Algebraic Tractability Criteria for Infinite-Domain Constraint Satisfaction Problems

Manuel Bodirsky

Institut für Informatik Humboldt-Universität zu Berlin

May 2007

1 Infinite Domain Constraint Satisfaction Problems

- 2 The Universal-Algebraic Approach
- 3 Tractability Criteria
- 4 Complexity Classifications

< □ > < □ > < □ > < □ > < □ > < □ >

The Constraint Satisfaction Problem

Let $\Gamma = (V; R_1, ..., R_l)$ be a relational structure. V might be infinite! Let τ be the (finite) signature of Γ .

 $CSP(\Gamma)$

Input: A finite τ -structure *S*.

Question: Is there a homomorphism from S to Γ ?

The Constraint Satisfaction Problem

Let $\Gamma = (V; R_1, ..., R_l)$ be a relational structure. V might be infinite! Let τ be the (finite) signature of Γ .

 $CSP(\Gamma)$

Input: A finite τ -structure *S*.

Question: Is there a homomorphism from S to Γ ?

Examples:

 $CSP((\mathbb{N},=,\neq))$: is *x* and *y* disconnected wrt = whenever ' $x \neq y$ ' is in *S*? $CSP((\mathbb{Q},<))$: digraph acyclicity $CSP((\mathbb{Q},\{(x,y,z) \mid x < y < z \lor z < y < x\}))$: the betweenness problem

Acyclic H-colorings

Fix digraph H.

Acyclic H-coloring: (Feder+Hell+Mohar)

Input: A digraph G

Question: Can we H-color G such that each color class is acylic?

< ロ > < 同 > < 回 > < 回 > .

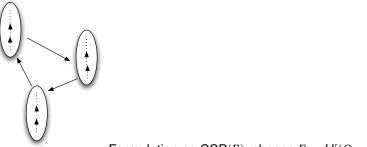
Acyclic H-colorings

Fix digraph H.

Acyclic H-coloring: (Feder+Hell+Mohar)

Input: A digraph G

Question: Can we H-color G such that each color class is acylic?



Formulation as $CSP(\Gamma)$: choose $\Gamma = H[(\mathbb{Q}, <)]$.

CSPs in Temporal Reasoning

Betweenness:

 $\mathsf{CSP}((\mathbb{Q}, \{(x, y, z) \mid x < y < z \ \lor \ z < y < x\}))$

NP-complete (Garey+Johnson)

Min-Ordering:

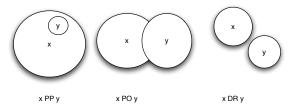
 $\mathsf{CSP}((\mathbb{Q},\{(x,y,z)\mid x>y \ \lor \ x>z\}))$

Simple linear time algorithm

Neither Datalog nor Maltsev-like

Spatial Reasoning

Formalism 'RCC-5' in Artificial Intelligence



Consistency Problem for Basic Relations:

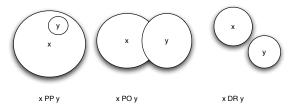
Input: A relational structure (*V*, *DR*, *PO*, *PP*) where *DR*, *PO*, *PP* are binary relations

Question: Can we assign non-empty regions satisfying all the constraints?

Formulation as $CSP(\Gamma)$:

Spatial Reasoning

Formalism 'RCC-5' in Artificial Intelligence



Consistency Problem for Basic Relations:

Input: A relational structure (*V*, *DR*, *PO*, *PP*) where *DR*, *PO*, *PP* are binary relations

Question: Can we assign non-empty regions satisfying all the constraints?

Formulation as $CSP(\Gamma)$: choose $\Gamma = (2^X \setminus \emptyset, DR, PO, PP)$ for an infinite set *X* Let ${\mathcal C}$ be a set of $\tau\text{-structures}.$

Definition 1.

C is closed under disjoint unions if whenever $A, B \in C$ then $A + B \in C$.

C is closed under inverse homomorphisms if $B \in C$ and $A \rightarrow^h B$ implies $A \in C$.

Example: the set of all triangle-free graphs

Observation (Feder+Vardi).

 $C = CSP(\Gamma)$ for some relational structure Γ if and only if C is closed under disjoint unions and inverse homomorphisms.

Examples of CSPs

Triangle-Freeness:

Input: A graph *G* Question: Is *G* triangle-free?

CSPs over infinite domains (May 2007)

Infinite Domain Constraint Satisfaction Problems

< □ > < □ > < □ > < □ > < □ > < □ >

Examples of CSPs

Triangle-Freeness:

Input: A graph G Question: Is G triangle-free?

