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Abstract
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greater complexity and concentration in the �nancial network may amplify this fragility. The analysis
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1. Introduction

Herbert Simon spent over half a century teaching at Carnegie-Mellon University. In his classic

study of �The Architecture of Complexity�, he laid the foundations for evaluating the resilience

and evolution of complex systems (Simon, 1962). His analysis drew upon a wide spectrum of

systems thinking �from physical, biological and social sciences. Out of this, Simon reached the

powerful conclusion that even complex systems tended to exhibit a basic simplicity. Systems could

be arranged in a natural hierarchy, comprising nested sub-structures. Non-hierarchical structures

would tend to be deselected over time because of their ine¢ ciency or lack of robustness relative to

simpler, hierarchical structures. Whether the complex system was biological, physical, or social,

it would be a case of survival of the simplest.

The modern �nancial system seems to have bucked this evolutionary trend. In recent years, it

has become much more complex, concentrated and interconnected.1 As much as two-thirds of the

spectacular growth in banks�balance sheets in the years prior to the crisis re�ected increasing

claims within the �nancial system, rather than with non-�nancial agents. In Simon�s words,

the �nancial system has become less modular, less hierarchical and thus less decomposable. In

consequence, it became markedly more susceptible to systemic collapse. This sowed the seeds of

the global �nancial crisis of 2007/8.

In this paper, we explore how the complexity and concentration of �nancial linkages can give

rise to systemic liquidity crises that threaten �nancial system resilience. In keeping with the multi-

disciplinary spirit of Simon (1962), our theoretical framework draws upon network techniques

developed in epidemiology and statistical physics to identify �tipping points�in complex systems,

whereby a small change in the underlying parameters or shocks can make a very large di¤erence to

outcomes. In light of recent events, the paper focuses on the collapse of the interbank market. We

demonstrate both analytically and via numerical simulations how repo market activity, haircut

shocks, and liquidity hoarding in unsecured interbank markets may have contributed to the

spread of contagion and systemic collapse.2 The network lens also o¤ers new perspectives on a

broad range of recent and proposed policy measures aimed at tackling �nancial system risk.

1See Haldane (2009). It is natural to ask why the evolutionary forces described by Simon may not have forced
an earlier deselection of such a complex system. One possible explanation is policy. Successive crises have seen a
progressive widening and broadening of the �nancial safety net � from last resort lending from the 19th century
onwards, to deposit insurance from the 1930s, to the block-buster capital and liquidity support for both banks
and non-banks during this century (Alessandri and Haldane, 2009). Until the end of the Bretton Woods era,
increasing implicit support went hand-in-hand with tougher �nancial regulation and greater restrictions on global
capital �ows. The 25-year postwar period was remarkable for its absence of systemic banking crises. But an era
of deregulation since the mid 1970s may have contributed to increasing complexity and concentration.

2A repo transaction entails borrowing money using securities as collateral. It is structured as the spot sale of
a security for cash, coupled with an agreement to repurchase the same security at the initial price plus interest at
a particular date in the future. When the cash lent on repo trades is lower than the current market value of the
security used as collateral, the discount is referred to as the haircut.
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Despite obvious parallels between �nancial systems and complex systems in other �elds (May

et al, 2008; Haldane, 2009; Haldane and May, 2011), the use of network techniques from epidemi-

ology and statistical physics to the study of �nancial contagion is in its infancy. One important

reason for the slow up-take amongst economists is that such network techniques are typically

silent about behavioural considerations. But they have the advantage of eclecticism about net-

work formation processes and can be calibrated to match real-world networks (such as those

depicted in Figure 1). They are particularly well suited for dealing with heterogeneity of agents,

charting the dynamic propagation of shocks within the �nancial system and identifying the non-

linearities that characterize �nancial instability in a parsimonious way.3

In what follows, we examine the interplay between complexity, concentration and stability us-

ing a simple network model of the banking system in which individual banks are randomly linked

together by their interbank claims on each other. Although stylised, the set-up is su¢ ciently rich

to permit the study of shocks that diminish the availability of interbank loans, so-called �funding

liquidity shocks�. During the crisis, this took the form of liquidity hoarding by banks. As one

bank calls in or shortens the term of its interbank loans, a¤ected banks in turn do the same. The

connectivity and concentration of the players in the network play key roles in this propagation

mechanism.

We start by exploring analytically how such funding contagion can generate systemic liquidity

crises.4 In doing so, we articulate how tipping points may be embedded in the �nancial network

and show how these depend on the level of liquid asset holdings, the amount of interbank activity,

and the size of haircuts on banks�assets.

We then consider numerical simulations which illustrate the potential fragility of the banking

system and shed light on the design and implementation of policies which might help to address

this. The simulations consider two possible network con�gurations: one in which the interbank

links in the network are distributed roughly evenly across di¤erent banks (Poisson con�guration),

and one in which some banks in the network are much more highly connected than the typical

bank (geometric con�guration). The simulations for the Poisson network are a useful benchmark,

while the fat-tailed geometric con�guration is more in keeping with real-world networks.

We consider six experiments and a further four policy exercises. First, to provide a baseline,

we consider what happens when a random adverse haircut shock at a single bank forces it to

3See Jackson (2008) for a comprehensive study of network techniques and their applications to economics.
4We build on Gai and Kapadia (2010, 2011) who model default contagion and liquidity hoarding by adapting

techniques advanced by Newman et al (2001) and Watts (2002). May and Arinaminpathy (2010) show how similar
results on the likelihood and dynamics of default contagion can be obtained by assuming that all banks follow
exactly �average� behaviour, and we also draw on them in applying this type of (mean-�eld) approximation to
our model.
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start hoarding liquidity under the Poisson network con�guration. We illustrate the frequency and

contagious spread of systemic liquidity crises, identifying the tipping point of the system in the

process. Our second experiment introduces an additional aggregate haircut shock which a¤ects

all banks. We use it to articulate how our model speaks to the collapse of interbank markets in

the early part of the crisis during August and September 2007.

The third and fourth experiments focus on the role of concentration by assessing how the

results change under a fat-tailed (geometric) network con�guration, and also explore the di¤ering

consequences of a �targeted�shock which a¤ects the most interconnected interbank lender under

both network con�gurations. These are old exercises in epidemiology and the analysis of network

resilience (Anderson and May, 1991; Albert et al, 2000). But the rapid emergence of institutions

that are too big, connected, or important to fail underlines their increasing importance in �nance.

The �fth and sixth experiments explore di¤erent dimensions of complexity �what happens to

�nancial vulnerability when unsecured interbank market activity increases and initial aggregate

haircuts change. Since haircuts appear to exhibit cyclical behaviour, tending to be compressed

in the upswing of a cycle as �nancial institutions become increasingly exuberant, the latter

experiment speaks to how systemic risk in the system may change dynamically.

Our �rst policy exercise explores the consequences of imposing a uniform increase in liquid

asset holdings on the resilience of the �nancial system. The second policy exercise then simulates

the model under an alternative policy rule in which the average increase in liquid assets is

identical to the �rst policy exercise but where the increase in liquid assets at each individual

bank is positively related to its interbank assets. This allows us to assess the impact of targeting

higher liquidity requirements on key players in the interbank network.

The third policy exercise analyses how imposing haircut-dependent liquidity requirements

might a¤ect the cyclicality of systemic risk. Finally, we consider what happens if the ampli�cation

mechanism underpinning the liquidity hoarding dynamic is attenuated somewhat. Since this

ampli�cation may be associated with uncertainty about the network among participants within

it, this exercise speaks to the impact that greater network transparency could have on �nancial

system resilience.

