x_{m}}\right)
$$

where P^{\prime} does not contain R

Proof (I)

Let P be an instance of $\# \operatorname{CSP}(\Gamma \cup\{R\})$:

$$
P=P^{\prime}, R\left(\overline{x_{1}}\right), \ldots, R\left(\overline{x_{m}}\right)
$$

where P^{\prime} does not contain R

For $k>0$, let P^{k} be the instance of $\# \operatorname{CSP}(\Gamma)$:

$$
\begin{array}{ccc}
P^{k}=P^{\prime}, & S\left(\overline{x_{1}}, \overline{y_{1,1}}\right), & \ldots, \\
\vdots & & S\left(\overline{x_{m}}, \overline{y_{1, m}}\right) \\
S\left(\overline{x_{1}}, \overline{y_{k, 1}}\right), & \ldots, & \\
\vdots \\
\left.\hline x_{m}, \overline{y_{k, m}}\right)
\end{array}
$$

Proof (II). Consider P

Let $R=\left\{\overline{b_{1}}, \ldots, \overline{b_{j}}\right\}$, let φ be a solution of P
Def: $\left(m_{1}, \ldots, m_{j}\right) \in \mathbb{N}^{j}$ is the characteristic of φ if

$$
m_{i}=\left|\left\{r \in\{1, \ldots, m\} \mid \varphi\left(\overline{x_{r}}\right)=\overline{\bar{b}_{i}}\right\}\right| \text { for every } i=1, \ldots, j
$$

Proof (II). Consider P

Let $R=\left\{\overline{b_{1}}, \ldots, \overline{b_{j}}\right\}$, let φ be a solution of P
Def: $\left(m_{1}, \ldots, m_{j}\right) \in \mathbb{N}^{j}$ is the characteristic of φ if

$$
m_{i}=\left|\left\{r \in\{1, \ldots, m\} \mid \varphi\left(\overline{x_{r}}\right)=\overline{\bar{b}_{i}}\right\}\right| \text { for every } i=1, \ldots, j
$$

Def: $\operatorname{Sol}\left(m_{1}, \ldots, m_{j}\right)$ is the set of solutions with characteristic $\left(m_{1}, \ldots, m_{j}\right)$

$$
\text { \# of solutions of } P=\sum_{m_{1}+\cdots+m_{j}=m}\left|\operatorname{Sol}\left(m_{1}, \ldots, m_{j}\right)\right|
$$

We only need to compute $\left|\operatorname{Sol}\left(m_{1}, \ldots, m_{j}\right)\right|$ for all m_{1}, \ldots, m_{j}

Proof (III). Consider P^{k}

For P^{k} define analogously $\operatorname{Sol}^{k}\left(m_{1}, \ldots, m_{j}\right)$
\# of solutions of $P^{k}=\sum_{m_{1}+\cdots+m_{j}=m}\left|\operatorname{Sol}^{k}\left(m_{1}, \ldots, m_{j}\right)\right|$

Proof (III). Consider P^{k}

For P^{k} define analogously $\operatorname{Sol}^{k}\left(m_{1}, \ldots, m_{j}\right)$

$$
\# \text { of solutions of } P^{k}=\sum_{m_{1}+\cdots+m_{j}=m}\left|\operatorname{Sol}^{k}\left(m_{1}, \ldots, m_{j}\right)\right|
$$

For $i=1, \ldots, j$, let e_{i} be the number of extensions of $\overline{b_{i}}$ in S

Proof (III). Consider P^{k}

For P^{k} define analogously $\operatorname{Sol}^{k}\left(m_{1}, \ldots, m_{j}\right)$

$$
\# \text { of solutions of } P^{k}=\sum_{m_{1}+\cdots+m_{j}=m}\left|\operatorname{Sol}^{k}\left(m_{1}, \ldots, m_{j}\right)\right|
$$

For $i=1, \ldots, j$, let e_{i} be the number of extensions of $\overline{b_{i}}$ in S
$\left|\operatorname{Sol}^{k}\left(m_{1}, \ldots, m_{j}\right)\right|=\left|\operatorname{Sol}\left(m_{1}, \ldots, m_{j}\right)\right|\left(e_{1}^{m_{1}} \cdots e_{j}^{m_{j}}\right)^{k}$

