Finite Model Theory and CSPs

Albert Atserias Universitat Politècnica de Catalunya Barcelona, Spain

June 19, 2007

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Part I

FIRST-ORDER LOGIC, TYPES AND GAMES

Relational Structures vs. Functional Structures

Structures:

$$\mathbf{M} = (M, R_1^{\mathbf{M}}, R_2^{\mathbf{M}}, \dots, f_1^{\mathbf{M}}, f_2^{\mathbf{M}}, \dots)$$

I go relational:

relational structures $(\equiv no functions)$

Algebraists go functional:

algebras $(\equiv \text{ no relations}).$

Let $x_1, x_2, ...$ be a collection of first-order variables (intended to range over the points of the universe of a structure).

Definition

The collection of first-order formulas of σ (FO) is defined as:

- $x_{i_1} = x_{i_2}$ and $R_i(x_{i_1}, \ldots, x_{i_r})$ are formulas,
- $x_{i_1} \neq x_{i_2}$ and $\neg R_i(x_{i_1}, \ldots, x_{i_r})$ are formulas,
- if φ and ψ are formulas, so is $(\varphi \wedge \psi)$
- if φ and ψ are formulas, so is $(\varphi \lor \psi)$
- if φ is a formula, so is $(\exists x_i)(\varphi)$
- if φ is a formula, so is $(\forall x_i)(\varphi)$.

First-Order Logic: Semantics

Let $\varphi(\mathbf{x})$ be a formula with free variables $\mathbf{x} = (x_1, \dots, x_r)$, let **A** be a structure, and let $\mathbf{a} = (a_1, \dots, a_r) \in A^r$.

$$\mathbf{A}\models\varphi(x_1/a_1,\ldots,x_r/a_n)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 のへぐ

First-Order Logic: Semantics

Let $\varphi(\mathbf{x})$ be a formula with free variables $\mathbf{x} = (x_1, \dots, x_r)$, let **A** be a structure, and let $\mathbf{a} = (a_1, \dots, a_r) \in A^r$.

$$\mathbf{A}\models\varphi(x_1/a_1,\ldots,x_r/a_n)$$

Example

$$\varphi(x) := (\forall y)(\exists z)(E(x,z) \land E(y,z)).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fragments: full (FO)

- $x_{i_1} = x_{i_2}$ and $R_i(x_{i_1}, \ldots, x_{i_r})$ are formulas,
- $x_{i_1} \neq x_{i_2}$ and $\neg R_i(x_{i_1}, \ldots, x_{i_r})$ are formulas,

- if φ and ψ are formulas, so is $(\varphi \wedge \psi)$
- if φ and ψ are formulas, so is $(\varphi \lor \psi)$,
- if φ is a formula, so is $(\exists x_i)(\varphi)$
- if φ is a formula, so is $(\forall x_i)(\varphi)$.

Fragments of First-Order Logic

Fragments:

full (FO) , existential (\exists FO)

- $x_{i_1} = x_{i_2}$ and $R_i(x_{i_1}, \ldots, x_{i_r})$ are formulas,
- $x_{i_1} \neq x_{i_2}$ and $\neg R_i(x_{i_1}, \ldots, x_{i_r})$ are formulas,

- if arphi and ψ are formulas, so is $(arphi \wedge \psi)$
- if φ and ψ are formulas, so is $(\varphi \lor \psi)$,
- if φ is a formula, so is $(\exists x_i)(\varphi)$
- if φ is a formula, so is $(\forall x_i)(\varphi)$.

Fragments:

full (FO) , existential ($\exists \mathrm{FO})$, existential positive ($\exists \mathrm{FO}^+)$

A D M A

- $x_{i_1} = x_{i_2}$ and $R_i(x_{i_1}, \ldots, x_{i_r})$ are formulas,
- $x_{i_1} \neq x_{i_2}$ and $\neg R_i(x_{i_1}, \ldots, x_{i_r})$ are formulas,
- if arphi and ψ are formulas, so is $(arphi \wedge \psi)$
- if φ and ψ are formulas, so is $(\varphi \lor \psi)$,
- if φ is a formula, so is $(\exists x_i)(\varphi)$
- if φ is a formula, so is $(\forall x_i)(\varphi)$.