The parsimony of our framework allows us to incorporate insights from the recent literature on

�nancial crises. It draws on more conventional theoretical and empirical approaches that view the

�nancial system as a network.5 But it is able to assess resilience and policy interventions under

5More conventional theoretical models include Allen and Gale (2000), Freixas et al (2000) and Brusco and
Castiglionesi (2007) �see Allen and Babus (2009) for a comprehensive survey. The empirical literature is surveyed
by Upper (2011). This tends to use regulatory data on large exposures between banks to analyse default contagion
in interbank markets �apart from a brief discussion by Fur�ne (2003), the role of liquidity e¤ects in the contagion
process is largely ignored in this line of the literature.
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a much more realistic network structure, while placing liquidity e¤ects and funding contagion at

centre stage and still maintaining the generality of an analytical model. Our model also embodies

the ampli�cation role of collateral in recognising that a key risk in repo transactions stems from

shocks to the haircuts on the securities which serve as collateral, and complements the literature

on the behavioural foundations of the interbank freeze by articulating how a strong focus on

network contagion e¤ects may help to improve understanding of the probability and impact of

such events.6

The paper proceeds as follows. Section 2 presents some empirical motivation for a network

approach to the study of systemic risk. Section 3 outlines the model and describes analytically

how contagion can spread across a banking network. Section 4 presents the results of our six

experiments and four policy exercises. Section 5 draws out the policy implications and discusses

them in the context of the ongoing debate on regulatory reform. A �nal section concludes.

2. Stylised Evidence on Financial System Complexity and Concentration

Quantifying the complexity and concentration of �nancial systems is di¢ cult. Nevertheless,

data on interbank lending and intra-�nancial system activity provide some motivation for adopt-

ing a network approach, and for our focus on bank heterogeneity, liquidity hoarding dynamics,

and non-linearities.

Figure 1 depicts the network of bilateral large exposures between the major UK banks, with

the nodes representing banks, their size representing each bank�s overall importance in the inter-

bank network, and the darkness of the links re�ecting the value of interbank exposures between

institutions. The evident complexity highlights the need to move beyond stylised network repre-

sentations when analysing systemic risk. Concentration in the network is also clearly visible and

this is re�ected in the fat-tailed nature of the underlying distribution of linkages and loan sizes

implied by Figure 1.7

Evidence on the recent evolution of concentration and complexity motivates our focus on

these issues in relation to the interbank market collapse. Figure 2 points to growing concentration

within national �nancial boundaries, from already high starting points. It shows the marked rise
6On the ampli�cation role of haircut shocks, see Brunnermeier and Pedersen (2009), Adrian and Shin (2010a),

Geanakoplos (2010) and Gorton and Metrick (2010). Key papers on the interbank freeze include Caballero and
Krishnamurthy (2008), Allen et al (2009), Caballero and Simsek (2010), Bolton et al (2011), Diamond and Rajan
(2011) and Acharya et al (2011). Acharya and Skeie (this issue) is another contribution in this vein. Their model
explores how banks�uncertainty over their ability to roll over their own debt may cause them to restrict lending
in interbank markets. Although they do not consider how such behaviour may propagate through the interbank
network, their story of a precautionary motive for liquidity hoarding is consistent with the view of hoarding taken
in this paper; indeed, it may be interpreted as providing a behavioural foundation for it.

7See Boss et al (2004) and Craig and von Peter (2010) for similar evidence on the Austrian and German
interbank markets, respectively. Properties of cross-border banking networks are discussed by von Peter (2007),
Kubelec and Sa (2010) and Garratt et al (2011).
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in the combined assets of the three largest banks by total assets as a percentage of total banking

system assets in both the UK and US.8

Financial system complexity is likely to go hand-in-hand with intra-�nancial system activ-

ity which tends to increase the length of credit chains. Shin (2009) notes how the advent of

securitization markedly increased the complexity of the �nancial system by lengthening the in-

termediation chain in the lead up to the global �nancial crisis. In many cases, the same security

was used repeatedly in repo markets, with the lender using the security received as collateral to

borrow from others. As noted above, these transactions are subject to amplifying dynamics and

cyclical �uctuations linked to the variability of collateral haircuts over the credit cycle. Fluctu-

ations of this kind are illustrated by the dramatic rise and subsequent fall in the stock of repos

and �nancial commercial paper as a percentage of broad money in the US.9 And, as Figure 3

shows, the growth in intra-�nancial activity extended well beyond banks to other intermediaries,

with �nancial corporate debt (including banks and non-banks) accounting for some two-thirds of

the total growth in UK debt between 2003 and 2007.

Figure 4 illustrates the sudden and sharp rise in the cost of unsecured interbank borrowing

that followed the onset of di¢ culties at some institutions in August 2007 and, again in September

2008, following the collapse of Lehman Brothers. Precautionary hoarding by banks and growing

counterparty risks prompted a freeze in interbank borrowing. Such a breakdown of the interbank

market in the US, UK and Europe was an unprecedented event and the ensuing contagion placed

considerable funding pressure on banks in other jurisdictions. Prices alone do not tell the full

story. The quantity of funding available, especially at maturities greater than overnight, declined

dramatically. The counterpart to this was the sharp increase in banks�holdings of reserves with

central banks. This meant that national �nancial systems e¤ectively collapsed into a star network

with central banks at their centre.

3. A Network Model of the Banking System

In broad terms, our model explores the resilience of the �nancial system to liquidity shocks

a¤ecting a subset of banks under di¤erent network con�gurations, degrees of connectivity be-

tween �nancial institutions, haircut assumptions, and balance sheet characteristics. We start by

describing how the network of interbank exposures and balance sheets are constructed, before

discussing how shocks to haircuts which trigger liquidity hoarding at some institutions may po-

8King (2010) also provides evidence on this.
9See Figure 10 in Adrian and Shin (2010b). For evidence of cyclicality in the underlying haircuts, see CGFS

(2010), Geanakoplos (2010), Gorton and Metrick (2010), and Krishnamurthy (2010).
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tentially propagate across the system. We then provide some intuition for the tipping points that

emerge in the simulations in section 4 by applying a simplifying assumption to the model. This

allows us to derive an explicit condition which identi�es whether or not the system is vulnerable

to a systemic liquidity crisis and how this is a¤ected by the parameters of the model, including

balance sheet characteristics and initial haircuts.

Throughout our analysis, the only sources of randomness in our model relate to the structure

of the network, which is drawn from an exogenously set distribution, and the initial idiosyncratic

shocks that trigger liquidity hoarding, which randomly a¤ect any bank in the system. As the

network fully determines the pattern of interbank linkages and because we also �x each bank�s

total interbank liability position exogenously, the value of each individual interbank linkage is

determined endogenously, and so therefore is each bank�s total interbank asset position. So

randomness in the network structure maps into randomness in each institution�s total interbank

asset position.

Otherwise, the model is entirely non-stochastic: once the network and an initial shock have

been drawn, the propagation of contagion is a purely deterministic process which depends on the

parameters of the model, all of which are exogenous. Given these parameters, the setup seeks to

explain whether or not an initial shock generates more widespread liquidity hoarding and, if so,

what fraction of the system is a¤ected by outbreaks of contagion. But despite the deterministic

nature of the contagion process, the randomness over the network and initiating shock imply

uncertainty over whether contagion will occur from an ex ante perspective. So we also explore

how the frequency of contagion is a¤ected by changes in both the distributional assumptions that

drive the network structure and in the nature of the initiating shocks.

3.1. The Financial Network

Table 1 provides a summary of all notation used in the paper. The �nancial network consists

of n �nancial intermediaries, �banks� for short, which are linked together randomly by their

unsecured claims on one another. Each bank is represented by a node on the network, and the

bilateral unsecured interbank exposures of bank i de�ne the links with other banks. These links

are directed, re�ecting the fact that interbank connections comprise both assets and liabilities.

