Finite Model Theory and CSPs

Albert Atserias
Universitat Politècnica de Catalunya
Barcelona, Spain

June 19, 2007

Part 1

FIRST-ORDER LOGIC, TYPES AND GAMES

Relational Structures vs. Functional Structures

Structures:

$$
\mathbf{M}=\left(M, R_{1}^{\mathbf{M}}, R_{2}^{\mathbf{M}}, \ldots, f_{1}^{\mathbf{M}}, f_{2}^{\mathbf{M}}, \ldots\right)
$$

I go relational:

> relational structures
> $(\equiv$ no functions)

Algebraists go functional:

> algebras
> $(\equiv$ no relations).

First-Order Logic: Syntax

Let x_{1}, x_{2}, \ldots be a collection of first-order variables (intended to range over the points of the universe of a structure).

Definition

The collection of first-order formulas of σ (FO) is defined as:

- $x_{i_{1}}=x_{i_{2}}$ and $R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- $x_{i_{1}} \neq x_{i_{2}}$ and $\neg R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- if φ and ψ are formulas, so is $(\varphi \wedge \psi)$
- if φ and ψ are formulas, so is $(\varphi \vee \psi)$
- if φ is a formula, so is $\left(\exists x_{i}\right)(\varphi)$
- if φ is a formula, so is $\left(\forall x_{i}\right)(\varphi)$.

First-Order Logic: Semantics

Let $\varphi(\mathbf{x})$ be a formula with free variables $\mathbf{x}=\left(x_{1}, \ldots, x_{r}\right)$, let \mathbf{A} be a structure, and let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right) \in A^{r}$.

$$
\mathbf{A} \models \varphi\left(x_{1} / a_{1}, \ldots, x_{r} / a_{n}\right)
$$

First-Order Logic: Semantics

Let $\varphi(\mathbf{x})$ be a formula with free variables $\mathbf{x}=\left(x_{1}, \ldots, x_{r}\right)$, let \mathbf{A} be a structure, and let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right) \in A^{r}$.

$$
\mathbf{A} \models \varphi\left(x_{1} / a_{1}, \ldots, x_{r} / a_{n}\right)
$$

Example

$$
\varphi(x):=(\forall y)(\exists z)(E(x, z) \wedge E(y, z))
$$

$$
\mathbf{G} \models \varphi(x / a)
$$

Fragments of First-Order Logic

Fragments:

full (FO)

- $x_{i_{1}}=x_{i_{2}}$ and $R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- $x_{i_{1}} \neq x_{i_{2}}$ and $\neg R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- if φ and ψ are formulas, so is $(\varphi \wedge \psi)$
- if φ and ψ are formulas, so is $(\varphi \vee \psi)$,
- if φ is a formula, so is $\left(\exists x_{i}\right)(\varphi)$
- if φ is a formula, so is $\left(\forall x_{i}\right)(\varphi)$.

Fragments of First-Order Logic

Fragments:

full (FO), existential ($\exists \mathrm{FO}$)

- $x_{i_{1}}=x_{i_{2}}$ and $R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- $x_{i_{1}} \neq x_{i_{2}}$ and $\neg R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- if φ and ψ are formulas, so is $(\varphi \wedge \psi)$
- if φ and ψ are formulas, so is $(\varphi \vee \psi)$,
- if φ is a formula, so is $\left(\exists x_{i}\right)(\varphi)$
- if φ is a formula, so is $\left(\forall x_{i}\right)(\varphi)$.

Fragments of First-Order Logic

Fragments:

full (FO), existential ($\exists \mathrm{FO}$), existential positive $\left(\exists \mathrm{FO}^{+}\right)$

- $x_{i_{1}}=x_{i_{2}}$ and $R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- $x_{i_{1}} \neq x_{i_{2}}$ and $\neg R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- if φ and ψ are formulas, so is $(\varphi \wedge \psi)$
- if φ and ψ are formulas, so is $(\varphi \vee \psi)$,
- if φ is a formula, so is $\left(\exists x_{i}\right)(\varphi)$
- if φ is a formula, so is $\left(\forall x_{i}\right)(\varphi)$.

Fragments of First-Order Logic

Fragments:

full (FO), existential ($\exists \mathrm{FO}$) , existential positive $\left(\exists \mathrm{FO}^{+}\right)$, quantifier-free

- $x_{i_{1}}=x_{i_{2}}$ and $R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- $x_{i_{1}} \neq x_{i_{2}}$ and $\neg R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- if φ and ψ are formulas, so is $(\varphi \wedge \psi)$
- if φ and ψ are formulas, so is $(\varphi \vee \psi)$,
- if φ is a formula, so is $\left(\exists x_{i}\right)(\varphi)$
- if φ is a formula, so is $\left(\forall x_{i}\right)(\varphi)$.