Fragments of First-Order Logic

Fragments:

full (FO) , existential ($\exists \rm FO)$, existential positive ($\exists \rm FO^+)$, quantifier-free

- $x_{i_1} = x_{i_2}$ and $R_i(x_{i_1}, \ldots, x_{i_r})$ are formulas,
- $x_{i_1} \neq x_{i_2}$ and $\neg R_i(x_{i_1}, \ldots, x_{i_r})$ are formulas,
- if φ and ψ are formulas, so is $(\varphi \wedge \psi)$
- if φ and ψ are formulas, so is $(\varphi \lor \psi)$,
- if φ is a formula, so is $(\exists x_i)(\varphi)$
- if φ is a formula, so is $(\forall x_i)(\varphi)$.

Fragments:

full (FO) , existential ($\exists \rm FO)$, existential positive ($\exists \rm FO^+)$, quantifier-free , atomic and negated atomic

- $x_{i_1} = x_{i_2}$ and $R_i(x_{i_1}, \ldots, x_{i_r})$ are formulas,
- $x_{i_1} \neq x_{i_2}$ and $\neg R_i(x_{i_1}, \ldots, x_{i_r})$ are formulas,
- if φ and ψ are formulas, so is $(\varphi \wedge \psi)$
- if φ and ψ are formulas, so is $(\varphi \lor \psi)$,
- if φ is a formula, so is $(\exists x_i)(\varphi)$
- if φ is a formula, so is $(\forall x_i)(\varphi)$.

Fragments:

full (FO) , existential ($\exists \rm FO)$, existential positive ($\exists \rm FO^+)$, quantifier-free , atomic and negated atomic , atomic.

- $x_{i_1} = x_{i_2}$ and $R_i(x_{i_1}, \ldots, x_{i_r})$ are formulas,
- $x_{i_1} \neq x_{i_2}$ and $\neg R_i(x_{i_1}, \dots, x_{i_r})$ are formulas,
- if φ and ψ are formulas, so is $(\varphi \wedge \psi)$
- if φ and ψ are formulas, so is $(\varphi \lor \psi)$,
- if φ is a formula, so is $(\exists x_i)(\varphi)$
- if φ is a formula, so is $(\forall x_i)(\varphi)$.

Definition

Let **A** be a structure, let $\mathbf{a} = (a_1, \dots, a_r)$ an *r*-tuple in A^r , and let *L* be a collection of first-order formulas:

1.
$$\operatorname{tp}_{L}(\mathbf{A}, \mathbf{a}) = \{\varphi(x_{1}, \dots, x_{r}) \in L : \mathbf{A} \models \varphi(x_{1}/a_{1}, \dots, x_{r}/a_{r})\}$$

2. $\operatorname{tp}_{L}(\mathbf{A}) = \{\varphi \in L : \mathbf{A} \models \varphi\}$

Intuitively: if $tp_L(\mathbf{A}, \mathbf{a}) \subseteq tp_L(\mathbf{B}, \mathbf{b})$, then every *L*-expressible property satisfied by \mathbf{a} in \mathbf{A} is also satisfied by \mathbf{b} in \mathbf{B} . We write

 $\mathbf{A}, \mathbf{a} \leq^{L} \mathbf{B}, \mathbf{b}$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ○ ◆

Examples of Types

because

- In G, every point has a common neighbor with a
- In **H**, not every point has a common neighbor with b

$$\varphi(x) := (\forall y)(\exists z)(E(x,z) \land E(y,z))$$

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

What does $\mathbf{A}, \mathbf{a} \leq^{L} \mathbf{B}, \mathbf{b}$ mean?

when L = {all atomic formulas}, it means
the mapping (a_i → b_i : i = 1,..., r) is a homomorphism
between the substructures induced by a and b

 when L = {all atomic and negated atomic formulas}, it means the mapping (a_i → b_i : i = 1,...,r) is an isomorphism between the substructures induced by a and b

A D M A

Meaning of Types

What does $\mathbf{A}, \mathbf{a} \leq^{L} \mathbf{B}, \mathbf{b}$ mean?

