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Part I

FIRST-ORDER LOGIC, TYPES AND GAMES



Relational Structures vs. Functional Structures

Structures:

M = (M,RM
1 ,R

M
2 , . . . , f

M
1 , f M

2 , . . .)

I go relational:

relational structures
(≡ no functions)

Algebraists go functional:

algebras
(≡ no relations).



First-Order Logic: Syntax

Let x1, x2, . . . be a collection of first-order variables (intended to
range over the points of the universe of a structure).

Definition
The collection of first-order formulas of σ (FO) is defined as:

• xi1 = xi2 and Ri(xi1 , . . . , xir ) are formulas,

• xi1 6= xi2 and ¬Ri(xi1 , . . . , xir ) are formulas,

• if ϕ and ψ are formulas, so is (ϕ ∧ ψ)

• if ϕ and ψ are formulas, so is (ϕ ∨ ψ)

• if ϕ is a formula, so is (∃xi)(ϕ)

• if ϕ is a formula, so is (∀xi)(ϕ).



First-Order Logic: Semantics

Let ϕ(x) be a formula with free variables x = (x1, . . . , xr ), let A be
a structure, and let a = (a1, . . . , ar ) ∈ Ar .

A |= ϕ(x1/a1, . . . , xr/an)
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Let ϕ(x) be a formula with free variables x = (x1, . . . , xr ), let A be
a structure, and let a = (a1, . . . , ar ) ∈ Ar .

A |= ϕ(x1/a1, . . . , xr/an)

Example

ϕ(x) := (∀y)(∃z)(E (x , z) ∧ E (y , z)).

a

G |= ϕ(x/a)
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Types

Definition
Let A be a structure, let a = (a1, . . . , ar ) an r -tuple in Ar , and let
L be a collection of first-order formulas:

1. tpL(A, a) = {ϕ(x1, . . . , xr ) ∈ L : A |= ϕ(x1/a1, . . . , xr/ar )}

2. tpL(A) = {ϕ ∈ L : A |= ϕ}

Intuitively: if tpL(A, a) ⊆ tpL(B,b), then every L-expressible
property satisfied by a in A is also satisfied by b in B. We write

A, a ≤L B,b



Examples of Types

ba

G, a 6≤FO H, b

because

• In G, every point has a common neighbor with a

• In H, not every point has a common neighbor with b

ϕ(x) := (∀y)(∃z)(E (x , z) ∧ E (y , z))



Meaning of Types

What does A, a ≤L B,b mean?

• when L = {all atomic formulas}, it means

the mapping (ai 7→ bi : i = 1, . . . , r) is a homomorphism

between the substructures induced by a and b

• when L = {all atomic and negated atomic formulas}, it means

the mapping (ai 7→ bi : i = 1, . . . , r) is an isomorphism

between the substructures induced by a and b



Meaning of Types

What does A, a ≤L B,b mean?

• when L = {all formulas with at most one quantifier}, it means

the substructures induced by a and b are isomorphic and
have the same types of extensions by one point

• when L = {all formulas with at most two quantifiers}, it means

the substructures induced by ...

• note that A, a ≤FO B,b iff B,b ≤FO A, a. We write

A, a ≡L B,b



Ehrenfeucht-Fräıssé Games

Two players: Spoiler and Duplicator
Two structures: A and B

Unlimited pebbles: p1, p2, . . . and q1, q2, . . .
An initial position: a ∈ Ar and b ∈ B r

Rounds:

ba

Referee: Spoiler wins if at any round the mapping pi 7→ qi is not
a partial isomorphism. Otherwise, Duplicator wins.
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Back-and-Forth Systems

Definition (Fräıssé)

An n-round winning strategy for the Duplicator on A, a and B,b is
a sequence of non-empty sets of partial isomorphisms (Fi : i < n)
such that (a 7→ b) ∈ F0 and