Fragments of First-Order Logic

Fragments:

full (FO), existential ($\exists \mathrm{FO})$, existential positive $\left(\exists \mathrm{FO}^{+}\right)$, quantifier-free, atomic and negated atomic

- $x_{i_{1}}=x_{i_{2}}$ and $R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- $x_{i_{1}} \neq x_{i_{2}}$ and $\neg R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- if φ and ψ are formulas, so is $(\varphi \wedge \psi)$
- if φ and ψ are formulas, so is $(\varphi \vee \psi)$,
- if φ is a formula, so is $\left(\exists x_{i}\right)(\varphi)$
- if φ is a formula, so is $\left(\forall x_{i}\right)(\varphi)$.

Fragments of First-Order Logic

Fragments:

full (FO) , existential ($\exists \mathrm{FO})$, existential positive $\left(\exists \mathrm{FO}^{+}\right)$, quantifier-free, atomic and negated atomic , atomic.

- $x_{i_{1}}=x_{i_{2}}$ and $R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- $x_{i_{1}} \neq x_{i_{2}}$ and $\neg R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- if φ and ψ are formulas, so is $(\varphi \wedge \psi)$
- if φ and ψ are formulas, so is $(\varphi \vee \psi)$,
- if φ is a formula, so is $\left(\exists x_{i}\right)(\varphi)$
- if φ is a formula, so is $\left(\forall x_{i}\right)(\varphi)$.

Types

Definition

Let \mathbf{A} be a structure, let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ an r-tuple in A^{r}, and let L be a collection of first-order formulas:

$$
\begin{aligned}
& \text { 1. } \operatorname{tp}_{L}(\mathbf{A}, \mathbf{a})=\left\{\varphi\left(x_{1}, \ldots, x_{r}\right) \in L: \mathbf{A} \models \varphi\left(x_{1} / a_{1}, \ldots, x_{r} / a_{r}\right)\right\} \\
& \text { 2. } \operatorname{tp}_{L}(\mathbf{A})=\{\varphi \in L: \mathbf{A} \models \varphi\}
\end{aligned}
$$

Intuitively: if $\operatorname{tp}_{L}(\mathbf{A}, \mathbf{a}) \subseteq \operatorname{tp}_{L}(\mathbf{B}, \mathbf{b})$, then every L-expressible property satisfied by \mathbf{a} in \mathbf{A} is also satisfied by \mathbf{b} in \mathbf{B}. We write

$$
\mathbf{A}, \mathbf{a} \leq^{L} \mathbf{B}, \mathbf{b}
$$

Examples of Types

$$
\mathbf{G}, a \not \mathbb{Z}^{\mathrm{FO}} \mathbf{H}, b
$$

because

- In G, every point has a common neighbor with a
- In H, not every point has a common neighbor with b

$$
\varphi(x):=(\forall y)(\exists z)(E(x, z) \wedge E(y, z))
$$

Meaning of Types

What does $\mathbf{A}, \mathbf{a} \leq^{L} \mathbf{B}, \mathbf{b}$ mean?

- when $L=$ \{all atomic formulas $\}$, it means the mapping ($a_{i} \mapsto b_{i}: i=1, \ldots, r$) is a homomorphism between the substructures induced by \mathbf{a} and \mathbf{b}
- when $L=$ \{all atomic and negated atomic formulas\}, it means the mapping ($a_{i} \mapsto b_{i}: i=1, \ldots, r$) is an isomorphism between the substructures induced by \mathbf{a} and \mathbf{b}

Meaning of Types

What does $\mathbf{A}, \mathbf{a} \leq^{L} \mathbf{B}, \mathbf{b}$ mean?

- when $L=$ \{all formulas with at most one quantifier\}, it means the substructures induced by \mathbf{a} and \mathbf{b} are isomorphic and have the same types of extensions by one point
- when $L=\{$ all formulas with at most two quantifiers $\}$, it means the substructures induced by ...
- note that $\mathbf{A}, \mathbf{a} \leq{ }^{\mathrm{FO}} \mathbf{B}, \mathbf{b}$ iff $\mathbf{B}, \mathbf{b} \leq{ }^{\mathrm{FO}} \mathbf{A}, \mathbf{a}$. We write

$$
\mathbf{A}, \mathbf{a} \equiv \equiv^{L} \mathbf{B}, \mathbf{b}
$$

Ehrenfeucht-Fraïssé Games

Two players: Spoiler and Duplicator
Two structures: A and B
Unlimited pebbles: p_{1}, p_{2}, \ldots and q_{1}, q_{2}, \ldots
An initial position: $\mathbf{a} \in A^{r}$ and $\mathbf{b} \in B^{r}$
Rounds:

Referee: Spoiler wins if at any round the mapping $p_{i} \mapsto q_{i}$ is not a partial isomorphism. Otherwise, Duplicator wins.

Ehrenfeucht-Fraïssé Games

Two players: Spoiler and Duplicator
Two structures: A and B
Unlimited pebbles: p_{1}, p_{2}, \ldots and q_{1}, q_{2}, \ldots
An initial position: $\mathbf{a} \in A^{r}$ and $\mathbf{b} \in B^{r}$
Rounds:

Referee: Spoiler wins if at any round the mapping $p_{i} \mapsto q_{i}$ is not a partial isomorphism. Otherwise, Duplicator wins.