Proof (IV)

The values of $\left|\operatorname{Sol}\left(m_{1}, \ldots, m_{j}\right)\right|$ are obtained solving the linear system

$$
\begin{array}{cc}
N_{1}= & \sum_{m_{1}+\cdots+m_{j}=m}\left|\operatorname{Sol}\left(m_{1}, \ldots, m_{j}\right)\right|\left(e_{1}^{m_{1}} \ldots, e_{j}^{m_{j}}\right) \\
\vdots & \vdots \\
N_{r} & =\sum_{m_{1}+\cdots+m_{j}=m}\left|\operatorname{Sol}\left(m_{1}, \ldots, m_{j}\right)\right|\left(e_{1}^{m_{1}} \ldots, e_{j}^{m_{j}}\right)^{r}
\end{array}
$$

with $N_{k}=\#$ of solutions of $P^{k} \quad(l=1, \ldots, r)$
$r=\#$ of choices for m_{1}, \ldots, m_{j}

Note that the matrix is Vandermonde

Algebraic Approach (Second Stage)

Def: An algebra $\mathcal{B}=(B, F)$ is \#-tractable if so is $\operatorname{Inv}(F)$

Lemma: If (B, F) is \#-tractable then so is every of its:

- subalgebras. Trivial
- direct powers. Trivial.
- homomorphic images. By interpolation.

Algebraic Approach (third stage)

Lemma: If (B, F) is \#-tractable then so is $\left(B, F_{\text {id }}\right)$
$F_{\text {id }}=$ idempotent term operations of F

Algebraic Approach (third stage)

Lemma: If (B, F) is \#-tractable then so is $\left(B, F_{\text {id }}\right)$
$F_{\text {id }}=$ idempotent term operations of F

Alternative formulation
Lemma: For every finite Γ

$$
\# \operatorname{CSP}(\Gamma \cup\{\{b\}: b \in B\}) \leq \text { тм } \# \operatorname{CSP}(\Gamma)
$$

Proof (I)

Let P be an instance of $\# \operatorname{CSP}(\Gamma \cup\{\{b\}: b \in B\})$

Proof (I)

Let P be an instance of $\# \operatorname{CSP}(\Gamma \cup\{\{b\}: b \in B\})$

Construct an instance Q (from P) of $\# \operatorname{CSP}(\Gamma)$ in the following way:

Proof (I)

Let P be an instance of $\# \operatorname{CSP}(\Gamma \cup\{\{b\}: b \in B\})$

Construct an instance Q (from P) of $\# \operatorname{CSP}(\Gamma)$ in the following way:

- Add a new variable v_{b} for every $b \in B$

Proof (I)

Let P be an instance of $\# \operatorname{CSP}(\Gamma \cup\{\{b\}: b \in B\})$

Construct an instance Q (from P) of $\# \mathrm{CSP}(\Gamma)$ in the following way:

- Add a new variable v_{b} for every $b \in B$
- Add constraint $R\left(v_{b_{1}}, \ldots, v_{b_{r}}\right)$ for every $R \in \Gamma$ and every $\left(b_{1}, \ldots, b_{r}\right) \in R$ (i.e., we add a "copy" of Γ)

Proof (I)

Let P be an instance of $\# \operatorname{CSP}(\Gamma \cup\{\{b\}: b \in B\})$

Construct an instance Q (from P) of $\# \operatorname{CSP}(\Gamma)$ in the following way:

- Add a new variable v_{b} for every $b \in B$
- Add constraint $R\left(v_{b_{1}}, \ldots, v_{b_{r}}\right)$ for every $R \in \Gamma$ and every $\left(b_{1}, \ldots, b_{r}\right) \in R$ (i.e., we add a "copy" of Γ)
- Replace every constraint $\{b\}(a)$ by $a=v_{b}$

Proof (II)

The \# of solutions of P is obtained by:

Proof (II)

The \# of solutions of P is obtained by:

- First stage. Compute the number N of solutions of Q that are injective on $\left\{v_{b}: b \in B\right\}$. How? Next slide

Proof (II)

The \# of solutions of P is obtained by:

- First stage. Compute the number N of solutions of Q that are injective on $\left\{v_{b}: b \in B\right\}$. How? Next slide
- Second stage (as in A. Krokhin talk)
\# solutions of $P=\frac{N}{\# \text { automorphisms of } \Gamma}$

Proof (III). Finding N

For every partition θ of B, Q^{θ} is obtained adding to Q the constraints $v_{b}=v_{b^{\prime}}$, for every $b \theta b^{\prime}$.