1. Retract For every i < n, every f ∈ Fi and every g ⊆ f , we
have g ∈ Fi ,

2. Forth For every i < n − 1, every f ∈ Fi , and every a ∈ A,
there exists g ∈ Fi+1 with a ∈ Dom(g) and f ⊆ g .

3. Back For every i < n − 1, every f ∈ Fi , and every b ∈ B ,
there exists g ∈ Fi+1 with b ∈ Rng(g) and f ⊆ g .

A, a ≡EF B,b: there is an n-round winning strategy for every n



Indistinguishability vs Games

Theorem (Ehrenfeucht, Fräıssé)

A, a ≡FO B,b if and only if A, a ≡EF B,b



Ehrenfeucht-Fräıssé Games for Fragments

Two players: Spoiler and Duplicator
Two structures: A and B

Unlimited pebbles: p1, p2, . . . and q1, q2, . . .
Rounds:

ba

Referee: Spoiler wins if at any round the mapping pi 7→ qi is not
a partial isomorphism (resp. homomorphism).

≡EF, ≤∃EF, ≤∃EF
+
: winning strategy for every n.



Indistinguishability vs Games

Theorem (Ehrenfeucht and Fräıssé)

A, a ≡FO B,b if and only if A, a ≡EF B,b

A, a ≤∃FO B,b if and only if A, a ≤∃EF B,b

A, a ≤∃FO+
B,b if and only if A, a ≤∃EF+

B,b



Indistinguishability is too Strong for Finite Structures

For finite structures, these concepts add nothing:

• A ≡FO B ⇐⇒ A ∼= B

• A ≤∃FO
+

B ⇐⇒ A → B

where

• A ∼= B : there is an isomorphism between A and B

• A → B : there is a homomorphism from A to B



Indistinguishability is too Strong for Finite Structures

Why? Canonical formulas:

• For every finite A, there exists an FO-sentence ϕA such that

B |= ϕA ⇐⇒ A ∼= B

• For every finite A, there exists an ∃FO+-sentence ψA such
that

B |= ψA ⇐⇒ A → B.

Second has a name: the canonical conjunctive query of A

[Chandra and Merlin]



Examples of Canonical Formulas

Let A be:

ϕA = (∃x)(∃y)(∃z)

(x 6= y ∧ y 6= z ∧ x 6= z ∧

(∀u)(u = x ∨ u = y ∨ u = z) ∧

E (x , y) ∧ E (y , z) ∧ E (z , x) ∧

¬E (y , x) ∧ ¬E (z , y) ∧ ¬E (x , z) ∧

¬E (x , x) ∧ ¬E (y , y) ∧ ¬E (z , z)).

ψA = (∃x)(∃y)(∃z)

(E (x , y) ∧ E (y , z) ∧ E (z , x))



First-Order Logic: k-Variable Fragments

Let us limit the set of first-order variables to x1, . . . , xk .

• FOk : k-variable fragment of FO

• ∃FOk : k-variable fragment of ∃FO

• ∃FO+,k : k-variable fragment of ∃FO+

Note: Variables may be reused!

Example:

path5(x , y) := (∃z)(E (x , z) ∧

(∃x)(E (z , x) ∧

(∃z)(E (x , z) ∧

(∃x)(E (z , x) ∧ E (x , y))))).



k-Pebble EF-Games

Two players: Spoiler and Duplicator
Two structures: A and B

Limited pebbles: p1, . . . , pk and q1, . . . , qk

An initial position: a ∈ Ar and b ∈ B r

Rounds:

ba

Referee: Spoiler wins if at any round the mapping pi 7→ qi is not
a partial isomorphism (resp. homomorphism). Otherwise,
Duplicator wins.

≡EFk

, ≤∃EFk

, ≤∃EF+,k

: a strategy for every n.



Indistinguishability vs k-Pebbles Games

Theorem (Barwise, Immerman, Kolaitis and Vardi)

A, a ≡FO
k

B,b if and only if A, a ≡EF
k

B,b

A, a ≤∃EF
k

B,b if and only if A, a ≤∃FO
k

B,b

A, a ≤∃FO
+,k

B,b if and only if A, a ≤∃EF
+,k

B,b



Fundamental Questions

Obviously,

• A ∼= B =⇒ A ≡FO
k

B

• A → B =⇒ A ≤∃FO
+,k

B

k-Width Problem: For what A’s do we have

• A ≡FO
k

B =⇒ A ∼= B

• A ≤∃FO
+,k

B =⇒ A → B

Width-k Problem: For what B’s do we have

• A ≡FO
k

B =⇒ A ∼= B

• A ≤∃FO
+,k

B =⇒ A → B



Why Are These Questions Relevant for Us?