Ehrenfeucht-Fraïssé Games

Two players: Spoiler and Duplicator
Two structures: A and B
Unlimited pebbles: p_{1}, p_{2}, \ldots and q_{1}, q_{2}, \ldots
An initial position: $\mathbf{a} \in A^{r}$ and $\mathbf{b} \in B^{r}$
Rounds:

Referee: Spoiler wins if at any round the mapping $p_{i} \mapsto q_{i}$ is not a partial isomorphism. Otherwise, Duplicator wins.

Ehrenfeucht-Fraïssé Games

Two players: Spoiler and Duplicator
Two structures: A and B
Unlimited pebbles: p_{1}, p_{2}, \ldots and q_{1}, q_{2}, \ldots
An initial position: $\mathbf{a} \in A^{r}$ and $\mathbf{b} \in B^{r}$
Rounds:

Referee: Spoiler wins if at any round the mapping $p_{i} \mapsto q_{i}$ is not a partial isomorphism. Otherwise, Duplicator wins.

Ehrenfeucht-Fraïssé Games

Two players: Spoiler and Duplicator
Two structures: A and B
Unlimited pebbles: p_{1}, p_{2}, \ldots and q_{1}, q_{2}, \ldots
An initial position: $\mathbf{a} \in A^{r}$ and $\mathbf{b} \in B^{r}$
Rounds:

Referee: Spoiler wins if at any round the mapping $p_{i} \mapsto q_{i}$ is not a partial isomorphism. Otherwise, Duplicator wins.

Back-and-Forth Systems

Definition (Fraïssé)

An n-round winning strategy for the Duplicator on \mathbf{A}, \mathbf{a} and \mathbf{B}, \mathbf{b} is a sequence of non-empty sets of partial isomorphisms $\left(F_{i}: i<n\right)$ such that $(\mathbf{a} \mapsto \mathbf{b}) \in F_{0}$ and

1. Retract For every $i<n$, every $f \in F_{i}$ and every $g \subseteq f$, we have $g \in F_{i}$,
2. Forth For every $i<n-1$, every $f \in F_{i}$, and every $a \in A$, there exists $g \in F_{i+1}$ with $a \in \operatorname{Dom}(g)$ and $f \subseteq g$.
3. Back For every $i<n-1$, every $f \in F_{i}$, and every $b \in B$, there exists $g \in F_{i+1}$ with $b \in \operatorname{Rng}(g)$ and $f \subseteq g$.
$\mathbf{A}, \mathbf{a} \equiv{ }^{\mathrm{EF}} \mathbf{B}, \mathbf{b}$: there is an n-round winning strategy for every n

Indistinguishability vs Games

Theorem (Ehrenfeucht, Fraïssé)

$$
\mathbf{A}, \mathbf{a} \equiv{ }^{\mathrm{FO}} \mathbf{B}, \mathbf{b} \text { if and only if } \mathbf{A}, \mathbf{a} \equiv \equiv^{\mathrm{EF}} \mathbf{B}, \mathbf{b}
$$

Ehrenfeucht-Fraïssé Games for Fragments

Two players: Spoiler and Duplicator Two structures: A and B
Unlimited pebbles: p_{1}, p_{2}, \ldots and q_{1}, q_{2}, \ldots Rounds:

Referee: Spoiler wins if at any round the mapping $p_{i} \mapsto q_{i}$ is not a partial isomorphism (resp. homomorphism).
$\equiv{ }^{\mathrm{EF}}, \leq^{\exists \mathrm{EF}}, \leq^{\exists \mathrm{EF}^{+}}$: winning strategy for every n.

Indistinguishability vs Games

Theorem (Ehrenfeucht and Fraïssé)

$$
\begin{aligned}
& \mathbf{A}, \mathbf{a} \equiv^{\mathrm{FO}} \mathbf{B}, \mathbf{b} \text { if and only if } \mathbf{A}, \mathbf{a} \equiv^{\mathrm{EF}} \mathbf{B}, \mathbf{b} \\
& \mathbf{A}, \mathbf{a} \leq^{\exists \mathrm{FO}} \mathbf{B}, \mathbf{b} \text { if and only if } \mathbf{A}, \mathbf{a} \leq \leq^{\exists \mathrm{EF}} \mathbf{B}, \mathbf{b} \\
& \mathbf{A}, \mathbf{a} \leq^{\exists \mathrm{FO}^{+}} \mathbf{B}, \mathbf{b} \text { if and only if } \mathbf{A}, \mathbf{a} \leq \leq^{\exists \mathrm{EF}} \\
& \mathbf{B}, \mathbf{b}
\end{aligned}
$$

Indistinguishability is too Strong for Finite Structures

For finite structures, these concepts add nothing:

- $\mathbf{A} \equiv{ }^{\mathrm{FO}} \mathbf{B} \Longleftrightarrow \mathbf{A} \cong \mathbf{B}$
- $\mathbf{A} \leq^{\exists \mathrm{FO}^{+}} \mathbf{B} \Longleftrightarrow \mathbf{A} \rightarrow \mathbf{B}$
where
- $\mathbf{A} \cong \mathbf{B}$: there is an isomorphism between \mathbf{A} and \mathbf{B}
- $\mathbf{A} \rightarrow \mathbf{B}$: there is a homomorphism from \mathbf{A} to \mathbf{B}