- when L = {all formulas with at most one quantifier}, it means the substructures induced by a and b are isomorphic and have the same types of extensions by one point
- when *L* = {all formulas with at most two quantifiers}, it means *the substructures induced by ...*
- note that $\mathbf{A}, \mathbf{a} \leq^{\mathrm{FO}} \mathbf{B}, \mathbf{b}$ iff $\mathbf{B}, \mathbf{b} \leq^{\mathrm{FO}} \mathbf{A}, \mathbf{a}$. We write

 $\mathbf{A}, \mathbf{a} \equiv^{L} \mathbf{B}, \mathbf{b}$

くしゃ (雪) (目) (目) (日) (日)

Referee: Spoiler wins if at any round the mapping $p_i \mapsto q_i$ is not a partial isomorphism. Otherwise, Duplicator wins.

A D M A

Referee: Spoiler wins if at any round the mapping $p_i \mapsto q_i$ is not a partial isomorphism. Otherwise, Duplicator wins.

A D M A

Referee: Spoiler wins if at any round the mapping $p_i \mapsto q_i$ is not a partial isomorphism. Otherwise, Duplicator wins.

Referee: Spoiler wins if at any round the mapping $p_i \mapsto q_i$ is not a partial isomorphism. Otherwise, Duplicator wins.

Referee: Spoiler wins if at any round the mapping $p_i \mapsto q_i$ is not a partial isomorphism. Otherwise, Duplicator wins.

Definition (Fraïssé)

An *n*-round winning strategy for the Duplicator on **A**, **a** and **B**, **b** is a sequence of non-empty sets of partial isomorphisms ($F_i : i < n$) such that ($\mathbf{a} \mapsto \mathbf{b}$) $\in F_0$ and

- 1. Retract For every i < n, every $f \in F_i$ and every $g \subseteq f$, we have $g \in F_i$,
- 2. Forth For every i < n 1, every $f \in F_i$, and every $a \in A$, there exists $g \in F_{i+1}$ with $a \in \text{Dom}(g)$ and $f \subseteq g$.
- 3. Back For every i < n 1, every $f \in F_i$, and every $b \in B$, there exists $g \in F_{i+1}$ with $b \in \operatorname{Rng}(g)$ and $f \subseteq g$.

 $\mathbf{A}, \mathbf{a} \equiv^{\text{EF}} \mathbf{B}, \mathbf{b}$: there is an *n*-round winning strategy for every *n*

Theorem (Ehrenfeucht, Fraïssé)

$$\textbf{A},\textbf{a}\equiv^{\rm FO}\textbf{B},\textbf{b}$$
 if and only if $\textbf{A},\textbf{a}\equiv^{\rm EF}\textbf{B},\textbf{b}$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Two players: Spoiler and Duplicator **Two structures**: **A** and **B Unlimited pebbles**: p_1, p_2, \ldots and q_1, q_2, \ldots **Rounds**:

Referee: Spoiler wins if at any round the mapping $p_i \mapsto q_i$ is not a partial **isomorphism** (resp. **homomorphism**).

 \equiv^{EF} , $\leq^{\exists \text{EF}}$, $\leq^{\exists \text{EF}^+}$: winning strategy for every *n*.

Theorem (Ehrenfeucht and Fraïssé)

$$\begin{array}{l} \textbf{A}, \textbf{a} \equiv^{\rm FO} \textbf{B}, \textbf{b} \text{ if and only if } \textbf{A}, \textbf{a} \equiv^{\rm EF} \textbf{B}, \textbf{b} \\ \textbf{A}, \textbf{a} \leq^{\exists \rm FO} \textbf{B}, \textbf{b} \text{ if and only if } \textbf{A}, \textbf{a} \leq^{\exists \rm EF} \textbf{B}, \textbf{b} \\ \textbf{A}, \textbf{a} \leq^{\exists \rm FO^+} \textbf{B}, \textbf{b} \text{ if and only if } \textbf{A}, \textbf{a} \leq^{\exists \rm EF^+} \textbf{B}, \textbf{b} \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Indistinguishability is too Strong for Finite Structures