Theorem (Kolaitis and Vardi)

For finite A and B, the following are equivalent:

• A ≤∃FO
k,+

B

• the (strong) k-consistency algorithm run on the CSP instance
given by the scopes in A and the constraint relations in B

does not detect a contradiction.

Note: The k-consistency algorithm runs in polynomial time for
every fixed k.



Why Are These Questions Relevant for Us?

The k-width/width-k problems (for homomorphisms) aim for a
classification of the scopes/templates that are solvable by a widely
used algorithm.



Part II

ON THE k-WIDTH PROBLEM



Some Sufficient Conditions for FO
k

Theorem (Lindell)

If G is a tree of degree d, then for all H we have

G ≡FO
d+2

H =⇒ G ∼= H

Theorem (Grohe)

If G is a 3-connected planar graph, then for all H we have

G ≡FO
30

H =⇒ G ∼= H



Proof of Lindell’s Theorem

Proof by Example:
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Proof by Example:
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Proof by Example:



Proof of Lindell’s Theorem

Proof by Example:



Proof of Lindell’s Theorem

Proof by Example:



Treewidth

Definition

• Kk+1 is a k-tree,

• if G is a k-tree, then adding a vertex connected to all vertices
of a Kk -subgraph of G is a k-tree.

Definition (Robertson)
A graph



Treewidth
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Definition

• Kk+1 is a k-tree,
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Treewidth

Definition

• Kk+1 is a k-tree,

• if G is a k-tree, then adding a vertex connected to all vertices
of a Kk -subgraph of G is a k-tree.

Definition (Robertson)
A graph



Treewidth

Definition

• Kk+1 is a k-tree,

• if G is a k-tree, then adding a vertex connected to all vertices
of a Kk -subgraph of G is a k-tree.

Definition (Robertson and Seymour)

A graph has treewidth at most k if it is the subgraph of a k-tree.



Treewidth

Definition

• Kk+1 is a k-tree,

• if G is a k-tree, then adding a vertex connected to all vertices
of a Kk -subgraph of G is a k-tree.

Definition (Robertson and Seymour)

A graph has treewidth at most k if it is the subgraph of a k-tree.



Sufficient Condition for ∃FO
+,k

Theorem (Dalmau, Kolaitis, and Vardi)

If the treewidth of the Gaifman graph of the core of A is less than
k, then for all B be have

A ≤∃FO+,k

B =⇒ A → B



Proof of DKV’s Theorem

Proof by Example:
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Proof of DKV’s Theorem

Proof by Example:



Necessary Conditions?

Solving the k-width problem for ≡FO
k

looks like an extraordinarily
difficult question (undecidable?)

But, perhaps surprisingly, for ≤∃FO
+,k

it is doable.

Theorem (A..., Bulatov, and Dalmau)

The DKV condition is also necessary.

Corollary

The following are equivalent:

1. the treewidth of the Gaifman graph of the core of A is less
than k

2. A ≤∃FO
+,k

B =⇒ A → B for every B.



Part III

INDUCTIVE DEFINITIONS AND DATALOG



Inductive Definitions: Example

There is a path from x to y :

P(0)(x , y) := false

P(n+1)(x , y) := x = y ∨ (∃z)(E (x , z) ∧ P(n)(z , y)).

P(x , y) ≡
∨

n

P(n)(x , y)



Inductive Definitions: General Form

Let ϕ(x,X ) be a formula with r variables and an r -ary second
order variable X that appears positively. We form the iterates:

ϕ(0)(x) := false

ϕ(n+1)(x) := ϕ(x,X/ϕ(n))

The union U =
∨

n
ϕ(n) is a fixed point, in fact the least one:

Theorem (Knaster-Tarski)

On every finite structure,

• U(x) ≡ ϕ (x,X/U)

• if X (x) ≡ ϕ(x,X ), then U(x) ⊆ X (x).