Indistinguishability is too Strong for Finite Structures

Why? Canonical formulas:

- For every finite \mathbf{A}, there exists an FO-sentence $\varphi_{\mathbf{A}}$ such that

$$
\mathbf{B} \models \varphi_{\mathbf{A}} \Longleftrightarrow \mathbf{A} \cong \mathbf{B}
$$

- For every finite \mathbf{A}, there exists an $\exists \mathrm{FO}^{+}$-sentence $\psi_{\mathbf{A}}$ such that

$$
\mathbf{B} \models \psi_{\mathbf{A}} \Longleftrightarrow \mathbf{A} \rightarrow \mathbf{B} .
$$

Second has a name: the canonical conjunctive query of \mathbf{A} [Chandra and Merlin]

Examples of Canonical Formulas

Let \mathbf{A} be:

$$
\begin{aligned}
\varphi_{\mathbf{A}}= & (\exists x)(\exists y)(\exists z) \\
& (x \neq y \wedge y \neq z \wedge x \neq z \wedge \\
& (\forall u)(u=x \vee u=y \vee u=z) \wedge \\
& E(x, y) \wedge E(y, z) \wedge E(z, x) \wedge \\
\neg & E(y, x) \wedge \neg E(z, y) \wedge \neg E(x, z) \wedge \\
\neg & E(x, x) \wedge \neg E(y, y) \wedge \neg E(z, z)) . \\
& \\
\psi_{\mathbf{A}}= & (\exists x)(\exists y)(\exists z) \\
& (E(x, y) \wedge E(y, z) \wedge E(z, x))
\end{aligned}
$$

First-Order Logic: k-Variable Fragments

Let us limit the set of first-order variables to x_{1}, \ldots, x_{k}.

- FO^{k} : k-variable fragment of FO
- $\exists \mathrm{FO}^{k}$: k-variable fragment of $\exists \mathrm{FO}$
- $\exists \mathrm{FO}^{+, k}$: k-variable fragment of $\exists \mathrm{FO}^{+}$

Note: Variables may be reused!
Example:

$$
\begin{aligned}
\operatorname{path}_{5}(x, y):= & (\exists z)(E(x, z) \wedge \\
& (\exists x)(E(z, x) \wedge \\
& (\exists z)(E(x, z) \wedge \\
& (\exists x)(E(z, x) \wedge E(x, y)))))
\end{aligned}
$$

k-Pebble EF-Games

Two players: Spoiler and Duplicator Two structures: A and B
Limited pebbles: p_{1}, \ldots, p_{k} and q_{1}, \ldots, q_{k}
An initial position: $\mathbf{a} \in A^{r}$ and $\mathbf{b} \in B^{r}$
Rounds:

Referee: Spoiler wins if at any round the mapping $p_{i} \mapsto q_{i}$ is not a partial isomorphism (resp. homomorphism). Otherwise, Duplicator wins.
$\equiv \mathrm{EF}^{k}, \leq^{\exists \mathrm{EF}}{ }^{k}, \leq^{\exists \mathrm{EF}}{ }^{+, k}:$ a strategy for every n.

Indistinguishability vs k-Pebbles Games

Theorem (Barwise, Immerman, Kolaitis and Vardi)

$$
\begin{gathered}
\mathbf{A}, \mathbf{a} \equiv^{\mathrm{FO}^{k}} \mathbf{B}, \mathbf{b} \text { if and only if } \mathbf{A}, \mathbf{a} \equiv^{\mathrm{EF}^{k}} \mathbf{B}, \mathbf{b} \\
\mathbf{A}, \mathbf{a} \leq^{\exists \mathrm{EF}^{k}} \mathbf{B}, \mathbf{b} \text { if and only if } \mathbf{A}, \mathbf{a} \leq^{\exists \mathrm{FO}^{k}} \mathbf{B}, \mathbf{b} \\
\mathbf{A}, \mathbf{a} \leq^{\exists \mathrm{FO}^{+, k}} \mathbf{B}, \mathbf{b} \text { if and only if } \mathbf{A}, \mathbf{a} \leq^{\exists \mathrm{EF}^{+, k}} \mathbf{B}, \mathbf{b}
\end{gathered}
$$

Fundamental Questions

Obviously,

- $\mathbf{A} \cong \mathbf{B} \Longrightarrow \mathbf{A} \equiv{ }^{\mathrm{FO}^{k}} \mathbf{B}$
- $\mathbf{A} \rightarrow \mathbf{B} \Longrightarrow \mathbf{A} \leq{ }^{\exists \mathrm{FO}^{+, k}} \mathbf{B}$
k-Width Problem: For what A's do we have
- $\mathbf{A} \equiv \mathrm{FO}^{k} \mathbf{B} \Longrightarrow \mathbf{A} \cong \mathbf{B}$
- $\mathbf{A} \leq{ }^{\exists \mathrm{FO}^{+, k}} \mathbf{B} \Longrightarrow \mathbf{A} \rightarrow \mathbf{B}$

Width- k Problem: For what B's do we have

- $\mathbf{A} \equiv \mathrm{FO}^{k} \mathbf{B} \Longrightarrow \mathbf{A} \cong \mathbf{B}$
- $\mathbf{A} \leq{ }^{\exists \mathrm{FO}^{+, k}} \mathbf{B} \Longrightarrow \mathbf{A} \rightarrow \mathbf{B}$

Why Are These Questions Relevant for Us?