The number of individual interbank exposures varies across banks. We suppose that each bank

has ji lending links representing its unsecured interbank assets (i.e. money lent to counterparties

by the bank) and ki borrowing links representing its unsecured interbank liabilities (i.e. money

borrowed by the bank from counterparties). Since every interbank lending link for one bank is
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a borrowing link for another bank, the average number of lending links across all banks in the

network must equal the average number of borrowing links. We refer to this quantity as the

average degree or connectivity of the system, and denote it by z.

The structure of bilateral claims and obligations in the �nancial network, as de�ned by the

joint distribution of lending and borrowing links and its moments (including the average degree),

plays a key role in determining how shocks spread through the network. Our general modelling

framework applies for any arbitrary choice of joint distribution, though we adopt speci�c as-

sumptions both when analysing the theoretical approximation to our model and in our numerical

simulations.10 This means that our results are able to encompass all possible network structures,

including any implied by a prior optimal network formation game and real-world networks like

the UK interbank network depicted in Figure 1.

3.2. Balance Sheets and Repo Haircuts

Figure 5 presents the composition of individual bank balance sheets in the model. The

liabilities of each bank i are comprised of unsecured interbank liabilities, LIBi ; repo liabilities (ie

borrowing secured with collateral), LRi ; retail deposits, L
D
i ; and capital, Ki. We assume that the

total unsecured interbank liability position of every bank is evenly distributed over each of its

borrowing links and is independent of the number of links the bank has.11

Since every interbank liability is another bank�s asset, unsecured interbank assets at each

bank, AIBi , are endogenously determined by the network links. So, although total unsecured

interbank assets equal total unsecured interbank liabilities in aggregate across the network, each

individual bank can have a surplus or de�cit in their individual unsecured interbank position.

Additionally, banks hold four further asset classes: �xed assets (eg individual corporate loans or

mortgages), AFi ; assets which may be used as collateral in repo transactions (�collateral assets�),

ACi ; reverse repo assets (ie collateralised lending), A
RR
i ; and fully liquid assets (eg cash, central

bank reserves, high-quality government bonds), ALi .

In our model, fully liquid assets can always be used as collateral to obtain repo �nancing if

required without any haircut (or alternatively sold without any price discount), i.e. borrowing

can be obtained against the full value of the asset. On the other hand, we assume that �xed

assets and unsecured interbank assets can never be used as collateral in repo transactions.

The aggregate haircut associated with using collateral assets to obtain repo funding is denoted

by h 2 [0; 1]. This haircut re�ects the perceived underlying risk of the collateral. It is designed
10The framework also assumes that there is no statistical tendency for highly connected banks to be either more

or less likely to be linked to other highly connected banks or to poorly connected banks.
11 If a bank has no borrowing links, LIBi = 0 for that bank.
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to protect lenders against losses that they may incur when trying to sell collateral in the event

that they are left with it due to counterparty default. Such losses may be caused by market

illiquidity, changing degrees of asymmetric information, or increases in the probability of default

on the underlying security over the duration of the loan. So changes in the likelihood of any of

these factors may a¤ect aggregate haircuts.12

We further allow for the possibility of a bank-speci�c haircut, hi, so that the maximum

amount of repo funding that can be obtained from collateral assets is given by (1� h� hi)ACi .

This idiosyncratic haircut might re�ect the greater default probability of a particular bank �

if the lender perceives that there is a higher chance it will fail, then it might demand a higher

haircut as extra protection both because it is more likely to end up with the collateral in practice,

and because there may be some legal risk in accessing the collateral in a timely fashion.

Reverse repo transactions are secured with collateral that commands the same aggregate

haircut as on ACi . This implies that the amount of collateral that bank i receives on its reverse

repo assets is given by ARRi = (1� h). We allow for this collateral to be fully rehypothecated (i.e.

reused in another unrelated transaction) to obtain repo funding with the same aggregate haircut,

h. The maximum amount of repo funding that can be obtained from rehypothecating collateral

obtained in reverse repo transactions is then given by [(1� h� hi) = (1� h)]ARRi .

3.3. Liquidity Shortages, Replenishment and Propagation

Given the balance sheet and haircut assumptions above, we now seek the condition under

which bank i will remain liquid in each period. To simplify our analysis, we preclude the possi-

bility of systematic retail deposit in�ows or out�ows and assume that banks cannot raise fresh

equity. We also assume that the central bank never takes collateral at more generous terms than

the market in its liquidity operations.

A bank is liquid if the total amount of collateral it has available to obtain repo funding (which

includes its fully liquid assets) plus any new unsecured interbank borrowing, LNi , is su¢ cient to

exceed the amount of existing repo funding it has and meet any idiosyncratic liquidity shock, �"i,

or loss of interbank funding that it might experience. Liquidity shocks or shocks to aggregate or

idiosyncratic haircuts thus have the potential to trigger a liquidity shortage at the bank.

If a bank faces such a liquidity shortage, it needs to take defensive action to avoid defaulting

on required payments. In our model, we assume that the bank tries in the �rst instance to

raise any resources needed by withdrawing (or, equivalently, refusing to roll over) unsecured

12For a more detailed explanation of why repo collateral involves haircuts and why these haircuts might �uctuate,
see Gorton and Metrick (2010).
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interbank assets, AIBi , from counterparties it was lending to in the interbank network, i.e. it

hoards liquidity.13 Clearly, there are other avenues open to the bank. For example, it may try to

liquidate its �xed assets, AFi , in a �re sale. Alternatively, it might seek to raise the interest rate

it is prepared to o¤er on new interbank borrowing.14 As the recent crisis demonstrates, however,

liquidity hoarding was widely observed, whereas there was less evidence of widespread �re sales

or of banks �paying up�signi�cantly in interbank funding markets. This is largely because banks

typically viewed such actions as unattractive, last resort measures, given their large, direct costs

in terms of pro�tability and important adverse stigma e¤ects due to their high visibility. By

contrast, hoarding liquidity has fewer direct costs and since unsecured interbank transactions

are over-the-counter, adverse stigma e¤ects can be kept to a minimum. Indeed, in contrast to

other options, the bank may not need to make any active decision if it chooses not to roll over

interbank loans.15

Once we recognise liquidity hoarding, network e¤ects take centre stage. In particular, liquidity

shortages can propagate through the system via the network of interbank linkages. Suppose that

a fraction, �i, of banks connected to bank i in the network �hoard�liquidity from it, withdrawing

a portion of their deposits held at bank i. Further, let us suppose that, on average, these hoarding

banks withdraw a fraction � of the deposits that they hold at bank i. Under these assumptions,

bank i loses ��iL
IB
i of its liabilities due to liquidity hoarding by its counterparties in the network.

Therefore, taking into account the potential for lost deposits due to liquidity hoarding and the

haircut assumptions, its overall liquidity condition can be formally expressed as:

ALi + (1� h� hi)ACi +
(1� h� hi)
(1� h) ARRi + LNi � LRi � ��iLIBi � "i > 0 (1)

where the �rst four terms represent its available liquidity and the last three terms represent

funding it needs to cover with collateral, and funding out�ows.

The value of � is a key determinant of the strength of ampli�cation in the model �in particular,

the higher the value of �, the larger the shocks that can hit banks further down the chain

13Note that hoarding in this context is driven purely by the bank�s own liquidity needs; concerns over the
solvency of its counterparty play no role in its decision. In the model presented here, we assume that such
hoarding behaviour represents a genuine drain on the liquidity of the entire banking system, for example, ending
up as increased reserves at central banks. As discussed by Gai and Kapadia (2011) in a similar model which
abstracts from repo market activity, hoarding behaviour can also be interpreted as a switch from lending at long
maturities (e.g. for three months or one year) to lending at much shorter maturities (e.g. overnight).
14The bank could also try to cut lending to the real economy, AFi . While this was certainly observed during

the crisis, we abstract from this possibility as it is only likely to generate liquidity slowly. But the potential for
this type of credit crunch reaction is one of the key channels through which systemic liquidity crises can become
so costly for society.
15Diamond and Rajan (2011) observe that banks may be hesitant to enter into a �re sale because the alternative

of holding on to the asset may be more bene�cial. Adverse selection in the spirit of Stiglitz and Weiss (1981)
points to the fact that banks may be unwilling to �pay up� signi�cantly in interbank markets as there is a risk
that wholesale lenders may view it as a signal of underlying di¢ culties. Acharya and Skeie (this issue) provide
behavioural foundations for why banks may choose to hoard liquidity for precautionary reasons.