Proof (III). Finding N

For every partition θ of B, Q^{θ} is obtained adding to Q the constraints $v_{b}=v_{b^{\prime}}$, for every $b \theta b^{\prime}$.
N is obtained using the Möbius inversion formula:

$$
N=\sum_{\theta} w(\theta) \cdot\left(\# \text { solutions of } Q^{\theta}\right)
$$

where

- $w\left(0_{B}\right)=1$
- $w(\theta)=-\sum_{\theta^{\prime} \leq \theta} w\left(\theta^{\prime}\right)$

A necessary condition: Mal'tsev algebras

Theorem: [Bulatov, D. 07]
If (B, F) does not have a Mal'tsev term operation then it is \#P-complete.

Sketch of the proof

- $\# \operatorname{CSP}\left(R_{1}\right) \leq \mathrm{Tm} \# \operatorname{CSP}(\Gamma)$ for some R_{1} reflex. \& not sym. Proof: Direct from [Hageman, Mitschke 73]

Sketch of the proof

- $\# \operatorname{CSP}\left(R_{1}\right) \leq$ тм $\# \operatorname{CSP}(\Gamma)$ for some R_{1} reflex. \& not sym. Proof: Direct from [Hageman, Mitschke 73]
- $\# \operatorname{CSP}\left(R_{2}\right) \leq$ тм $\# \operatorname{CSP}\left(R_{1}\right)$ for some R_{2} in normal form Proof: R_{2} is pp-definable from R_{1}

$$
R_{2} \subseteq B^{2} \text { in NF if } R=B^{2} \backslash B_{0} \times B_{1} \text { with } B_{0} \cap B_{1} \neq \emptyset
$$

Sketch of the proof

- $\# \operatorname{CSP}\left(R_{1}\right) \leq$ тм $\# \operatorname{CSP}(\Gamma)$ for some R_{1} reflex. \& not sym. Proof: Direct from [Hageman, Mitschke 73]
- \# $\operatorname{CSP}\left(R_{2}\right) \leq$ тм $\# \operatorname{CSP}\left(R_{1}\right)$ for some R_{2} in normal form Proof: R_{2} is pp-definable from R_{1} $R_{2} \subseteq B^{2}$ in NF if $R=B^{2} \backslash B_{0} \times B_{1}$ with $B_{0} \cap B_{1} \neq \emptyset$
- $\# \operatorname{CSP}\left(R_{3}\right) \leq$ тм $\# \operatorname{CSP}\left(R_{2}\right)$ for some R_{3} in NF and $\left|B_{0}\right|=\left|B_{1}\right|=1,\left|B \backslash\left(B_{0} \cup B_{1}\right)\right| \leq 1$.
Proof: By interpolation

Sketch of the proof

- $\# \operatorname{CSP}\left(R_{1}\right) \leq$ тм $\# \operatorname{CSP}(\Gamma)$ for some R_{1} reflex. \& not sym. Proof: Direct from [Hageman, Mitschke 73]
- $\# \operatorname{CSP}\left(R_{2}\right) \leq$ тм $\# \operatorname{CSP}\left(R_{1}\right)$ for some R_{2} in normal form Proof: R_{2} is pp-definable from R_{1} $R_{2} \subseteq B^{2}$ in NF if $R=B^{2} \backslash B_{0} \times B_{1}$ with $B_{0} \cap B_{1} \neq \emptyset$
- $\# \operatorname{CSP}\left(R_{3}\right) \leq_{\text {тм }} \# \operatorname{CSP}\left(R_{2}\right)$ for some R_{3} in NF and $\left|B_{0}\right|=\left|B_{1}\right|=1,\left|B \backslash\left(B_{0} \cup B_{1}\right)\right| \leq 1$.
Proof: By interpolation
- \# $\operatorname{CSP}(\leq) \leq$ тм $\# \operatorname{CSP}\left(R_{3}\right)$ where \leq is the boolean implication.
Proof: By interpolation

2-element case revisited

Theorem: [Creignou, Hermann 96]
Let \mathbf{B} be a 2 -element structure. If \mathbf{B} is invariant under $x+y+z$ then $\# \operatorname{CSP}(\mathbf{B})$ is in FP. Otherwise is \#P-complete.