Theorem (Kolaitis and Vardi)
For finite \mathbf{A} and \mathbf{B}, the following are equivalent:

- $\mathbf{A} \leq{ }^{\exists \mathrm{FO}^{k,+}} \mathbf{B}$
- the (strong) k-consistency algorithm run on the CSP instance given by the scopes in \mathbf{A} and the constraint relations in \mathbf{B} does not detect a contradiction.

Note: The k-consistency algorithm runs in polynomial time for every fixed k.

Why Are These Questions Relevant for Us?

The k-width/width- k problems (for homomorphisms) aim for a classification of the scopes/templates that are solvable by a widely used algorithm.

Part II

ON THE k-WIDTH PROBLEM

Some Sufficient Conditions for FO^{k}

Theorem (Lindell)
If \mathbf{G} is a tree of degree d, then for all \mathbf{H} we have

$$
\mathbf{G} \equiv{ }^{\mathrm{FO}^{d+2}} \mathbf{H} \Longrightarrow \mathbf{G} \cong \mathbf{H}
$$

Theorem (Grohe)
If \mathbf{G} is a 3-connected planar graph, then for all \mathbf{H} we have

$$
\mathbf{G} \equiv{ }^{\mathrm{FO}^{30}} \mathbf{H} \Longrightarrow \mathbf{G} \cong \mathbf{H}
$$

Proof of Lindell's Theorem

Proof by Example:

Treewidth

Definition

- \mathbf{K}_{k+1} is a k-tree,
- if \mathbf{G} is a k-tree, then adding a vertex connected to all vertices of a \mathbf{K}_{k}-subgraph of \mathbf{G} is a k-tree.

Treewidth

Definition

- \mathbf{K}_{k+1} is a k-tree,
- if \mathbf{G} is a k-tree, then adding a vertex connected to all vertices of a \mathbf{K}_{k}-subgraph of \mathbf{G} is a k-tree.

Treewidth

Definition

- \mathbf{K}_{k+1} is a k-tree,
- if \mathbf{G} is a k-tree, then adding a vertex connected to all vertices of a \mathbf{K}_{k}-subgraph of \mathbf{G} is a k-tree.

Treewidth

Definition

- \mathbf{K}_{k+1} is a k-tree,
- if \mathbf{G} is a k-tree, then adding a vertex connected to all vertices of a \mathbf{K}_{k}-subgraph of \mathbf{G} is a k-tree.

Treewidth

Definition

- \mathbf{K}_{k+1} is a k-tree,
- if \mathbf{G} is a k-tree, then adding a vertex connected to all vertices of a \mathbf{K}_{k}-subgraph of \mathbf{G} is a k-tree.

Treewidth

Definition

- \mathbf{K}_{k+1} is a k-tree,
- if \mathbf{G} is a k-tree, then adding a vertex connected to all vertices of a \mathbf{K}_{k}-subgraph of \mathbf{G} is a k-tree.

Treewidth

Definition

- \mathbf{K}_{k+1} is a k-tree,
- if \mathbf{G} is a k-tree, then adding a vertex connected to all vertices of a \mathbf{K}_{k}-subgraph of \mathbf{G} is a k-tree.

Treewidth

Definition

- \mathbf{K}_{k+1} is a k-tree,
- if \mathbf{G} is a k-tree, then adding a vertex connected to all vertices of a \mathbf{K}_{k}-subgraph of \mathbf{G} is a k-tree.

Treewidth

Definition

- \mathbf{K}_{k+1} is a k-tree,
- if \mathbf{G} is a k-tree, then adding a vertex connected to all vertices of a \mathbf{K}_{k}-subgraph of \mathbf{G} is a k-tree.

Treewidth

Definition

- \mathbf{K}_{k+1} is a k-tree,
- if \mathbf{G} is a k-tree, then adding a vertex connected to all vertices of a \mathbf{K}_{k}-subgraph of \mathbf{G} is a k-tree.

Definition (Robertson and Seymour)
A graph has treewidth at most k if it is the subgraph of a k-tree.

Treewidth

Definition

- \mathbf{K}_{k+1} is a k-tree,
- if \mathbf{G} is a k-tree, then adding a vertex connected to all vertices of a \mathbf{K}_{k}-subgraph of \mathbf{G} is a k-tree.

Definition (Robertson and Seymour)
A graph has treewidth at most k if it is the subgraph of a k-tree.