Complexity, Concentration and Contagion 11

of contagion. The extreme case of � = 1 corresponds to full withdrawal, with lending banks

withdrawing their entire deposit irrespective of their own liquidity �shortfall�(their outstanding

shortage of liquidity after all collateral and liquid assets have been used). At the other extreme,

if banks�liquidity shortfalls were the only determinant of the amount of hoarding, then � would

be fully endogenous within the model.

In practice, � is likely to lie between these two extremes. In our baseline numerical simulations,

however, we set � = 1 to generate the sharpest possible results. Immediate full withdrawal may

seem unlikely because contractual obligations may prevent banks from withdrawing their entire

deposit straight away. On the other hand, if a bank has a liquidity shortfall because it has lost

some portion of its deposits from a hoarding counterparty, it may consider it to be only a matter

of time before the full amount is lost, for example when contractual obligations expire. So, even

if current withdrawal is only partial, a forward-looking bank may choose to act immediately as

if it had lost its entire deposit, in order to limit the prospect of it su¤ering liquidity problems

in the future. As such, assuming � = 1 e¤ectively captures a rich set of dynamics which may

operate through forward-looking expectations.

The propagation of contagion also depends on the extent to which withdrawals are concen-

trated on particular counterparties or whether they are more evenly distributed. We assume the

latter: banks raise any resources needed by withdrawing funding equally and proportionately from

all of their counterparties. This assumption seems plausible as immediately accessible deposits

are only likely to be available in relatively small amounts from each counterparty.

3.4. Contagion Dynamics and �Tipping Points�

Equation (1) makes clear that the decision by a single bank to hoard liquidity makes it

harder for banks that were previously borrowing from it to meet their own liquidity condition

without resorting to hoarding themselves. In particular, as each successive bank su¤ers a liquidity

shortfall, its hoarding has the potential to trigger a liquidity shortage at other banks to which it

is connected by interbank lending. This process will only die out if either no neighbours to newly

distressed banks become distressed themselves or when every bank in the network is in distress.

So hoarding can potentially spread across the system, with the structure and connectivity of the

unsecured interbank network playing a critical role in determining the evolution of contagion.16

16As pointed out by Lo (this issue), a bank�s liquidity trigger is unlikely to be as deterministic as (1). His
suggestion to introduce a probabilistic liquidity trigger, whereby the probability of needing to take defensive
action increases as the liquidity position of the bank deteriorates, would certainly enrich the framework. In
particular, it would introduce an explicit role for uncertainty and would also allow for heightened volatility to
trigger liquidity events. But the main e¤ect would be to introduce a greater dispersion in outcomes for given
underlying parameters rather than fundamentally altering our main results.
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To illustrate the dynamics of contagion, recall that bank i has ki borrowing links. So if a

single counterparty to bank i hoards, �i = 1=ki since interbank liabilities are evenly distributed

across counterparties. Suppose we randomly perturb the network by assuming that a single bank

su¤ers a haircut or idiosyncratic liquidity shock which is su¢ ciently large to cause it to start

hoarding liquidity. Then, by substituting for �i in equation (1) and rearranging, we can see that

for contagion to spread beyond the �rst bank, there must be at least one neighbouring bank for

which:

ALi + (1� h� hi)ACi + [(1� h� hi) = (1� h)]ARRi + LNi � LRi � "i
�LIBi

<
1

ki
(2)

If this condition holds, then contagion starts to spread. In particular, a second bank is forced into

hoarding liquidity which may, in turn, create liquidity shortfalls at other banks in the network,

and so on. And the broader contagion dynamics can obviously also entail the possibility of banks

being exposed to multiple hoarding counterparties, in which case similar equations derived from

(1) determine the spread of liquidity hoarding across the network.

Before simulating this process, we can gain further intuitive insight into the nature of conta-

gion by making some further simplifying assumptions which allow us to obtain clean analytical

results. Speci�cally, rather than taking the network to be randomly generated, let us suppose

that each bank is connected to exactly z other banks as both a lender and borrower (which

implies that ji = ki = z for all banks).17 Let us also suppose that there are no idiosyncratic

haircuts or shocks (so hi = "i = 0) and that all banks have identical balance sheets, allowing us

to drop all i subscripts. Given that every interbank asset is another bank�s interbank liability,

these assumptions also imply that LIB = AIB for all banks. Then, assuming full withdrawal

(� = 1) and the absence of any new unsecured interbank funding (LNi = 0), we can rewrite (2)

as:

z <
AIB

AL + (1� h)AC +ARR � LR (3)

This expression is identical for every bank in the network under these stark assumptions. It

yields a �tipping point�condition, determining when contagion may break out across the �nancial

network. In particular, if (3) is satis�ed, then provided that z is greater than or equal to 1 so

that there is su¢ cient network connectivity, any liquidity hoarding by a single bank will cause all

neighbouring banks to become distressed and start hoarding. Because neighbours of neighbours

face the same liquidity condition, hoarding behaviour will cascade through the entire network.

By contrast, if (3) is violated, an initial case of liquidity hoarding by one bank will have no

17 In formal terms, this represents a mean-�eld approximation to the model.
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systemic consequences at all. As such, the �tipping point�condition clearly illustrates how very

small changes in the underlying parameters of the model can lead to fundamentally di¤erent

outcomes.18

Equation (3) also clari�es the conditions under which systemic liquidity crises may occur.

In particular, it highlights the way in which low liquid asset holdings, large adverse aggregate

haircut shocks, a high amount of repo borrowing, and a high level of unsecured interbank lending

are all likely to increase the susceptibility of the system to a widespread liquidity crisis. Our

simulations demonstrate that these results are borne out under more general assumptions.

4. Model Simulations

We now draw upon numerical simulations to o¤er further insight into the role of concentration

and complexity in contributing to systemic liquidity crises, and to assess a range of possible

�nancial stability policy interventions.

Table 1 summarises the baseline simulation parameters. The system comprises 250 banks. In

the initial step in each realisation, the network of unsecured interbank linkages between banks is

drawn randomly from an underlying distribution which is assumed to characterise the structure

of the network. In what follows, we focus on two characteristic network structures: one in which

the links connecting banks are distributed roughly uniformly (Poisson); and one in which the

underlying distribution describing linkages results in some banks in the network being much

more highly connected than the typical bank (geometric). And when drawing the network, we

allow for the possibility that two banks can be linked to each other via both lending and borrowing

links �no netting of exposures is assumed.

Although the model applies to fully heterogeneous banks, for the purpose of illustration we

take the liability side of the balance sheet of all banks to be identically comprised of a capital bu¤er

of 4% of the balance sheet, unsecured interbank liabilities (15%), repo liabilities (determined as

described below) and retail deposits. Since each bank�s interbank liabilities are evenly distributed

over each of their borrowing links, interbank assets are determined endogenously within the

(random) network structure and thus vary across banks. In addition to interbank assets, the

bank has liquid assets (2% of the balance sheet), reverse repos and collateral assets. The asset

side is further �topped up�by �xed assets until the total asset position equals the total liability

position.