Fixed-Point Logics

Least Fixed Point Logic (LFP):
closure of FO under inductive definitions.

Existential LFP (∃LFP):
closure of ∃FO under inductive definitions.

Existential-Positive LFP (∃LFP+):
closure of ∃FO+ under inductive definitions.

And the k-variable fragments: LFPk , ∃LFPk , and ∃LFP+,k



Fixed-Point Logics vs. Datalog

Datalog is just convenient syntax for ∃LFP+:

P(x , y) : − x = y

P(x , y) : − (∃z)(E (x , z) ∧ P(z , y))

We can do the same for LFP.

Example:

Game reachability.

II
I

I

I
II

II

II

P(x , y) : − I (x) ∧ E (x , y)

P(x , y) : − I (x) ∧ (∃z)(E (x , z) ∧ P(z , y))

P(x , y) : − II (x) ∧ (∀z)(E (x , z) → P(z , y))



Infinitary Logics

Infinitary Logic (L∞ω):
closure of FO under infinitary conjunctions and disjunctions

Existential L∞ω (∃L∞ω):
closure of ∃FO under infinitary conjunctions and disjunctions

Existential-Positive L∞ω (∃L+
∞ω

):
closure of ∃FO+ under infinitary conjunctions and disjunctions

And the k-variable fragments: Lk
∞ω

, ∃Lk
∞ω

, and ∃L
+,k
∞ω



Fixed-Point Logics and Infinitary Logics

Carefully reusing variables we have [Barwise, Kolaitis and Vardi]:

FOk ⊆ LFPk ⊆ Lk

∞ω

Also for fragments [Kolaitis and Vardi]:

∃FOk ⊆ ∃LFPk ⊆ ∃Lk

∞ω

∃FO+,k ⊆ ∃LFP+,k ⊆ ∃L+,k

∞ω



Infinitary Logic and First-Order Logic in the Finite

Theorem (Kolaitis and Vardi)

For finite A and B, the following are equivalent:

1. A ≡FO
k

B (resp. A ≤∃FO
k

B and A ≤∃FO
+,k

B)

2. A ≡Lk
∞ω B (resp. A ≤∃Lk

∞ω B and A ≤∃L
+,k

∞ω B)

Proof sketch (only for ∃FO+,k vs ∃L
+,k
∞ω):

• The appropriate game for ∃L
+,k
∞ω goes on for infinitely (ω)

rounds.

• But after |A|k |B |k + 1 rounds, some configuration must
repeat, so if Spoiler has not won yet, Duplicator can survive
forever. Q.E.D.



Part IV

ON THE WIDTH-k PROBLEM



Structures Having Width-∃FO
+,k

Theorem (Kolaitis and Vardi, Feder and Vardi)

The following are equivalent:

1. A ≤∃FO
+,k

B implies A → B for every A

2. ¬CSP(B) is ∃LFP+,k-definable

3. ¬CSP(B) is ∃L
+,k
∞ω-definable

Where ”¬CSP(B) is definable in L” means that there exists a
sentence ϕ in L such that A |= ϕ iff A 6→ B.



Structures Having Width-∃FO
+,k

Theorem (Kolaitis and Vardi, Feder and Vardi)

The following are equivalent:

1. A ≤∃FO
+,k

B implies A → B for every A

2. ¬CSP(B) is ∃LFP+,k-definable

3. ¬CSP(B) is ∃L
+,k
∞ω-definable

4. ¬CSP(B) is ∃LFPk -definable

5. ¬CSP(B) is ∃Lk
∞ω

-definable

Where ”¬CSP(B) is definable in L” means that there exists a
sentence ϕ in L such that A |= ϕ iff A 6→ B.



Proof of ¬ (1) ⇒ ¬ (5)

Suppose there exist A ≤∃FO+,k

B such that A 6→ B.

