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Abstract

We present a quantitative methodology for analyzing contagion and systemic risk in a network of
interlinked financial institutions, and apply this methodology to the study of the Brazilian financial
system. Using a unique data set of all mutual exposures and capital levels of financial institutions
in Brazil in 2007 and 2008, we show that the Brazilian financial system exhibits a complex network
structure characterized by a strong degree of heterogeneity in connectivity and exposure sizes across
institutions, which may be modeled as a directed scale-free weighted graph with heavy-tailed degree
and weight distributions. Using a metric for the systemic importance of institutions —the Contagion
Index— we study the potential for default contagion and systemic risk in the Brazilian system and
analyze the contribution of balance sheet size and network structure to systemic risk. Our study
reveals that, aside from balance sheet size, network-based measures of connectivity and concentration
of exposures across counterparties —counterparty susceptibility and local network frailty— contribute
significantly to the systemic importance of an institution. Requiring a minimum (aggregate) capital
ratio is shown to reduce the systemic impact of defaults of large institutions; we show that the same
effect may be achieved with less capital by imposing such capital requirements only on systemically
important institutions and those exposed to them.
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1 Introduction

The recent financial crisis has emphasized the importance of systemic risk, defined as macro-level risk
which can impair the stability of the entire financial system. Bank failures have led in the recent years to
a disruption of the financial system and a significant spillover of financial distress to the larger economy.
Regulators have had great difficulties anticipating the impact of defaults partly due to a lack of visibility
on the structure of the financial system as well as a lack of a methodology for monitoring systemic
risk. The complexity of the contemporary financial systems makes it a challenge to define adequate
indicators of systemic risk that could help in an objective assessment of the systemic importance of
financial institutions and an objective framework for assessing the efficiency of macro-prudential policies.

One of the aspects of systemic risk which has been highlighted in the recent crisis has been the
interconnectedness of financial institutions, which increases the probability of contagion of financial
distress. Such externalities resulting from counterparty risk are a major concern for regulators (Haldane,
2009) and metwork models (Allen and Galel 2000; [Boss et al., |2004; Nier et al., 2007; [Amini et al.,
2010; |Gai and Kapadia, [2010; |/Amini et al., [2011)) provide an adequate framework for addressing them.
Simulation studies based on network models have been extensively used by central banks for assessing
contagion risk in banking systems; we refer to the pioneering work of [Elsinger et al.| (2006a) and the
survey of [Upper| (2011)).

In the present work we introduce and implement a quantitative methodology for analyzing contagion
and systemic risk in a network of interlinked financial institutions, and apply this methodology to the
study of the Brazilian financial system. Using a unique and complete data set of interbank exposures
and capital levels provided by the Brazilian Central Bank, we analyze the network structure in the
Brazilian financial system and the magnitude of contagion risk. Our analysis is based on a measure of
the systemic importance of a financial institution, the Contagion Index, defined as the expected loss to
the network triggered by the default of this institution when the system is subject to a market shock
(Cont}, 2009). The definition of this indicator takes into account both common market shocks to portfolios
(correlation) and contagion through counterparty exposures (network effects). Contrarily to indicators
of systemic risk purely based on market data (Acharya et al., 2010; |Adrian and Brunnermeier, 2008)),
our metric of systemic importance make use of exposures, which represent potential losses, to simulate
stress scenarios, resulting in a forward-looking measure of systemic risk. We build on methods proposed
in |Cont and Moussa, (2010) for estimating and analyzing this indicator.