For finite structures, these concepts add nothing:

- $\mathbf{A} \equiv^{\mathrm{FO}} \mathbf{B} \Longleftrightarrow \mathbf{A} \cong \mathbf{B}$
- $\mathbf{A} \leq^{\exists \mathrm{FO}^+} \mathbf{B} \Longleftrightarrow \mathbf{A} \to \mathbf{B}$

where

• $\textbf{A}\cong\textbf{B}$: there is an isomorphism between A and B

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

 $\bullet~\textbf{A} \rightarrow \textbf{B}$: there is a homomorphism from \textbf{A} to \textbf{B}

Why? Canonical formulas:

- For every finite ${\bf A},$ there exists an FO-sentence $\varphi_{{\bf A}}$ such that

$$\mathbf{B}\models\varphi_{\mathbf{A}}\Longleftrightarrow\mathbf{A}\cong\mathbf{B}$$

- For every finite ${\bf A},$ there exists an $\exists {\rm FO^+}\text{-sentence }\psi_{\bf A}$ such that

$$\mathbf{B} \models \psi_{\mathbf{A}} \iff \mathbf{A} \rightarrow \mathbf{B}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Second has a name: the canonical conjunctive query of **A** [Chandra and Merlin]

Examples of Canonical Formulas

-

Let **A** be:

$$\varphi_{\mathbf{A}} = (\exists x)(\exists y)(\exists z)$$

$$(x \neq y \land y \neq z \land x \neq z \land$$

$$(\forall u)(u = x \lor u = y \lor u = z) \land$$

$$E(x, y) \land E(y, z) \land E(z, x) \land$$

$$\neg E(y, x) \land \neg E(z, y) \land \neg E(x, z) \land$$

$$\neg E(x, x) \land \neg F(y, y) \land \neg F(z, z)).$$

$$\psi_{\mathbf{A}} = (\exists x)(\exists y)(\exists z) \\ (E(x,y) \land E(y,z) \land E(z,x))$$

First-Order Logic: k-Variable Fragments

Let us limit the set of first-order variables to x_1, \ldots, x_k .

- FO^k: k-variable fragment of FO
- $\exists FO^k$: *k*-variable fragment of $\exists FO$
- $\exists FO^{+,k}$: k-variable fragment of $\exists FO^+$

Note: Variables may be reused!

Example:

k-Pebble EF-Games

Two players: Spoiler and Duplicator **Two structures**: **A** and **B Limited pebbles**: p_1, \ldots, p_k and q_1, \ldots, q_k **An initial position**: $\mathbf{a} \in A^r$ and $\mathbf{b} \in B^r$ **Rounds**:

Referee: Spoiler wins if at any round the mapping $p_i \mapsto q_i$ is not a partial isomorphism (resp. homomorphism). Otherwise, Duplicator wins.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

 \equiv^{EF^k} , $\leq^{\exists \mathrm{EF}^k}$, $\leq^{\exists \mathrm{EF}^{+,k}}$: a strategy for every *n*.

Theorem (Barwise, Immerman, Kolaitis and Vardi)

$$\begin{array}{l} \textbf{A}, \textbf{a} \equiv^{\mathrm{FO}^{k}} \textbf{B}, \textbf{b} \text{ if and only if } \textbf{A}, \textbf{a} \equiv^{\mathrm{EF}^{k}} \textbf{B}, \textbf{b} \\ \textbf{A}, \textbf{a} \leq^{\exists \mathrm{EF}^{k}} \textbf{B}, \textbf{b} \text{ if and only if } \textbf{A}, \textbf{a} \leq^{\exists \mathrm{FO}^{k}} \textbf{B}, \textbf{b} \\ \textbf{A}, \textbf{a} \leq^{\exists \mathrm{FO}^{+,k}} \textbf{B}, \textbf{b} \text{ if and only if } \textbf{A}, \textbf{a} \leq^{\exists \mathrm{EF}^{+,k}} \textbf{B}, \textbf{b} \end{array}$$