Vector-space CSP:

Input: A system of linear equations x + y = z and disequations $x \neq y$ Question: Is there a *d* and an assignment of *d*-dimensional Boolean vectors to the variables that satisfies all the constraints?

(_) (]) (]) (])

1 Infinite Domain Constraint Satisfaction Problems

- 2 The Universal-Algebraic Approach
- 3 Tractability Criteria
- 4 Complexity Classifications

< □ > < □ > < □ > < □ > < □ > < □ >

1 Infinite Domain Constraint Satisfaction Problems

2 The Universal-Algebraic Approach

3 Tractability Criteria

4 Complexity Classifications

Primitive Positive Interpretations

Definition 2 (First-order Interpretation).

A τ -structure Δ has a interpretation in Γ if there is

- first-order formula $\delta(x_1, \ldots, x_d)$,
- for each *m*-ary $R \in \tau$ a first-order formula $\phi_R(x_1, \ldots, x_{md})$, and
- a surjective map $h: \delta(\Gamma^d) \to \Delta$

such that for all $a_1, \ldots, a_m \in \delta(\Gamma^d)$

 $\Delta \models R(h(a_1),\ldots,h(a_m)) \Leftrightarrow \Gamma \models \varphi_R(a_1,\ldots,a_m) .$

Note: much more powerful than first-order definitions.

An interpretation is primitive positive if δ and the ϕ_R are primitive positive.

Observation .

If Δ has a pp-interpretation in Γ then there is a polynomial-time reduction from $CSP(\Delta)$ to $CSP(\Gamma)$.

w-categoricity

How can we recognize whether Γ pp-interprets Δ ?

Definition 3.

A relational structure Γ is ω -categorical iff every countable model of the first-order theory of Γ is isomorphic to Γ .

Example: $(\mathbb{Q}, <)$ (Kantor)

More: Infinite-dimensional vector-spaces over finite fields The countable atomless boolean algebra The countably infinite random graph The universal homogeneous triangle-free graph

Many more: All Fraisse-limits of amalgamation classes of structures with finite signature are ω -categorical (and homogeneous)

Every CSP we have seen in this talk so far can be formulated with an ω -categorical Γ !

Get new ω -categorical structures from old:

Observation .

If Δ is first-order interpretable in an ω -categorical structure Γ , then Δ is also ω -categorical.

- Allen's Interval Algebra and all its fragments are ω -categorical
- All CSPs in MMSNP can be formulated with an ω-categorical template (MB+Dalmau'06)

< ロ > < 同 > < 回 > < 回 > .

The Basic Galois Connection

Theorem 4 (Engeler, Ryll-Nardzewski, Svenonius).

Tfae:

- Γ is ω-categorical
- Aut(Γ) is oligomorphic, i.e., there are finitely many orbits of k-tuples in Aut(Γ), for each k
- all orbits of k-tuples in $Aut(\Gamma)$ are first-order definable

Inv-Aut form a Galois connection between structures and permutation groups:

- Inv(Aut(Γ)): expansion by all first-order definable relations
- Aut(Inv(F)): locally closed permutation group

Definition 5.

A homomorphism *f* from Γ^k to Γ is called a polymorphism. We say that *f* preserves all relations in Γ .

Example: $(x, y) \mapsto \max(x, y)$ is a polymorphism of $(\mathbb{Q}, <)$, but not of $(\mathbb{Q}, Betweenness)$

Theorem 6 (MB+Nesetril'03).

A relation *R* has a pp definition in an ω -categorical structure Γ if and only if *R* is preserved by all polymorphisms of Γ .

Definition 7.

Two structures Γ, Δ are homomorphically equivalent if Γ is homomorphic to Δ and vice versa.

Example: $H[(\mathbb{Q}, <)]$ and $(\mathbb{Q}, <)$ are homomorphically equivalent for any finite acyclic digraph H.

Observation .

Two ω -categorical structures Γ and Δ are homomorphically equivalent if and only if $CSP(\Gamma)$ equals $CSP(\Delta)$.

< ロ > < 同 > < 回 > < 回 > .

Cores

Let Γ be ω -categorical.

Definition 8.

 Γ is called a core if every endomorphism of Γ is an embedding.

 Γ is called model-complete if every embedding of Γ into Γ is elementary.

Theorem 9.

Every ω -categorical structure Γ is homomorphically equivalent to a model-complete core Δ . Moreover,

- Δ is unique up to isomorphism
- orbits of k-tuples are primitive positive definable in Δ
- Δ is ω -categorical.