While most of the empirical studies on systemic risk and default contagion in interbank networks
(Sheldon and Maurer, [1998; Furfine, |2003; [Upper and Worms, 2004; |Wells, 2004} |Elsinger et al., [2006alb;
Mistrulli, [2007) have dismissed the importance of contagion, we find evidence that contagion is a signif-
icant factor of systemic risk in the Brazilian banking system. Our results do not necessarily contradict
these findings but present them in a different light. Most of the aforementioned studies use indicators
averaged across institutions: we argue that, given the heterogeneity of the systemic importance across
institutions, the sample average gives a poor representation of the degree of contagion and conditional
measures of risk should be used. Also, most of these studies are based on a generous recovery rate
assumptions whereby all assets of a defaulting bank are recovered at pre-default value, which is far from
reality especially in the short term where recovery rates are close to zero in practice. Finally, with the
exception of |[Elsinger et al.| (2006a.bl), all these studies measure the impact of the idiosyncratic default of
a single bank, whereas we use the more realistic setting where balance sheets are subjected to correlated
market shocks in default scenarios. Similarly to previous studies (Elsinger et al.l |2006ayb} [Upper, 2011))
we find that, while the probability of contagion is small, the loss resulting from contagion if it occurs can
be very large in some cases.

1.1 Summary of main results

Our study reveals several interesting features on the structure of the Brazilian financial system and the
nature of systemic risk and default contagion in this system:

e The Brazilian financial system exhibits a complex heterogeneous network structure: the distribution
of in-degrees, out-degrees and mutual exposures are found to be heavy-tailed, exhibiting Pareto
tails with exponents between 2 and 3. Furthermore, these statistical regularities are shown to be
stable across time. These observations suggest to model it as a directed scale-free network.



e The network structure is qualitatively different from a small-world network. In particular, we
observe many nodes with arbitrary small clustering coefficient.

e The systemic importance of institutions is quite heterogeneous: the cross-sectional distribution of
the Contagion Index is found to be heavy-tailed. This implies that, while most financial institutions
present only a negligible risk of contagion, a few of them may pose a significant risk of contagion.

e Ignoring the compounded effect of correlated market shocks and contagion via counterparty expo-
sures can lead to a serious underestimation of contagion risk. Specifically, market shocks are found
to increase the proportion of contagious exposures in the network, i.e. exposures that transmit
default in all shock scenarios. We are thus led to question the conclusions of previous studies which
dismissed the importance of contagion by looking at pure balance sheet contagion in absence of
market shocks.

e Fundamental defaults due to market shocks are found to be the major source of aggregate losses for
most periods. Nevertheless, contrarily to observations made in some previous studies, contagion is
observed to be significant during periods of stress. This is explained by the fact that we measure the
effect of contagion using conditional risk measures, whereas most previous studies examined cross-
sectional averages, which underestimate the magnitude of contagion in a heterogeneous network.

e Balance sheet size matters when assessing systemic importance: the Contagion Index of a financial
institution has a strong positive relationship with the total size of its interbank liabilities. However,
size alone is not a good indicator for the systemic importance of financial institutions: network
structure does matter when assessing systemic importance. Network-based measures of connectivity
and concentration of exposures across counterparties —counterparty susceptibility and local network
frailty— are shown to contribute significantly to the systemic importance of an institution.

e Using the Contagion Index as a metric for systemic impact allows a comparative analysis of various
capital requirement policies in terms of their (reduction in) systemic impact. While a floor on the
(aggregate) capital ratio is shown to reduce the systemic impact of defaults of large institutions,
imposing more stringent capital requirements on the most systemic nodes and their counterparties
is shown to be a more efficient procedure for immunizing the network against contagion.

1.2 Relation with previous literature

Our contribution builds on previous theoretical and empirical studies of default contagion in banking
systems (see|De Bandt and Hartmann| (2000)); Upper| (2011)) for a review of the literature), but also differs
from them both in terms of the methodology used and in terms of the results obtained. In particular, we
are led to revisit some of the conclusions in the previous literature on the magnitude of contagion risk
in interbank networks.