Fundamental Questions

Obviously,

•
$$\mathbf{A} \cong \mathbf{B} \Longrightarrow \mathbf{A} \equiv^{\mathrm{FO}^{k}} \mathbf{B}$$

• $\mathbf{A} \to \mathbf{B} \Longrightarrow \mathbf{A} \leq^{\exists \mathrm{FO}^{+,k}} \mathbf{B}$

k-Width Problem: For what A's do we have

•
$$\mathbf{A} \equiv^{\mathrm{FO}^k} \mathbf{B} \Longrightarrow \mathbf{A} \cong \mathbf{B}$$

•
$$\mathbf{A} \leq^{\exists FO^{+,k}} \mathbf{B} \Longrightarrow \mathbf{A} \to \mathbf{B}$$

Width-k Problem: For what B's do we have

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

•
$$\mathbf{A} \equiv^{\mathrm{FO}^k} \mathbf{B} \Longrightarrow \mathbf{A} \cong \mathbf{B}$$

•
$$\mathbf{A} \leq {}^{\exists \mathrm{FO}^{+,k}} \mathbf{B} \Longrightarrow \mathbf{A} \to \mathbf{B}$$

Theorem (Kolaitis and Vardi)

For finite **A** and **B**, the following are equivalent:

- $\mathbf{A} \leq^{\exists \mathrm{FO}^{k,+}} \mathbf{B}$
- the (strong) k-consistency algorithm run on the CSP instance given by the scopes in **A** and the constraint relations in **B** does not detect a contradiction.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Note: The k-consistency algorithm runs in polynomial time for every fixed k.

The k-width/width-k problems (for homomorphisms) aim for a classification of the scopes/templates that are solvable by a widely used algorithm.

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Part II

ON THE k-WIDTH PROBLEM

Theorem (Lindell) If **G** is a tree of degree *d*, then for all **H** we have

$$\mathbf{G} \equiv^{\mathrm{FO}^{d+2}} \mathbf{H} \Longrightarrow \mathbf{G} \cong \mathbf{H}$$

Theorem (Grohe)

If G is a 3-connected planar graph, then for all H we have

$$\mathbf{G} \equiv^{\mathrm{FO}^{30}} \mathbf{H} \Longrightarrow \mathbf{G} \cong \mathbf{H}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof by Example:

Proof by Example:

Definition

- **K**_{k+1} is a *k*-tree,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Definition

- **K**_{k+1} is a *k*-tree,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition

- **K**_{k+1} is a *k*-tree,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition

- **K**_{k+1} is a *k*-tree,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition

- **K**_{k+1} is a *k*-tree,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition

- **K**_{k+1} is a *k*-tree,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition

- **K**_{k+1} is a *k*-tree,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition

- **K**_{k+1} is a *k*-tree,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition

- **K**_{k+1} is a *k*-tree,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition

- \mathbf{K}_{k+1} is a *k*-tree,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition (Robertson and Seymour) A graph has treewidth at most k if it is the subgraph of a k-tree.

Definition

- \mathbf{K}_{k+1} is a *k*-tree,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition (Robertson and Seymour) A graph has treewidth at most k if it is the subgraph of a k-tree.

Theorem (Dalmau, Kolaitis, and Vardi)

If the treewidth of the Gaifman graph of the core of **A** is less than k, then for all **B** be have

$$\mathbf{A} \leq^{\exists \mathrm{FO}^{+,k}} \mathbf{B} \Longrightarrow \mathbf{A} \to \mathbf{B}$$

Proof by Example:

Proof by Example:

Proof by Example:

Proof by Example:

Proof by Example:

Proof by Example:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Proof by Example:

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Proof by Example:

Proof by Example:

Proof by Example:

Necessary Conditions?

Solving the *k*-width problem for \equiv^{FO^k} looks like an extraordinarily difficult question (undecidable?)

But, perhaps surprisingly, for $\leq^{\exists FO^{+,k}}$ it is doable.

Theorem (A..., Bulatov, and Dalmau) The DKV condition is also necessary.