Sufficient Condition for $\exists \mathrm{FO}^{+, k}$

Theorem (Dalmau, Kolaitis, and Vardi)
If the treewidth of the Gaifman graph of the core of \mathbf{A} is less than k, then for all \mathbf{B} be have

$$
\mathbf{A} \leq^{\exists \mathrm{FO}^{+}, k} \mathbf{B} \Longrightarrow \mathbf{A} \rightarrow \mathbf{B}
$$

Proof of DKV's Theorem

Proof by Example:

Necessary Conditions?

Solving the k-width problem for $\equiv \mathrm{FO}^{k}$ looks like an extraordinarily difficult question (undecidable?)

But, perhaps surprisingly, for $\leq{ }^{\exists \mathrm{FO}^{+, k}}$ it is doable.

Theorem (A..., Bulatov, and Dalmau)
The DKV condition is also necessary.

Corollary

The following are equivalent:

1. the treewidth of the Gaifman graph of the core of \mathbf{A} is less than k
2. $\mathbf{A} \leq^{\exists \mathrm{FO}^{+, k}} \mathbf{B} \Longrightarrow \mathbf{A} \rightarrow \mathbf{B}$ for every \mathbf{B}.

Part III

INDUCTIVE DEFINITIONS AND DATALOG

Inductive Definitions: Example

There is a path from x to y :

$$
\begin{aligned}
P^{(0)}(x, y) & :=\text { false } \\
P^{(n+1)}(x, y) & :=x=y \vee(\exists z)\left(E(x, z) \wedge P^{(n)}(z, y)\right)
\end{aligned}
$$

$$
P(x, y) \equiv \bigvee_{n} P^{(n)}(x, y)
$$

Inductive Definitions: General Form

Let $\varphi(\mathbf{x}, X)$ be a formula with r variables and an r-ary second order variable X that appears positively. We form the iterates:

$$
\begin{aligned}
\varphi^{(0)}(\mathbf{x}) & :=\text { false } \\
\varphi^{(n+1)}(\mathbf{x}) & :=\varphi\left(\mathbf{x}, X / \varphi^{(n)}\right)
\end{aligned}
$$

The union $U=\bigvee_{n} \varphi^{(n)}$ is a fixed point, in fact the least one:

Theorem (Knaster-Tarski)
On every finite structure,

- $U(\mathbf{x}) \equiv \varphi(\mathbf{x}, X / U)$
- if $X(\mathbf{x}) \equiv \varphi(\mathbf{x}, X)$, then $U(\mathbf{x}) \subseteq X(\mathbf{x})$.

Fixed-Point Logics

Least Fixed Point Logic (LFP):
closure of FO under inductive definitions.
Existential LFP ($\exists \mathrm{LFP}$):
closure of $\exists \mathrm{FO}$ under inductive definitions.
Existential-Positive LFP $\left(\exists \mathrm{LFP}^{+}\right)$: closure of $\exists \mathrm{FO}^{+}$under inductive definitions.

And the k-variable fragments: $\mathrm{LFP}^{k}, \exists \mathrm{LFP}^{k}$, and $\exists \mathrm{LFP}^{+, k}$

Fixed-Point Logics vs. Datalog

Datalog is just convenient syntax for $\exists \mathrm{LFP}^{+}$:

$$
\begin{aligned}
& P(x, y):-x=y \\
& P(x, y):-(\exists z)(E(x, z) \wedge P(z, y))
\end{aligned}
$$

We can do the same for LFP.
Example:

Game reachability.

$$
\begin{aligned}
P(x, y) & :-I(x) \wedge E(x, y) \\
P(x, y) & :-I(x) \wedge(\exists z)(E(x, z) \wedge P(z, y)) \\
P(x, y) & :-I(x) \wedge(\forall z)(E(x, z) \rightarrow P(z, y))
\end{aligned}
$$

Infinitary Logics

Infinitary Logic $\left(\mathrm{L}_{\infty} \omega\right)$:
closure of FO under infinitary conjunctions and disjunctions
Existential $\mathrm{L}_{\infty \omega}\left(\exists \mathrm{L}_{\infty \omega}\right)$:
closure of $\exists \mathrm{FO}$ under infinitary conjunctions and disjunctions
Existential-Positive $\mathrm{L}_{\infty \omega}\left(\exists \mathrm{L}_{\infty \omega}^{+}\right)$:
closure of $\exists \mathrm{FO}^{+}$under infinitary conjunctions and disjunctions
And the k-variable fragments: $\mathrm{L}_{\infty \omega}^{k}, \exists \mathrm{~L}_{\infty \omega}^{k}$, and $\exists \mathrm{L}_{\infty \omega}^{+, k}$

Fixed-Point Logics and Infinitary Logics

Carefully reusing variables we have [Barwise, Kolaitis and Vardi]:

$$
\mathrm{FO}^{k} \subseteq \mathrm{LFP}^{k} \subseteq \mathrm{~L}_{\infty \omega}^{k}
$$