18Gai and Kapadia (2011) show that although a precise threshold in the form of equation (3) cannot normally
be identi�ed, it is possible to prove the existence of such �tipping points�(or, more formally, phase transitions) in
this class of model without taking a mean-�eld approximation and while still maintaining heterogeneous balance
sheets (though the � = 1 assumption is still necessary in their formal analysis).
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For the repo aspects of the balance sheet, we assume that, in the initial state, all collateral

assets and assets received as part of reverse repo transactions are used as collateral to obtain

repo funding so that:

LRi = (1� h� hi)ACi +
(1� h� hi)
(1� h) ARRi (4)

We suppose that reverse repo assets are 11% of the balance sheet, collateral assets are 10%, the

initial aggregate haircut, h, is 0.1, and there are no idiosyncratic haircuts. This implies that repo

liabilities comprise 20% of the balance sheet initially.

To keep the number of experiments manageable, we assume throughout that banks can never

raise any new deposits in the unsecured interbank market (ie LNi = 0 for all banks).19 Apart

from in one of the policy experiments, full withdrawal by hoarding banks (� = 1) is assumed

throughout.

In most of what follows, we vary the average connectivity between banks, z, drawing 1000

realizations of the network for each value, and then shock the network in di¤erent ways according

to the experiment in question. The dynamics of contagion follow the process described in section

3.3, with equation (1) at the centre of the propagation dynamics. For each realisation, we follow

these dynamics iteratively until no new banks are forced into hoarding liquidity or until every

bank is hoarding. We count as �systemic� those episodes in which at least 10% of banks are

forced into hoarding liquidity. Our results identify the frequency of systemic liquidity crises and

their impact in terms of the average fraction of the system a¤ected in each systemic outbreak

(ie how widely contagion spreads, conditional on it spreading to at least 10% of banks in the

system).

4.1. Experiment 1: A Stylized Systemic Liquidity Crisis

In our �rst of experiment, we assume that the links in the network are spread roughly uni-

formly, with each possible directed link in the network being present with independent probability

p (a Poisson network). We hold aggregate haircuts constant but shock the system by assuming

that a single bank receives a very large adverse idiosyncratic haircut shock which causes it to

start hoarding liquidity.

Figure 6 (baseline) presents the results. Contagion occurs for values of z between 0 and 20

and its probability is non-monotonic in connectivity, at �rst increasing before falling. But when

contagion breaks out, it invariably spreads to the entire network.
19As Gai and Kapadia (2011) show, although allowing for replacement of lost interbank deposits can signi�cantly

reduce the likelihood of systemic liquidity crises, it generally does not otherwise change the fundamental properties
of the model and its funding contagion dynamic � in particular, the tipping point is still present and contagion
can still spread to the entire system on some occasions.
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These results accord well with the analytical approximation at the end of section 3.4, which is

not too surprising because this approximation is most reasonable for a Poisson network. Speci�-

cally, given the parameters chosen in the baseline simulation, equation (3) suggests that contagion

will occur for z < 7:5 but not for z > 7:5. From Figure 6 (baseline), it is evident that z = 7:5 is

the point around which the probability of contagion starts to fall from close to one. The reason

it remains positive for higher values of z is due to the randomness of the network structure which

means that contagion can still break out under certain con�gurations. And the reason contagion

is not always certain for smaller values of z is that the initial shock may hit a bank which either

has no interbank assets, and is therefore unable to trigger any contagion by hoarding liquidity,

or is in an isolated subset of the network.

4.2. Experiment 2: Adding Aggregate Haircut Shocks

Our second experiment repeats the �rst but also incorporates an aggregate haircut shock that

increases the haircut from 0.1 to 0.2. This acts like a bank run in draining liquid assets from

every repo borrower in the system as they are all required to post more collateral to obtain the

same amount of repo funding. It is clear from (3) that this shifts the tipping point to around

z = 15. This is borne out by the results presented in Figure 6 (with aggregate haircut shock).

In some respects, this type of experiment mimics the behaviour of interbank markets in the

early part of the crisis during August and September 2007. In light of both bad news and greater

uncertainty on subprime mortgages and other types of collateral which were being used to back

repo and other secured forms of funding, aggregate haircuts increased. As a result, some banks

found themselves short of liquidity. This was especially true of banks which were forced to take

back assets from o¤-balance sheet vehicles for which liquidity had dried up. In response to their

own funding liquidity stress, some banks started to hoard in the unsecured interbank market.

As highlighted by Lo (this issue), uncertainty over the value of assets may also have exacer-

bated hoarding behaviour. The result was paralysis in the interbank market as re�ected by the

sharp increase in spreads depicted in Figure 4. This will have increased counterparty risk which

may have intensi�ed problems for some institutions. Although this framework abstracts from

the counterparty risk dimension, it makes clear how a seemingly small shock to a limited set of

assets which are being used as collateral can lead to a collapse in both secured and unsecured

interbank markets.20

20 In the model, hoarding entails withdrawal of funds while, in reality, much of the hoarding behaviour early
in the crisis involved banks dramatically reducing the maturity of their lending. But, as noted above, the broad
framework can be interpreted as speaking to this behaviour as well.
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4.3. Experiment 3: Systemic Liquidity Crises in a Concentrated Network

Real-world �nancial networks do not appear to be particularly uniform; instead they appear

to exhibit fat tails, with a small number of key players who are very highly connected both in

terms of the number of interbank relationships they have and in terms of the overall value of

those relationships. This re�ects the underlying concentration in the banking sector.

To explore the impact of concentration on our results, we repeat our �rst simulation exer-

cise but draw the network from a (geometric) distribution which embeds fat tails by allowing

some banks to have substantially more connections than the typical bank.21 Figure 7 (baseline)

presents the results. Contagion is less likely and less severe for low values of z than under the

Poisson distribution. This re�ects the well-known result that fat-tailed networks tend to be more

robust to random shocks (Anderson and May, 1991; Albert et al, 2000). On the other hand, it

is also clear that contagion can occur for much higher values of z, albeit rarely. So, for a broad

range of connectivity, higher concentration in the network makes the system more susceptible to

a systemic liquidity crisis.

4.4. Experiment 4: The Impact of Targeted Shocks in Concentrated and Less Concentrated Net-

works

Experiment 3 masks what is perhaps the key di¤erence between the fragility of concentrated

and less concentrated networks. Thus far, we have assumed that when the initial idiosyncratic

haircut shock occurs, it hits any bank in the network at random. Now suppose instead that the

initial shock hits the bank with the largest number of unsecured interbank lending relationships.

Figures 6 and 7 (with targeted shock) show the results for each type of network.

When the shock is targeted at the most connected interbank lender, contagion occurs more

frequently in both cases. But for the less concentrated (Poisson) network, a targeted shock

only makes a relatively small di¤erence to the results. By contrast, a targeted shock under

the concentrated (geometric) network has catastrophic consequences, making contagion a near

certainty for a very wide range of z. In the Poisson network, the most connected bank is not that

much more connected than the typical bank. But under the fat-tailed (geometric) network, the

most connected bank is likely to be connected to a very large portion of the other banks in the

network, so if it becomes distressed, it has the potential to spread contagion very widely. This

21 In the version implemented, we draw the number of borrowing and lending links separately from the same
distribution, implying that there is no correlation between the number of counterparties a bank lends to and
borrows from. To construct the network, we also need to ensure that the total number of borrowing links drawn
equals the total number of lending links. We follow the algorithm outlined by Newman et al (2001) to achieve
this.



Complexity, Concentration and Contagion 17

is again consistent with the results of Anderson and May (1991) and Albert et al (2000), who

both demonstrate how fat-tailed networks are particularly susceptible to shocks targeted at key

participants.