2-element case revisited

Theorem: [Creignou, Hermann 96]
Let \mathbf{B} be a 2 -element structure. If \mathbf{B} is invariant under $x+y+z$ then $\# \operatorname{CSP}(\mathbf{B})$ is in FP. Otherwise is \#P-complete.

Proof:

- The \#-tractability part is straightforward

2-element case revisited

Theorem: [Creignou, Hermann 96]
Let \mathbf{B} be a 2-element structure. If \mathbf{B} is invariant under $x+y+z$ then $\# \operatorname{CSP}(\mathbf{B})$ is in FP. Otherwise is \#P-complete.

Proof:

- The \#-tractability part is straightforward
- The \#P-hardness part is a consequence of

Theorem [Post 41] If a 2-element algebra has a Mal'tsev term then it also has $x+y+z$

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let \mathbf{B} be a connected graph. Then $\# \operatorname{CSP}(\mathbf{B})$ is in FP if \mathbf{B} is and isolated node, a complete graph with all loops, or a complete bipartite graph.

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let \mathbf{B} be a connected graph. Then $\operatorname{HCSP}(\mathbf{B})$ is in FP if \mathbf{B} is and isolated node, a complete graph with all loops, or a complete bipartite graph.

Proof: (\#P-hardness)

- If G contains a loop then all elements have loops

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let \mathbf{B} be a connected graph. Then $\# \operatorname{CSP}(\mathbf{B})$ is in FP if \mathbf{B} is and isolated node, a complete graph with all loops, or a complete bipartite graph.
Proof: (\#P-hardness)

- If G contains a loop then all elements have loops Proof: Let a with a loop and b adjacent to a

$$
\begin{aligned}
& (b, a) \\
& (a, a) \\
& (a, b)
\end{aligned}
$$

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let \mathbf{B} be a connected graph. Then $\operatorname{HCSP}(\mathbf{B})$ is in FP if \mathbf{B} is and isolated node, a complete graph with all loops, or a complete bipartite graph.
Proof: (\#P-hardness)

- If G contains a loop then all elements have loops Proof: Let a with a loop and b adjacent to a

$$
\begin{array}{r}
(b, a) \\
(a, a) \\
(a, b) \\
\hline(b, b)
\end{array}
$$

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let \mathbf{B} be a connected graph. Then $\operatorname{HCSP}(\mathbf{B})$ is in FP if \mathbf{B} is and isolated node, a complete graph with all loops, or a complete bipartite graph.

Proof: (\#P-hardness)

- If G contains a loop then its is a complete graph

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let \mathbf{B} be a connected graph. Then $\operatorname{HCSP}(\mathbf{B})$ is in FP if \mathbf{B} is and isolated node, a complete graph with all loops, or a complete bipartite graph.
Proof: (\#P-hardness)

- If G contains a loop then its is a complete graph Proof: Let a, b, c a path

$$
\begin{array}{r}
(a, a) \\
(b, a) \\
(b, c) \\
\hline(a, c)
\end{array}
$$

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let \mathbf{B} be a connected graph. Then $\operatorname{HCSP}(\mathbf{B})$ is in FP if \mathbf{B} is and isolated node, a complete graph with all loops, or a complete bipartite graph.

Proof: (\#P-hardness)

- If G does not contain a loop then is bipartite

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let \mathbf{B} be a connected graph. Then $\operatorname{HCSP}(\mathbf{B})$ is in FP if \mathbf{B} is and isolated node, a complete graph with all loops, or a complete bipartite graph.
Proof: (\#P-hardness)

- If G does not contain a loop then is bipartite Proof: Let $a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}=a_{1}$ be an odd cycle

$$
\begin{array}{r}
\left(a_{1}, a_{2}\right) \\
\left(a_{3}, a_{2}\right) \\
\left(a_{3}, a_{4}\right) \\
\hline\left(a_{1}, a_{4}\right)
\end{array}
$$

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let \mathbf{B} be a connected graph. Then $\operatorname{HCSP}(\mathbf{B})$ is in FP if \mathbf{B} is and isolated node, a complete graph with all loops, or a complete bipartite graph.