Also for fragments [Kolaitis and Vardi]:

$$
\begin{aligned}
& \exists \mathrm{FO}^{k} \subseteq \exists \mathrm{LFP}^{k} \subseteq \exists \mathrm{~L}_{\infty \omega}^{k} \\
& \exists \mathrm{FO}^{+, k} \subseteq \exists \mathrm{LFP}^{+, k} \subseteq \exists \mathrm{~L}_{\infty \omega}^{+, k}
\end{aligned}
$$

Infinitary Logic and First-Order Logic in the Finite

Theorem (Kolaitis and Vardi)
For finite \mathbf{A} and \mathbf{B}, the following are equivalent:

1. $\mathbf{A} \equiv{ }^{\mathrm{FO}^{k}} \mathbf{B}\left(\right.$ resp. $\mathbf{A} \leq^{\exists \mathrm{FO}^{k}} \mathbf{B}$ and $\left.\mathbf{A} \leq^{\exists \mathrm{FO}^{+, k}} \mathbf{B}\right)$
2. $\mathbf{A} \equiv{ }^{\mathrm{L}_{\infty}^{k} \omega} \mathbf{B}$ (resp. $\mathbf{A} \leq^{\exists \mathrm{L}_{\infty \omega}^{k} \omega} \mathbf{B}$ and $\left.\mathbf{A} \leq^{\exists \mathrm{L}_{\infty \omega}^{+, k}} \mathbf{B}\right)$

Proof sketch (only for $\exists \mathrm{FO}^{+, k}$ vs $\exists \mathrm{L}_{\infty \omega}^{+, k}$):

- The appropriate game for $\exists \mathrm{L}_{\infty \omega}^{+, k}$ goes on for infinitely (ω) rounds.
- But after $|A|^{k}|B|^{k}+1$ rounds, some configuration must repeat, so if Spoiler has not won yet, Duplicator can survive forever. Q.E.D.

Part IV

ON THE WIDTH-k PROBLEM

Structures Having Width- $\exists \mathrm{FO}^{+, k}$

Theorem (Kolaitis and Vardi, Feder and Vardi)

The following are equivalent:

1. $\mathbf{A} \leq^{\exists \mathrm{FO}^{+, k}} \mathbf{B}$ implies $\mathbf{A} \rightarrow \mathbf{B}$ for every \mathbf{A}
2. $\neg \mathrm{CSP}(\mathbf{B})$ is $\exists \mathrm{LFP}^{+, k}$-definable
3. $\neg \operatorname{CSP}(\mathbf{B})$ is $\exists \mathrm{L}_{\infty}^{+}+\omega^{-}$-definable

Where $" \neg \operatorname{CSP}(\mathbf{B})$ is definable in L " means that there exists a sentence φ in L such that $\mathbf{A} \models \varphi$ iff $\mathbf{A} \nrightarrow \mathbf{B}$.

Structures Having Width- $\exists \mathrm{FO}^{+, k}$

Theorem (Kolaitis and Vardi, Feder and Vardi)
The following are equivalent:

1. $\mathbf{A} \leq^{\exists \mathrm{FO}^{+, k}} \mathbf{B}$ implies $\mathbf{A} \rightarrow \mathbf{B}$ for every \mathbf{A}
2. $\neg \mathrm{CSP}(\mathbf{B})$ is $\exists \mathrm{LFP}^{+, k}$-definable
3. $\neg \operatorname{CSP}(\mathbf{B})$ is $\exists \mathrm{L}_{\infty}^{+}, k$-definable
4. $\neg \mathrm{CSP}(\mathbf{B})$ is $\exists \mathrm{LFP}^{k}$-definable
5. $\neg \operatorname{CSP}(\mathbf{B})$ is $\exists \mathrm{L}_{\infty}^{k} \omega^{-d e f i n a b l e ~}$

Where " $\neg \operatorname{CSP}(\mathbf{B})$ is definable in L " means that there exists a sentence φ in L such that $\mathbf{A} \models \varphi$ iff $\mathbf{A} \nrightarrow \mathbf{B}$.

Proof of $\neg(1) \Rightarrow \neg(5)$

Suppose there exist $\mathbf{A} \leq{ }^{\exists \mathrm{FO}^{+, k}} \mathbf{B}$ such that $\mathbf{A} \nrightarrow \mathbf{B}$.

So $\neg \operatorname{CSP}(\mathbf{B})$ is not $\exists L_{\infty}^{k}$-definable. Q.E.D.

Proof of $\neg(1) \Rightarrow \neg(5)$

Suppose there exist $\mathbf{A} \leq{ }^{\exists \mathrm{FO}^{+, k}} \mathbf{B}$ such that $\mathbf{A} \nrightarrow \mathbf{B}$.

Claim:

So $\neg \operatorname{CSP}(\mathbf{B})$ is not $\exists \mathrm{L}_{\infty}^{k} \omega^{- \text {definable. Q.E.D. }}$

Proof of $\neg(1) \Rightarrow \neg(5)$

Suppose there exist $\mathbf{A} \leq{ }^{\exists \mathrm{FO}^{+, k}} \mathbf{B}$ such that $\mathbf{A} \nrightarrow \mathbf{B}$.