It is clear that banks who are heavily involved in repo activity are more likely to face liquidity

shortages from aggregate haircut shocks. So the most dangerous banks for the stability of the

network are those which are both heavily involved in repo activity and big lenders in the unsecured

interbank market �the former because it makes them highly susceptible to the initial shock, the

latter because they propagate the shock widely. Because the banks that are heavily involved in

repo activity are typically the same large, complex �nancial institutions that are big players in the

unsecured interbank market, we can immediately see how the structure of the modern �nancial

system may be particularly prone to systemic collapse. It also demonstrates why the seemingly

small shocks of early / mid 2007 could have had such catastrophic systemic consequences as

they a¤ected banks that were both highly susceptible to liquidity disturbances and central to the

structure of the network.

4.5. Experiment 5: The Impact of Greater Complexity

Financial system complexity has no single de�nition and is di¢ cult to measure. But it seems

likely that, on any de�nition, it will be increased by intra-�nancial system activity, both in

unsecured and secured markets. Therefore, in this experiment, we consider a random shock

in a concentrated network (as in Experiment 3) but now suppose that unsecured interbank

liabilities comprise 25% rather than 15% of the balance sheet. As can be seen in Figure 7 (with

25% interbank liabilities), contagion occurs more frequently than in the baseline. Intuitively,

this is because the overall rise in interbank liabilities increases the likelihood of larger funding

withdrawals which cannot be absorbed by liquid assets.

4.6. Experiment 6: Cyclicality in Haircuts and the Likelihood of Systemic Liquidity Crises

It is perhaps more interesting to consider complexity in a dynamic setting. If unsecured

interbank lending were to increase over the economic cycle, then the system would become

increasingly vulnerable to shocks. And compression in aggregate haircuts, which often occurs

during the upswing of a cycle as the �nancial system becomes increasingly exuberant, may

in�uence the amount of repo market activity by allowing more secured funding to be generated

from a �xed amount of collateral.22 Rehypothecation of collateral may also increase in upswings,

22For more on the links between haircuts and repo activity over the economic cycle, see Adrian and Shin (2010a)
or CGFS (2010).
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serving to increase the money multiplier and expand balance sheets. All of this may alter the

vulnerability of the �nancial system over time.

We provide an indicative simulation of such time-varying risks in our model by varying the

initial aggregate haircut from 0.25 to 0 (which, in turn, a¤ects the initial amount of repo funding

via equation (4)). We then assess the e¤ect of this on the frequency of systemic crises in response

to a combined shock in which the aggregate haircut jumps to a stressed level, taken to be 0.25,

and a single bank su¤ers a su¢ ciently large idiosyncratic shock that it is forced to start hoarding.

Figure 8 (diamonds) presents the results for a concentrated network with average connectivity

(z) �xed at 50. It is clear that risk in the system increases as the initial aggregate haircut falls,

pointing towards the potential for systemic risk to increase as the credit cycle evolves. The non-

linearity is due to the tipping point embedded in the model which implies that around critical

thresholds, the system suddenly becomes much more vulnerable to collapse.

4.7. Policy Exercise 1: Tougher Liquidity Requirements

We now turn to a series of policy experiments. Equation (3) implies that an increase in liquid

asset holdings should make the system directly less susceptible to systemic liquidity crises. So, in

our �rst policy exercise, we repeat Experiment 3 (random idiosyncratic shock in a concentrated

network) but suppose that 3.5% of assets are liquid rather than 2%. It is clear from Figure 9

(with additional liquid assets) that this makes the system less prone to collapse.

4.8. Policy Exercise 2: Systemic Liquidity Requirements

Experiment 4 revealed that concentrated networks were highly vulnerable to shocks to key

players. Therefore, it is interesting to consider the e¤ects of targeting higher liquidity require-

ments at such banks. So we simulate the model under a liquidity rule in which banks are required

to hold a minimum of 2% liquid assets, plus an amount equal to 10% of their total interbank

assets. Since interbank assets comprise 15% of total assets on average, this implies that the

average liquid asset holding is 3.5%, thus making the experiment directly comparable to Policy

Exercise 1. But banks with higher-than-average interbank assets will hold more liquid assets,

while banks with lower-than-average interbank assets will hold less.

Figure 9 (with systemic liquidity surcharge) presents the results. Comparing with the other

experiment in Figure 9, it is clear that the augmented liquidity rule is more e¤ective in reducing

the probability and spread of contagion than an equivalent across-the-board increase in liquid

asset requirements. The intuition is simple �targeting liquidity requirements at the banks which
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are most instrumental in spreading contagion is more potent than requiring peripheral players

to hold extra liquid assets.

4.9. Policy Exercise 3: Haircut-Dependent (Time-Varying) Liquidity Requirements

Experiment 6 demonstrated that the �nancial system might become increasingly vulnerable

to collapse as aggregate haircuts fall. One possible policy response would be to compensate for

this by linking liquidity requirements to aggregate haircuts � given the cyclical tendencies of

haircuts, this policy can also be interpreted as a time-varying liquidity requirement. The solid

circles and triangles in Figure 8 illustrate the e¤ects of amending Experiment 6 by introducing

a �tough�policy rule, in which liquid assets are required to rise from 2% of total assets at an

aggregate haircut of 0.25 to 4.5% when haircuts are zero, and a �weak�rule in which the liquid

asset requirement only rises to 3.25%. In both cases, policy intervention works to o¤set the

systemic risks created from lower aggregate haircuts by increasing resilience. Under the �tough�

policy rule, there is no increase in risk. Although not captured in the simulations, such policy

rules may also reduce the incentives of banks to cut haircuts in the �rst place via e¤ects operating

through expectations.

4.10. Policy Exercise 4: Greater Network Transparency

The assumption that hoarding banks fully withdraw their interbank deposits held with coun-

terparties acts as a key ampli�er in the model. Policy measures which help to promote greater

network transparency could help to mitigate such incentives to hoard liquidity. In the context of

the model, this would reduce the value of �. To illustrate this, Figure 10 presents results from

a simulation in which, rather than withdrawing all their interbank lending when under liquidity

stress, banks only withdraw an amount equal to their liquidity shortfall plus half of any remaining

interbank assets. It is clear that this greatly diminishes the likelihood of collapse.

5. Policy Implications

The literature on market failures in banking systems justi�es the need for static (micropru-

dential) regulation and dynamic (macroprudential) policy intervention.23 At the heart of the

systemic collapses modelled in this paper is an underlying network externality: banks fail to

internalise the consequences of their hoarding behaviour on others in the network.24 The scale

23See, for example, Allen and Gale (2004). For an overview of market failures which may justify a macropru-
dential policy response, see Bank of England (2009).
24Note that the externality in our model di¤ers from �conventional�network externalities in economics which

typically refer to the spillovers on users of particular services or products from the adoption of the service or
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of this externality depends on the network and balance sheet structure of the �nancial system

and behavioural assumptions such as the amount of liquidity hoarding when a bank is in distress

(the value of �). As the simulations involving targeted shocks make clear, these externalities

vary across banks. Given these externalities, there is a case for public policy intervention, along

a range of potential dimensions. These include:

(a) Tougher Microprudential Liquidity Regulation One immediate implication of our

results is that banks need to have a larger stock of genuinely high-quality liquid assets than they

would naturally choose given their own individual incentives. As noted above, it is clear from

equation (3) that an increase in liquid asset holdings makes the system directly less susceptible to

systemic liquidity crises. This is supported by the simulation results from the �rst policy exercise.

But to the extent that greater liquid asset bu¤ers also reduce the amount of repo activity and

overall balance sheet size, they may also indirectly improve the resilience of the system by making

banks less susceptible to haircut shocks. In equation (3), this would show up via a reduction in

the amount of repo liabilities. So tougher liquidity requirements may have an additional ex ante

bene�t for system resilience by dampening the money multiplier.