Proof: (\#P-hardness)

- If G does not contain a loop then is a complete bipartite graph

Graphs revisited

Theorem: [Dyer, Greenhill 00]
Let \mathbf{B} be a connected graph. Then $\operatorname{HCSP}(\mathbf{B})$ is in FP if \mathbf{B} is and isolated node, a complete graph with all loops, or a complete bipartite graph.
Proof: (\#P-hardness)

- If G does not contain a loop then is a complete bipartite graph Proof:

$$
\begin{array}{r}
\left(a_{1}, b_{1}\right) \\
\left(a_{1}, b_{2}\right) \\
\left(a_{2}, b_{2}\right) \\
\hline\left(a_{2}, b_{1}\right)
\end{array}
$$

Indeed,

Theorem: Let B be a graph or a 2-element structure. Then \#CSP(B) in FP if \mathbf{B} is invariant under a Mal'tsev operation and \#P-complete otherwise.

Indeed,

Theorem: Let B be a graph or a 2-element structure. Then \# $\operatorname{CSP}(\mathbf{B})$ in FP if \mathbf{B} is invariant under a Mal'tsev operation and \#P-complete otherwise.

The existence of a Mal'tsev term alone is not enough to guarantee tractability even in the case of directed acyclic graphs.

Indeed,

Theorem: Let B be a graph or a 2-element structure. Then \# $\operatorname{CSP}(\mathbf{B})$ in FP if \mathbf{B} is invariant under a Mal'tsev operation and \#P-complete otherwise.

The existence of a Mal'tsev term alone is not enough to guarantee tractability even in the case of directed acyclic graphs.

Partial classifications:
[Dyer, Golberg, Paterson 05] give a complete classification for DAGs
[Klima, Larose, Tesson] give a complete classification for systems of equations over semigroups

Second necessary condition: singularity

Let α, β equivalence relations with classes A_{1}, \ldots, A_{k} and B_{1}, \ldots, B_{l}

Second necessary condition: singularity

Let α, β equivalence relations with classes A_{1}, \ldots, A_{k} and B_{1}, \ldots, B_{l}

Theorem: [Bulatov, Grohe 05] If
$\operatorname{rank}(M(\alpha, \beta))>\#$ of classes of $\alpha \vee \beta$
then $\# \operatorname{CSP}(\{\alpha, \beta\})$ is \#-complete.
$M(\alpha, \beta)$ is the $k \times l$ matrix wth $M(\alpha, \beta)_{i, j}=\left|A_{i} \cap B_{j}\right|$

Second necessary condition: singularity

Let α, β equivalence relations with classes A_{1}, \ldots, A_{k} and B_{1}, \ldots, B_{l}

Theorem: [Bulatov, Grohe 05] If $\operatorname{rank}(M(\alpha, \beta))>\#$ of classes of $\alpha \vee \beta$ then $\# \operatorname{CSP}(\{\alpha, \beta\})$ is $\#$-complete.
$M(\alpha, \beta)$ is the $k \times l$ matrix wth $M(\alpha, \beta)_{i, j}=\left|A_{i} \cap B_{j}\right|$

Def: An algebra is congruence singular if for any two of its congruences the previous condition is satisfied.

Complete classification

Fact: If $\mathbb{V}(\mathcal{B})$ is congruence singular then \mathcal{B} has a Mal'tsev term.

Complete classification

Fact: If $\mathbb{V}(\mathcal{B})$ is congruence singular then \mathcal{B} has a Mal'tsev term.

Putting toguether all results we have
Theorem: An algebra \mathcal{B} is \#P-complete if $\mathbb{V}\left(\mathcal{B}_{\text {id }}\right)$ is not congruence singular.

Complete classification

Fact: If $\mathbb{V}(\mathcal{B})$ is congruence singular then \mathcal{B} has a Mal'tsev term.

Putting toguether all results we have
Theorem: An algebra \mathcal{B} is \#P-complete if $\mathbb{V}\left(\mathcal{B}_{\text {id }}\right)$ is not congruence singular.

Theorem [Bulatov 07]
Otherwise, \mathcal{B} is \#-tractable.