Corollary

The following are equivalent:

- 1. the treewidth of the Gaifman graph of the core of **A** is less than k
- 2. $\mathbf{A} \leq ^{\exists FO^{+,k}} \mathbf{B} \Longrightarrow \mathbf{A} \to \mathbf{B}$ for every \mathbf{B} .

Part III

INDUCTIVE DEFINITIONS AND DATALOG

Inductive Definitions: Example

There is a path from x to y:

$$P^{(0)}(x,y) := \text{ false}$$

 $P^{(n+1)}(x,y) := x = y \lor (\exists z)(E(x,z) \land P^{(n)}(z,y)).$

$$P(x,y) \equiv \bigvee_{n} P^{(n)}(x,y)$$

Let $\varphi(\mathbf{x}, X)$ be a formula with *r* variables and an *r*-ary second order variable *X* that appears *positively*. We form the iterates:

$$arphi^{(0)}(\mathbf{x}) := ext{false}$$

 $arphi^{(n+1)}(\mathbf{x}) := arphi(\mathbf{x}, X/arphi^{(n)})$

The union $U = \bigvee_n \varphi^{(n)}$ is a fixed point, in fact the least one:

Theorem (Knaster-Tarski)

On every finite structure,

- $U(\mathbf{x}) \equiv \varphi(\mathbf{x}, X/U)$
- if $X(\mathbf{x}) \equiv \varphi(\mathbf{x}, X)$, then $U(\mathbf{x}) \subseteq X(\mathbf{x})$.

Least Fixed Point Logic (LFP): closure of FO under inductive definitions.

Existential LFP (\exists LFP): closure of \exists FO under inductive definitions.

Existential-Positive LFP $(\exists LFP^+)$: closure of $\exists FO^+$ under inductive definitions.

And the *k*-variable fragments: LFP^{*k*}, \exists LFP^{*k*}, and \exists LFP^{+,*k*}

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Fixed-Point Logics vs. Datalog

Datalog is just convenient syntax for $\exists LFP^+$:

$$P(x,y) : - x = y$$

 $P(x,y) : - (\exists z)(E(x,z) \land P(z,y))$

We can do the same for LFP.

Example:

Game reachability.

$$P(x,y) := I(x) \land E(x,y)$$

$$P(x,y) := I(x) \land (\exists z)(E(x,z) \land P(z,y))$$

$$P(x,y) := II(x) \land (\forall z)(E(x,z) \rightarrow P(z,y))$$

Infinitary Logic $(L_{\infty\omega})$:

closure of FO under infinitary conjunctions and disjunctions

Existential $L_{\infty\omega}$ ($\exists L_{\infty\omega}$): closure of $\exists FO$ under infinitary conjunctions and disjunctions

Existential-Positive $L_{\infty\omega}$ ($\exists L^+_{\infty\omega}$): closure of $\exists FO^+$ under infinitary conjunctions and disjunctions

And the *k*-variable fragments: $L_{\infty\omega}^k$, $\exists L_{\infty\omega}^k$, and $\exists L_{\infty\omega}^{+,k}$

Carefully reusing variables we have [Barwise, Kolaitis and Vardi]: ${\rm FO}^k\subseteq {\rm LFP}^k\subseteq {\rm L}^k_{\infty\omega}$

Also for fragments [Kolaitis and Vardi]:

 $\exists FO^{k} \subseteq \exists LFP^{k} \subseteq \exists L_{\infty\omega}^{k}$ $\exists FO^{+,k} \subseteq \exists LFP^{+,k} \subseteq \exists L_{\infty\omega}^{+,k}$

A D M A

Theorem (Kolaitis and Vardi)

For finite A and B, the following are equivalent: 1. $A \equiv^{FO^{k}} B$ (resp. $A \leq^{\exists FO^{k}} B$ and $A \leq^{\exists FO^{+,k}} B$) 2. $A \equiv^{L_{\infty\omega}^{k}} B$ (resp. $A <^{\exists L_{\infty\omega}^{k}} B$ and $A <^{\exists L_{\infty\omega}^{+,k}} B$)

Proof sketch (only for $\exists FO^{+,k}$ vs $\exists L_{\infty\omega}^{+,k}$):

- The appropriate game for ∃L^{+,k}_{∞ω} goes on for infinitely (ω) rounds.
- But after |A|^k|B|^k + 1 rounds, some configuration must repeat, so if Spoiler has not won yet, Duplicator can survive forever. Q.E.D.