Consequence: can expand cores Δ by finitely many constants without changing the complexity of CSP(Δ).

イロト イポト イヨト イヨト

The Algebra of a Template

Definition 10.

The algebra $AI(\Gamma)$ of Γ

- has the same domain as Γ.
- has as functions the polymorphisms of Γ.

Observation: $AI(\Gamma)$ is a locally closed clone, i.e.,

- contains all projections,
- is closed under compositions, and
- is locally closed: if for all finite subsets *S* of the domain there is $g \in AI(\Gamma)$ s.t. g(a) = f(a) for all $a \in S^k$, then $f \in AI(\Gamma)$.

The Pseudo-Variety of an Algebra

Definition 11.

The smallest class of algebras that contains an algebra A and is closed under subalgebras, homomorphic images, and finite direct products is called the pseudo-variety $\mathcal{V}(A)$ generated by A.

Let Γ be ω -categorical.

Theorem 12.

A relational structure Δ has a primitive positive interpretation in Γ

if and only if

there is algebra **B** in $\mathcal{V}(Al(\Gamma))$ all of whose operations are polymorphism of Δ .

Let Γ be an ω -categorical model-complete core.

Theorem 13.

If there is an expansion Γ' of Γ by finitely many constants such that $\mathcal{V}(AI(\Gamma'))$ contains a 2-element algebra where all operations are essentially permutations, then $\mathsf{CSP}(\Gamma)$ is NP-hard.

All hard ω -categorical CSPs satisfy this condition.

Conjecture.

Assuming $P \neq NP$, the opposite implication is true as well.

・ロット (母) ・ ヨ) ・ ヨ)

1 Infinite Domain Constraint Satisfaction Problems

2 The Universal-Algebraic Approach

3 Tractability Criteria

4 Complexity Classifications

Infinite Domain Constraint Satisfaction Problems

2 The Universal-Algebraic Approach

3 Tractability Criteria

4 Complexity Classifications

Quasi Near-unanimity Operations

A quasi near-unanimity function (qnuf) is an operation satisfying

 $f(x,\ldots,x,x,y) = f(x,\ldots,x,y,x) = \cdots = f(y,x,\ldots,x) = f(x,\ldots,x)$

Theorem 14 (MB+Dalmau'06).

An ω -categorical model-complete core Γ has a *k*-ary qnuf if and only if CSP(Γ) has strict bounded width (and hence, CSP(Γ) is tractable).

Remark: Al community says "local *k*-consistency implies global consistency" if $CSP(\Gamma)$ has strict width k - 1.

Examples:

- $(\mathbb{Q}, <)$ has a majority.
- (Q, ≤, ≠) has a 5-ary, but no nuf and no 4-ary qnuf (MB+Chen'07 / Koubarakis)

• $(\mathbb{N}, \{(x, y, u, v) \mid x \neq y \lor u \neq v\})$ has a 5-ary, but no 4-ary qnuf.

Horn Tractability

If $\Gamma = (D; R_1, ..., R_l)$ is a relational structure, denote by Γ^c the expansion of Γ by $\neg R_1, ..., \neg R_l$.

Theorem 15 (MB+Chen+Kara+vonOertzen'07).

Suppose that

- \blacksquare Γ is ω -categorical and admits quantifier-elimination
- Δ is first-order definable in Γ
- $CSP(\Gamma^c)$ is tractable
- there is an isomorphism $i : \Gamma^2 \to \Gamma$, and
- Δ is preserved by *i*.

Then $CSP(\Delta)$ is tractable.

・ロット (母) ・ ヨ) ・ ヨ)

Horn Tractability

If $\Gamma = (D; R_1, ..., R_l)$ is a relational structure, denote by Γ^c the expansion of Γ by $\neg R_1, ..., \neg R_l$.

Theorem 15 (MB+Chen+Kara+vonOertzen'07).

Suppose that

- \blacksquare Γ is ω -categorical and admits quantifier-elimination
- Δ is first-order definable in Γ
- $CSP(\Gamma^c)$ is tractable
- there is an isomorphism $i : \Gamma^2 \to \Gamma$, and
- Δ is preserved by *i*.

Then $CSP(\Delta)$ is tractable.

Idea: All relations in Δ have a quantifier-free Horn definition in Γ .

"Let *i* be an isomorphism between Γ^2 and Γ ."