Claim:

Strategy for Duplicator:

- copy move on A on first component,
- use the h from the strategy for $\mathbf{A} \leq^{\exists \mathrm{FO}^{+, k}} \mathbf{B}$ for the second.

So $\neg \operatorname{CSP}(\mathbf{B})$ is not $\exists \mathrm{L}_{\infty}^{k}$-definable. Q.E.D.

Proof of $\neg(1) \Rightarrow \neg(5)$

Suppose there exist $\mathbf{A} \leq{ }^{\exists \mathrm{FO}^{+, k}} \mathbf{B}$ such that $\mathbf{A} \nrightarrow \mathbf{B}$.

Claim:

Strategy for Duplicator:

- copy move on \mathbf{A} on first component,
- use the h from the strategy for $\mathbf{A} \leq^{\exists \mathrm{FO}^{+, k}} \mathbf{B}$ for the second.

Why does it work?

- $a \in R^{\mathbf{A}}$ implies $(a, h(a)) \in R^{\mathbf{A} \times \mathbf{B}}$ because $h: \subset \mathbf{A} \rightarrow \mathbf{B}$,
- $a \notin R^{\mathbf{A}}$ implies $(a, h(a)) \notin R^{\mathbf{A} \times \mathbf{B}}$ by the definition of $\mathbf{A} \times \mathbf{B}$.

So $\neg \operatorname{CSP}(\mathbf{B})$ is not $\exists \mathrm{L}_{\infty}^{k}$-definable. Q.E.D.

Proof of $\neg(1) \Rightarrow \neg(5)$

Suppose there exist $\mathbf{A} \leq{ }^{\exists \mathrm{FO}^{+, k}} \mathbf{B}$ such that $\mathbf{A} \nrightarrow \mathbf{B}$.

Claim:

Strategy for Duplicator:

- copy move on \mathbf{A} on first component,
- use the h from the strategy for $\mathbf{A} \leq^{\exists \mathrm{FO}^{+, k}} \mathbf{B}$ for the second.

Why does it work?

- $a \in R^{\mathbf{A}}$ implies $(a, h(a)) \in R^{\mathbf{A} \times \mathbf{B}}$ because $h: \subset \mathbf{A} \rightarrow \mathbf{B}$,
- $a \notin R^{\mathbf{A}}$ implies $(a, h(a)) \notin R^{\mathbf{A} \times \mathbf{B}}$ by the definition of $\mathbf{A} \times \mathbf{B}$.

But then any $\exists \mathrm{L}_{\infty \omega}^{k}$ formula that holds on \mathbf{A} also holds on $\mathbf{A} \times \mathbf{B}$.
So $\neg \operatorname{CSP}(\mathbf{B})$ is not $\exists \mathrm{L}_{\infty}^{k}$-definable. Q.E.D.

How far can we take this?

Questions:

- Can we add LFP to the list?
- Can we add $\mathrm{L}_{\infty \omega}^{k}$ to the list?
- What are the LFP-definable $\operatorname{CSP}(\mathbf{B})$'s? (resp. $\mathrm{L}_{\infty \omega}^{k}$)

A partial answer:

Theorem (A..., Bulatov, and Dawar)
If $\operatorname{CSP}(\mathbf{B})$ is definable in $\mathrm{L}_{\infty \omega}^{k}$, then the variety of the algebra of \mathbf{B} omits types 1 and 2.

This strengthens a result of Larose and Zádori (who had bounded width instead).

Roadmap of the Proof: I

Part 1: Systems of equations in any non-trivial Abelian group is not $\mathrm{L}_{\infty}^{k} \omega^{\text {-definable. }}$

To do that, we construct two systems of equations \mathbf{A}_{1} and \mathbf{A}_{2} such that

1. \mathbf{A}_{1} is satisfiable
2. \mathbf{A}_{2} is unsatisfiable
3. $\mathbf{A}_{1} \equiv \mathrm{FO}^{k} \mathbf{A}_{2}$

Ideas borrowed from:

- A result of Cai, Fürer and Immerman in finite model theory.
- A construction of Tseitin in propositional proof complexity.
- Treewidth and the robber cop games of Thomas and Seymour in structural graph theory.

Roadmap of the Proof: II

Part 2: Definability of $\neg \operatorname{CSP}(\mathbf{B})$ in fragments that are closed under Datalog-reductions (such as LFP and beyond) implies that the CSPs with an algebra having a reduct in the variety of the algebra of \mathbf{B} are definable.

This required formalizing the appropriate reductions as
Datalog-reductions: homomorphic images, powers, subalgebras. See also [Larose and Zádori, Larose and Tesson].

Roadmap of the Proof: III

Part 3: Algebraic: if the variety does not omit type 1 or 2 , then it has the reduct of a module.

Part V

CLOSING REMARKS

Further Directions

- Are there digraphs with width- k, for some $k>3$ but not width-3?
- Prove that the width- k problem for $\equiv^{\mathrm{FO}^{k}}$ is undecidable.
- Does $\mathrm{LFP} \cap \mathrm{HOM}=\exists \mathrm{LFP}^{+}$?