Part IV

ON THE WIDTH-k PROBLEM

Theorem (Kolaitis and Vardi, Feder and Vardi) The following are equivalent:

- 1. $\mathbf{A} \leq {}^{\exists \mathrm{FO}^{+,k}} \mathbf{B} \text{ implies } \mathbf{A} \rightarrow \mathbf{B} \text{ for every } \mathbf{A}$
- 2. $\neg CSP(\mathbf{B})$ is $\exists LFP^{+,k}$ -definable

3.
$$\neg CSP(\mathbf{B})$$
 is $\exists L_{\infty\omega}^{+,k}$ -definable

Where " $\neg CSP(\mathbf{B})$ is definable in *L*" means that there exists a sentence φ in *L* such that $\mathbf{A} \models \varphi$ iff $\mathbf{A} \not\rightarrow \mathbf{B}$.

Theorem (Kolaitis and Vardi, Feder and Vardi) The following are equivalent:

1.
$$\mathbf{A} \leq {}^{\exists \mathrm{FO}^{+,k}} \mathbf{B}$$
 implies $\mathbf{A} \to \mathbf{B}$ for every \mathbf{A}

- 2. $\neg CSP(\mathbf{B})$ is $\exists LFP^{+,k}$ -definable
- 3. $\neg CSP(\mathbf{B})$ is $\exists L_{\infty\omega}^{+,k}$ -definable

4.
$$\neg \text{CSP}(\mathbf{B})$$
 is $\exists \text{LFP}^k$ -definable

5.
$$\neg \text{CSP}(\mathbf{B})$$
 is $\exists L_{\infty\omega}^k$ -definable

Where " $\neg CSP(\mathbf{B})$ is definable in *L*" means that there exists a sentence φ in *L* such that $\mathbf{A} \models \varphi$ iff $\mathbf{A} \not\rightarrow \mathbf{B}$.

Proof of
$$\neg$$
 (1) \Rightarrow \neg (5)

Suppose there exist
$$\mathbf{A} \leq {}^{\exists FO^{+,k}} \mathbf{B}$$
 such that $\mathbf{A} \not\rightarrow \mathbf{B}$.

So $\neg CSP(\mathbf{B})$ is not $\exists L_{\infty\omega}^k$ -definable. Q.E.D.

Proof of \neg (1) \Rightarrow \neg (5)

Suppose there exist $\mathbf{A} \leq^{\exists FO^{+,k}} \mathbf{B}$ such that $\mathbf{A} \not\rightarrow \mathbf{B}$. $\mathbf{A} \leq^{\exists FO^{+,k}} \mathbf{B}$ $\downarrow \qquad \uparrow$ $\mathbf{A} \leq^{\exists FO^{k}} \mathbf{A} \times \mathbf{B}$

So $\neg CSP(\mathbf{B})$ is not $\exists L_{\infty\omega}^k$ -definable. Q.E.D.

Proof of
$$\neg$$
 (1) \Rightarrow \neg (5)

Suppose there exist $\mathbf{A} \leq^{\exists FO^{+,k}} \mathbf{B}$ such that $\mathbf{A} \not\rightarrow \mathbf{B}$. $\mathbf{A} \leq^{\exists FO^{+,k}} \mathbf{B}$ Claim: $\mathbf{A} \leq^{\exists FO^{k}} \mathbf{A} \times \mathbf{B}$

Strategy for Duplicator:

- copy move on A on first component,
- use the *h* from the strategy for $\mathbf{A} \leq \exists FO^{+,k} \mathbf{B}$ for the second.

So
$$\neg CSP(\mathbf{B})$$
 is not $\exists L_{\infty\omega}^k$ -definable. Q.E.D.