- 1 Has no analogon in the finite!
- 2 Not so rare for infinite structures
- **3** There is automorphism α of Γ such that *i* satisfies

$$i(x, y) = \alpha(i(y, x))$$

All relations with a fo-definition in Γ that are preserved by *i* form a maximal constraint language.

Equality Constraints:

 $\Gamma := (\mathbb{N}, =).$

 $\Gamma^{c} = (\mathbb{N}, =, \neq)$ clearly tractable.

i: any bijection between \mathbb{N}^2 and \mathbb{N} .

 $\Delta = (\mathbb{N}, \{(x, y, u, v) \mid x = y \rightarrow u = v)\} \text{ tractable}!$

Horn Vector-Space Equations:

 $\Gamma := (\mathbb{V}, \{(x, y, z) \mid x + y = z\})$ the infinite-dimensional vector space over a finite field

 $\Gamma^{c} = (\mathbb{V}, \{(x, y, z) \mid x + y = z\}), \{(x, y, z) \mid x + y \neq z\})$

is tractable essentially by Gaussian elimination

i: an isomorphism between \mathbb{V}^2 and \mathbb{V} .

Hence: can solve Horn equations over V.

More Applications

Spatial Constraints:

 $\Gamma := (\mathbb{B}, PP, DR)$ the countable atomless boolean algebra without zero, $PP = \{(x, y) \mid xy = y\}$, $DR = \{(x, y) \mid (x + y)x = x\}$

 Γ^c tractable (Renz+Nebel: Datalog)

i: an isomorphism between \mathbb{B}^2 and \mathbb{B}

 Δ : the maximal tractable tractable language that appeared in Drakengren+Jonsson and Renz+Nebel.

Similar applications for

- the universal triangle-free graph,
- "partially-ordered time",
- "set-constraints", ...

Infinite Domain Constraint Satisfaction Problems

2 The Universal-Algebraic Approach

3 Tractability Criteria

4 Complexity Classifications

1 Infinite Domain Constraint Satisfaction Problems

- 2 The Universal-Algebraic Approach
- 3 Tractability Criteria
- 4 Complexity Classifications

Equality Constraint Languages

An equality constraint language is a relational structure Γ with a first-order definition in $(\mathbb{N}, =)$.

Examples:

- $\blacksquare \ \Gamma = (\mathbb{N}, \neq, =)$
- $\ \ \Gamma = (\mathbb{N}, \{x = y \lor u = v\}, \{x \neq y \lor u \neq v\})$

$$\square \ \Gamma = (\mathbb{N}, \{x = y \to u = v\})$$

Equality Constraint Languages

An equality constraint language is a relational structure Γ with a first-order definition in $(\mathbb{N}, =)$.

Examples:

- $\blacksquare \ \Gamma = (\mathbb{N}, \neq, =)$
- $\square \ \Gamma = (\mathbb{N}, \{x = y \lor u = v\}, \{x \neq y \lor u \neq v\})$

$$\square \ \Gamma = (\mathbb{N}, \{x = y \to u = v\})$$

Theorem 16 (MB+Kara'07).

Let Γ be an equality constraint language. Then either

 V(Al(Γ)) contains a two-element algebra where all ops. are projections (and CSP(Γ) is NP-complete),

Γ has a polymorphism f, α satisfying $f(x, y) = \alpha(f(y, x))$ (and CSP(Γ) is in P).

Equality Constraint Languages

An equality constraint language is a relational structure Γ with a first-order definition in $(\mathbb{N}, =)$.

Examples:

- $\blacksquare \ \Gamma = (\mathbb{N}, \neq, =)$
- $\square \ \Gamma = (\mathbb{N}, \{x = y \lor u = v\}, \{x \neq y \lor u \neq v\})$

$$\square \ \Gamma = (\mathbb{N}, \{x = y \to u = v\})$$

Theorem 16 (MB+Kara'07).

Let Γ be an equality constraint language. Then either

 V(Al(Γ)) contains a two-element algebra where all ops. are projections (and CSP(Γ) is NP-complete),

■ Γ has a polymorphism f, α satisfying $f(x, y) = \alpha(f(y, x))$ (and CSP(Γ) is in P).

Proof uses polymorphisms and a Ramsey-like argument.

・ロト ・ 戸 ・ イヨ ト ・ ヨ ・ うので

- Allowing countable (ω-categorical) templates greatly expands the scope of (non-uniform) CSPs
- 2 Polymorphisms are very useful to study their complexity
- 3 Many more concepts from universal algebra might have generalizations to the oligomorphic setting