The model takes liquid assets to be those which can either be sold without any price discount

or used as collateral to obtain repo �nancing without any haircut. This clearly distinguishes them

from �collateral assets�which can only be used to obtain repo funding at a positive haircut. The

model suggests that any asset which is likely to have a large haircut in times of stress is much

less useful as a bu¤er against systemic liquidity crises. This points towards the importance of

microprudential liquidity regulation maintaining a relatively tight de�nition of what constitutes

a liquid asset. In particular, it suggests that holdings of bank debt (eg certi�cates of deposit,

covered bonds etc.) should not constitute the majority of banks�prudential liquid asset require-

ments because such assets are likely to have large haircuts and thus relatively little value in a

situation of systemic stress. They are �inside�liquidity. By contrast, genuine �outside�liquidity is

likely to prove much more useful. From an ex ante perspective, the model also suggests that ma-

turing interbank assets should not be allowed to contribute to liquid asset requirements because

if they are, then there is again less overall �outside�liquidity available in stress. Indeed, one of

the central points of the model is to demonstrate how withdrawals of interbank assets may be a

key ampli�er in precipitating a systemic liquidity crisis.25

product by others, and are often discussed in the context of telecommunications networks. But it is a network
externality in the sense that the behaviour of individual participants can a¤ect other participants via the links
joining them together.
25This second issue is less clear-cut ex post once a liquidity crisis has begun. In this case, again for reasons

made clear by the model, it is better from a systemic perspective for banks to use their �outside�liquidity to meet
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Regulators internationally have just agreed, for the �rst time, international standards for

liquidity regulation. This includes a requirement for banks to hold su¢ cient genuinely liquid

securities to cover prospective out�ows of funds. The de�nition of liquid assets is narrowly

drawn and seeks explicitly to exclude �inside� liquidity. Some of the key parameters of this

liquidity regime can be justi�ed analytically using the model developed here.

(b) Macro-prudential Policy and Systemic Surcharges The results on concentration and

complexity highlight two di¤erent dimensions of risk linked to intra-�nancial system activity. For

a given level of concentration, lower aggregate haircuts or a more complex network are likely to

make the system more prone to collapse. Similarly, for a given level of complexity, a more

concentrated network is more vulnerable to shocks to key banks. Past experience suggests that

�uctuations in haircuts and the complexity of the network are likely to be at least partially

cyclical, while changes in network concentration are likely to be more structural.

By the Tinbergen principle, two distinct policy instruments (one time-varying and one struc-

tural) are thus likely to be needed to help address intra-�nancial system risks. These form the

bedrock of so-called macro-prudential policy. With the advent of the Financial System Oversight

Committee in the US, the European Systemic Risk Board in the EU and the Financial Policy

Committee in the UK, macro-prudential policy is about to become a reality.

In terms of structural macro-prudential instruments, one regulatory response to the too con-

centrated to fail problem is to levy a tax on institutions in line with their contribution to systemic

risk. Because systemic risk is an externality, such an approach is equivalent to the imposition

of a Pigouvian tax. Within the international regulatory community, the G20 and Financial Sta-

bility Board (FSB) are drawing up a blueprint for dealing with so-called systemically important

�nancial institutions (SIFIs). Among the options on the table are additional, graduated capi-

tal charges and regulatory limitations on the extent of exposures between these SIFIs (a �large

exposures�regime).

To target concentration and the structural aspects of interconnectivity e¤ectively, additional

capital or liquidity could be set aside according to banks�market shares in interbank activity (eg

the share of a bank�s interbank assets as a fraction of total interbank assets across all banks) and

potentially other systemically important markets. These additional bu¤ers would then help both

to enhance the resilience of SIFIs to shocks and create incentives for the network to become less

concentrated in the �rst place.

liquidity needs rather than withdrawing interbank funding. Therefore, care is needed to ensure that banks do not
have strong incentives to withdraw interbank funding rather than run down liquid assets ex post, for example
because such action helps to maintain prudential liquid asset bu¤ers at a high level.
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Our second policy exercise highlights the potential improvements in system resilience which

may be achieved by targeting higher liquidity requirements at the most connected banks in

the network. Importantly, it shows that even a mean-preserving redistribution of liquid assets

towards the more connected banks is stability-enhancing for the system as a whole. And this

exercise may understate the potential bene�ts of systemic liquidity policies because it does not

account for any reduction in concentration that might be incentivised by them.26

The cyclical aim of macro-prudential policy is to lean against the wind of the credit cycle,

much like monetary policy does in respect of the business cycle (Bank of England, 2009; Hanson

et al, 2011). There are a variety of instruments that might be used, including varying head-

line regulatory capital and liquidity ratios, changing the risk weights which attach to some of

the components of lending, and adjusting haircuts on secured �nancing to �nancial institutions

(CGFS, 2010).

Our third policy exercise demonstrates how haircut-dependent liquidity requirements, which

can be interpreted as time-varying liquidity requirements given the cyclical tendencies of haircuts,

can help to deliver a less fragile �nancial network. Increasing the amount of liquidity held

by banks as complexity increases may reduce the e¤ects of liquidity hoarding in the event of

stress. Such a policy may also help to mitigate the cyclical build-up in complexity by dampening

the money multiplier. Similarly, adjusting the haircuts on secured �nancing in a pro-cyclical

fashion could also help defuse the cyclical dynamics highlighted in our sixth experiment. More

generally, time-varying macro-prudential policy could be targeted at changes in intra-�nancial

system activity given its inherent cyclicality (and perhaps greater cyclicality than real economy

lending �see Figure 3). And raising the risk weights on intra-�nancial system exposures would

serve as another way of disincentivising network complexity.

(c) Network Transparency At present, very little is known about the dynamic properties of

the �nancial network. This is in part a result of data de�ciencies as �nancial data have tended

to be collected and analysed on an institution by institution basis (Haldane, 2009). Such data do

not allow an e¤ective mapping of the entire �nancial web or a simulation of its properties, though

small parts of its sub-structures such as the domestic payments and interbank networks have been

mapped in some countries. This may be all about to change. There are e¤orts internationally

26There is an interesting analogy to be drawn here with the use of targeted vaccination programmes to control
the outbreak of disease. It is a well-known result in the epidemiology literature that if vaccine stocks are limited,
programmes should be targeted at the most highly connected individuals (Anderson and May, 1991). The same
logic applies to banks here. But there is also an important di¤erence: while vaccinating particular individuals is
unlikely to reduce the size of their social networks, applying surcharges to highly connected banks may create real
costs for them which may a¤ect the structure of the network in a desirable way. Thus targeted approaches may
be even more useful in relation to �nancial networks than they are in epidemiology.
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to begin collecting systematically much greater amounts of data on evolving �nancial network

structure, potentially in close to real time. For example, the introduction of the O¢ ce of Financial

Research (OFR) under the Dodd-Frank Act will nudge the United States in this direction.

This data revolution potentially brings at least two bene�ts. First, it ought to provide the

authorities with data to calibrate and parameterise the sort of network framework developed

here. An empirical mapping of the true network structure should allow for better identi�cation

of potential �nancial tipping points and cli¤ edges across the �nancial system. It could thus

provide a sounder, quantitative basis for judging remedial policy actions to avoid these cli¤

edges.

Second, more publicly available data on network structures may a¤ect the behaviour of �-

nancial institutions in the network. Armed with greater information on counterparty risk, banks

may feel less need to hoard liquidity following a disturbance. A reduction in network uncertainty

and counterparty risk could make banks�liquidity decisions less hair-trigger. This would have a

collective bene�t, lessening the potential for destabilising liquidity spirals.

In the context of the model, a lower incentive to hoard liquidity would reduce the value of

�. Our �nal policy exercise shows how this diminishes the frequency of contagion across the

network.

(d) Netting and Central Clearing The �nancial system is a dense cats-cradle of exposures.