Proof of
$$\neg$$
 (1) \Rightarrow \neg (5)

Strategy for Duplicator:

- copy move on A on first component,
- use the *h* from the strategy for $\mathbf{A} \leq \exists FO^{+,k} \mathbf{B}$ for the second.

Why does it work?

- $a \in R^{\mathbf{A}}$ implies $(a, h(a)) \in R^{\mathbf{A} \times \mathbf{B}}$ because $h :\subset \mathbf{A} \to \mathbf{B}$,
- a ∉ R^A implies (a, h(a)) ∉ R^{A×B} by the definition of A × B.

So
$$\neg CSP(\mathbf{B})$$
 is not $\exists L_{\infty\omega}^k$ -definable. Q.E.D.

Proof of
$$\neg$$
 (1) \Rightarrow \neg (5)

Suppose there exist $\mathbf{A} \leq^{\exists FO^{+,k}} \mathbf{B}$ such that $\mathbf{A} \not\rightarrow \mathbf{B}$. $\mathbf{A} \leq^{\exists FO^{+,k}} \mathbf{B}$ Claim: $\mathbf{A} \leq^{\exists FO^{k}} \mathbf{A} \times \mathbf{B}$

Strategy for Duplicator:

- copy move on A on first component,
- use the *h* from the strategy for $\mathbf{A} \leq \exists FO^{+,k} \mathbf{B}$ for the second.

Why does it work?

- $a \in R^{\mathsf{A}}$ implies $(a, h(a)) \in R^{\mathsf{A} \times \mathsf{B}}$ because $h :\subset \mathsf{A} \to \mathsf{B}$,
- $a \notin R^{\mathbf{A}}$ implies $(a, h(a)) \notin R^{\mathbf{A} \times \mathbf{B}}$ by the definition of $\mathbf{A} \times \mathbf{B}$.

But then any $\exists L_{\infty\omega}^k$ formula that holds on **A** also holds on **A** \times **B**. So $\neg CSP(\mathbf{B})$ is not $\exists L_{\infty\omega}^k$ -definable. Q.E.D.

How far can we take this?

Questions:

- Can we add LFP to the list?
- Can we add $L_{\infty\omega}^k$ to the list?
- What are the LFP-definable $CSP(\mathbf{B})$'s? (resp. $L_{\infty\omega}^k$)

A partial answer:

Theorem (A..., Bulatov, and Dawar) If $CSP(\mathbf{B})$ is definable in $L_{\infty\omega}^k$, then the variety of the algebra of **B** omits types 1 and 2.

This strengthens a result of Larose and Zádori (who had bounded width instead).

Roadmap of the Proof: I

Part 1: Systems of equations in any non-trivial Abelian group is not $L_{\infty\omega}^k$ -definable.

To do that, we construct two systems of equations $\boldsymbol{\mathsf{A}}_1$ and $\boldsymbol{\mathsf{A}}_2$ such that

- 1. A_1 is satisfiable
- 2. A₂ is unsatisfiable
- 3. $\boldsymbol{\mathsf{A}}_1\equiv^{\mathrm{FO}^k}\boldsymbol{\mathsf{A}}_2$

Ideas borrowed from:

- A result of Cai, Fürer and Immerman in finite model theory.
- A construction of Tseitin in propositional proof complexity.
- Treewidth and the robber cop games of Thomas and Seymour in structural graph theory.

Part 2: Definability of $\neg CSP(B)$ in fragments that are closed under Datalog-reductions (such as LFP and beyond) implies that the CSPs with an algebra having a reduct in the variety of the algebra of **B** are definable.

This required formalizing the appropriate reductions as Datalog-reductions: homomorphic images, powers, subalgebras. See also [Larose and Zádori, Larose and Tesson].

A D M A

Part 3: Algebraic: if the variety does not omit type 1 or 2, then it has the reduct of a module.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Part V

CLOSING REMARKS

- Are there digraphs with width-k, for some k > 3 but not width-3?
- Prove that the width-k problem for \equiv^{FO^k} is undecidable.

• Does $LFP \cap HOM = \exists LFP^+$?