So ¬CSP(B) is not ∃Lk
∞ω

-definable. Q.E.D.



Proof of ¬ (1) ⇒ ¬ (5)

Suppose there exist A ≤∃FO+,k

B such that A 6→ B.

Claim:
A ≤∃FO

+,k

B

↓ ↑

A ≤∃FO
k

A × B

So ¬CSP(B) is not ∃Lk
∞ω

-definable. Q.E.D.



Proof of ¬ (1) ⇒ ¬ (5)

Suppose there exist A ≤∃FO+,k

B such that A 6→ B.

Claim:
A ≤∃FO

+,k

B

↓ ↑

A ≤∃FO
k

A × B

Strategy for Duplicator:

• copy move on A on first component,

• use the h from the strategy for A ≤∃FO
+,k

B for the second.

So ¬CSP(B) is not ∃Lk
∞ω

-definable. Q.E.D.



Proof of ¬ (1) ⇒ ¬ (5)

Suppose there exist A ≤∃FO+,k

B such that A 6→ B.

Claim:
A ≤∃FO

+,k

B

↓ ↑

A ≤∃FO
k

A × B

Strategy for Duplicator:

• copy move on A on first component,

• use the h from the strategy for A ≤∃FO
+,k

B for the second.

Why does it work?

• a ∈ RA implies (a, h(a)) ∈ RA×B because h :⊂ A → B,

• a 6∈ RA implies (a, h(a)) 6∈ RA×B by the definition of A × B.

So ¬CSP(B) is not ∃Lk
∞ω

-definable. Q.E.D.



Proof of ¬ (1) ⇒ ¬ (5)

Suppose there exist A ≤∃FO+,k

B such that A 6→ B.

Claim:
A ≤∃FO

+,k

B

↓ ↑

A ≤∃FO
k

A × B

Strategy for Duplicator:

• copy move on A on first component,

• use the h from the strategy for A ≤∃FO
+,k

B for the second.

Why does it work?

• a ∈ RA implies (a, h(a)) ∈ RA×B because h :⊂ A → B,

• a 6∈ RA implies (a, h(a)) 6∈ RA×B by the definition of A × B.

But then any ∃Lk
∞ω

formula that holds on A also holds on A×B.

So ¬CSP(B) is not ∃Lk
∞ω

-definable. Q.E.D.



How far can we take this?

Questions:

• Can we add LFP to the list?

• Can we add Lk
∞ω

to the list?

• What are the LFP-definable CSP(B)’s? (resp. Lk
∞ω

)

A partial answer:

Theorem (A..., Bulatov, and Dawar)

If CSP(B) is definable in Lk
∞ω

, then the variety of the algebra of B

omits types 1 and 2.

This strengthens a result of Larose and Zádori (who had bounded
width instead).



Roadmap of the Proof: I

Part 1: Systems of equations in any non-trivial Abelian group is
not Lk

∞ω
-definable.

To do that, we construct two systems of equations A1 and A2 such
that

1. A1 is satisfiable

2. A2 is unsatisfiable

3. A1 ≡FO
k

A2

Ideas borrowed from:

• A result of Cai, Fürer and Immerman in finite model theory.

• A construction of Tseitin in propositional proof complexity.

• Treewidth and the robber cop games of Thomas and Seymour
in structural graph theory.



Roadmap of the Proof: II

Part 2: Definability of ¬CSP(B) in fragments that are closed
under Datalog-reductions (such as LFP and beyond) implies that
the CSPs with an algebra having a reduct in the variety of the
algebra of B are definable.

This required formalizing the appropriate reductions as
Datalog-reductions: homomorphic images, powers, subalgebras.
See also [Larose and Zádori, Larose and Tesson].



Roadmap of the Proof: III

Part 3: Algebraic: if the variety does not omit type 1 or 2, then it
has the reduct of a module.



Part V

CLOSING REMARKS



Further Directions

• Are there digraphs with width-k, for some k > 3 but not
width-3?

• Prove that the width-k problem for ≡FO
k

is undecidable.

• Does LFP ∩ HOM = ∃LFP+?