These gross exposures can easily exceed a bank�s capital. And it is gross exposures which matter

when gauging the virulence of contagion through a network. One means of reducing this contagion

is by netting-o¤ gross exposures between participants within the �nancial system as this would

lower the value of interbank connections relative to balance sheet size. In graphical terms, this

would have a similar e¤ect to moving from the case with 25% interbank liabilities to the baseline

in Figure 7.

There have been recent attempts by regulators internationally to achieve such netting bene�ts

across the �nancial system, in particular in respect of derivatives contracts. Algorithms have been

developed which either eliminate (in the case of redundant transactions) or net-down (in the case

of perfectly o¤setting transactions) outstanding derivatives contracts.

A more ambitious, and far-reaching, regulatory initiative is the drive from the G20 and FSB

to centrally clear a much larger proportion of, in particular, over-the-counter products through

central counterparties (CCPs). Our model speaks to the rationale for such action given that

CCPs may a¤ect both complexity and concentration.

On complexity, a CCP simpli�es the network of bilateral exposures. Higher-order, unobserv-
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able counterparty credit risk is replaced by �rst-order, observable counterparty risk with respect

to the CCP. This, too, ought to reduce the sensitivity of banks�liquidity hoarding to disturbances,

thereby lowering the fragility of the system as a whole, in line with the fourth policy exercise.

On concentration, a CCP alters the structural con�guration of the network. This now re-

sembles a star formation rather than a cats-cradle. From a resilience perspective, this is a

double-edged sword. On the one hand, concentration among the key �nancial institutions is

e¤ectively eliminated, reducing the contagion risk from SIFIs. In the context of the model, this

is the limiting case of moving towards a more fat-tailed distribution, comparing the baseline in

Figures 6 and 7. On the other, concentration risk is, in an important sense, relocated rather than

eliminated, from SIFIs to the CCP. This underscores the importance of ensuring that CCPs are

bullet-proof moving forward as they clear larger numbers of transactions.

At the height of the crisis, the �nancial network degenerated to a hub-and-spoke con�guration.

The central bank became the de facto central counterparty. To avoid that outcome ex post, a

set of bullet-proof CCPs could enforce a simpli�ed hub-and spoke con�guration ex ante. From

an incentives and counterparty uncertainty perspective, this ex-ante structure seems preferable.

6. Conclusion

This paper has developed a network model of interbank interactions which seeks to embody

many of the key structural features of the �nancial system. The framework generates knife-

edge liquidity dynamics which have strong echoes with the systemic liquidity crisis of 2007-8.

We showed how concentration and complexity may be key ampli�ers of this fragility by poten-

tially leaving the system highly vulnerable to distress at key institutions and increasing risk

over the economic cycle. The paper has also identi�ed some public policy measures which could

mitigate these fragilities, many of which are currently being designed or implemented interna-

tionally. These include tougher microprudential liquidity regulation, countercyclical liquidity

requirements, and surcharges for systemically important �nancial institutions.

The model could be improved in several respects. It could be made more practically relevant

by incorporating a stronger role for uncertainty. Calibrating it to the data would allow it to match

more closely the unfolding of the crisis, though the lack of available information on the interbank

network and haircuts would present signi�cant challenges. It would also be interesting to enrich

the framework by incorporating a stronger role for behavioural considerations, for example in

relation to the formation of links. This would allow for endogeneity in the network structure.

Another interesting extension of the network approach would be to consider the e¤ects of
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policy measures which act on �nancial system structure more directly �a quantity rather than

price-based approach to regulation. Following Weitzman (1974), this directive approach may be

optimal if there is uncertainty about the elasticities associated with price-based instruments. In

the spirit of Simon (1962), the aim of such structural interventions would be to create a �nancial

system that was decomposable and modular. A number of regulatory initiatives and ideas are

currently in train which speak to this agenda.

One is �living wills�or, more formally, recovery and resolution plans (RRPs). These require

banks to draw up plans for how they would be wound-down in an orderly fashion in the event

of failure. The newly-passed Dodd-Frank Act in the US requires that US �rms draw up credible

RRPs. Pilot RRPs are currently being drawn up for the world�s largest �nancial institutions. A

second idea, which is being debated within academic and policymaking circles, is the potential for

ring-fencing of �nancial activities, either within �rms or across them. The Volcker rule, enacted

in US Legislation recently, is one example, in this case in respect of proprietary trading activity;

the Glass-Steagall Act, which separated investment and commercial banking in the US between

1933 and 1999, is another.

These structural measures have the advantage that they act directly on the topology of the

network. As such, they may be less subject to implementation error. Firebreaks and �rewalls are

familiar fail-safe devices against systemic problems in other networks, from infectious diseases

spreading across people to infectious viruses spreading across the web, from transport networks

to meteorology maps, from forest-�re control to military control (Haldane, 2009). The model

developed here could be adapted to assess the systemic implications of these structural policy

measures. In some respects, this would represent a truer test of Herbert Simon�s complexity

hypothesis in a �nancial system context.
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Figure 1 : Network of large exposures(a) between 
UK banks, 2008 (b)(c) 

Figure 2:  Concentration of the UK and US 
banking systems(a)(b)

               

 

 
Source:  FSA returns. 
(a)  A large exposure is one that exceeds 10% of a lending bank’s 
eligible capital during a period.  Eligible capital is defined as Tier 1 
plus Tier 2 capital, minus regulatory deductions.   
(b)  Each node represents a bank in the United Kingdom.  The size of 
each node is scaled in proportion to the sum of (1) the total value of 
exposures to a bank, and (2) the total value of exposures of the bank to 
others in the network.  The darkness of a line is proportionate to the 
value of a single bilateral exposure. 
(c)  Based on 2008 Q1 data. 

 
Sources:  FDIC and Bank of England calculations.  
(a)  Largest 3 banks by total assets as a percentage of total banking 
sector assets.  
(b)  Data is to January 2009. 

 

 
 
Figure 3:  Breakdown of UK Debt 

 
Figure 4: Three-month interbank rates relative 
to expected policy rates(a)(b) 

 
 
Sources: ONS Blue Book and Bank of England calculations. 

 

 
Sources:  Bloomberg and Bank of England calculations. 
(a)  Spread of three-month Libor to three-month overnight index 
swap (OIS) rates.   
(b)  Five-day moving average. 
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Figure 5: Stylised Balance Sheet 
 

 
 
 
Figure 6: Systemic Liquidity Hoarding (Poisson Network: Single Random Idiosyncratic Haircut 
Shock; Aggregate Haircut Shock and Single Random Idiosyncratic Haircut Shock; and Single 
Haircut Shock Targeted to Bank with Most Interbank Lending Links) 
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Figure 7: Systemic Liquidity Hoarding (Geometric Network: Single Random Idiosyncratic 
Haircut Shock; Single Haircut Shock Targeted to Bank with Most Interbank Lending Links; 
Single Random Idiosyncratic Haircut Shock with 25% Unsecured Interbank Liabilities) 
 

  
 

Figure 8: Aggregate Haircuts and the Frequency of Systemic Liquidity Hoarding (Geometric 
Network with average degree of 50: Baseline; ‘Weak’ Haircut-Dependent Liquidity 
Requirement; ‘Tough’ Haircut-Dependent Liquidity Requirement) 
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Figure 9: Systemic Liquidity Hoarding (Geometric Network; Single Random Idiosyncratic 
Haircut Shock with 3.5% Liquid Asset Holdings; Single Random Idiosyncratic Haircut Shock 
with 3.5% Average Liquid Asset Holdings but set via Systemic Liquidity Surcharge Rule) 
 

 
 
Figure 10: Systemic Liquidity Hoarding (Geometric Network; Single Random Idiosyncratic 
Haircut Shock; Partial Withdrawal) 
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