Methodology On the methodological side previous studies on contagion in financial networks have
mostly focused on the stability of the financial system as a whole, either in stylized equilibrium settings
(Allen and Gale, 2000; [Freixas et al., 2000; Battiston et al., |2009) or in simulation studies of default
cascades (Upper and Worms, 2004; Mistrullil |2007; [Elsinger et al., 2006alb; Nier et al., 2007). Nier
et al.| (2007) measure the average number of defaults when the institutions in the system are subject
one at a time to an idiosyncratic shock which wipes out their external assets. [Upper and Worms| (2004))
and |Mistrulli| (2007) consider various aggregate measures of contagion: the number of institutions that
default by contagion and the loss as a fraction of the total assets in the banking system. [Elsinger et al.
(20064al) also measure contagion by counting the number of defaults due to counterparty exposure when
the system is subject to correlated market shocks. These studies give insights on the global level of
systemic risk in the entire network, but do not allow to measure the systemic importance of a given
financial institution, which is our focus here. Our study adds to the existing literature by introducing
the Contagion Index (Cont, [2009; |Cont and Moussa, [2010) as a measure of the systemic importance of
a single institution in the system, which allows to rank institutions in terms of the risk they pose to the
system.



Recent studies such as |[Acharya et al. (2010)); |Zhou et al. (2010) have also proposed measures of
systemic importance based on market data such as CDS spreads or equity volatility. By contrast to
these methods which are based on historical market data, we use a forward-looking, simulation-based
approach based on interbank ezposures (Cont, |2009). Exposure data, which represent potential future
losses, are available to regulators, should be used as an ingredient in evaluating systemic importance
and interconnectedness. As argued in |Cont| (2009)), since exposures are not publicly available, even if
market variables correctly reflect public information they need not reflect the information contained in
exposures, so exposures-based indicators are a useful complement to market-based indicators.

With the exception of [Elsinger et al. (2006albl), most simulation studies of contagion in banking
networks examine the sole knock-on effects of the sudden failure of a single bank by considering an
idiosyncratic shock that targets a single institution in the system. |Upper and Worms| (2004)) estimate
the scope of contagion by letting banks go bankrupt one at a time and measuring the number of banks
that fail due their exposure to the failing bank. |Sheldon and Maurer| (1998) and |Mistrulli (2007)) also
study the consequences of a single idiosyncratic shock affecting individual banks in the network. [Furfine
(2003) measures the risk that an exogenous failure of one or a small number of institutions will cause
contagion. These studies fail to quantify the compounded effect of correlated defaults and contagion
through network externalities. Our study, on the contrary, shows that common market shocks to balance
sheets may exacerbate contagion during a crisis and ignoring them can lead to an underestimation of the
extent of contagion in the network. We argue that, to measure adequately the systemic impact of the
failure of a financial institution, one needs to account for the combined effect of correlation of market
shocks to balance sheets and balance sheet contagion effects, the former increasing the impact of the
latter. Our simulation-based framework takes into account common and independent market shocks to
balance sheets, as well as counterparty risk through mutual exposures.

The loss contagion mechanism we consider differs from most network-based simulations, which con-
sider the framework of |[Eisenberg and Noe| (2001)): this approach is based on a market clearing equilibrium
defined by a clearing payment vector with proportional sharing of losses among counterparties in case of
default (Eisenberg and Noe, [2001} [Elsinger et al. |2006alb; [Muller}, 2006]). This leads to an endogenous
recovery rate which corresponds to a hypothetical situation where all bank portfolios are simultaneously
liquidated. Our approach is, by contrast, not an equilibrium approach but a stress-testing approach
where, starting from the currently observed network structure, capital levels are stressed by random
correlated shocks and a risk measure computed from the distribution of aggregate loss. We argue that,
since bankruptcy procedures are usually slow and settlements may take up several months to be effective,
creditors cannot recover the residual value of the defaulting institution according to such a hypotheti-
cal clearing mechanism, and write down their entire exposure in the short-run, leading to a short term
recovery rate of zero. This seems a more reasonable approach in absence of a clearing mechanism.

Studies on simulated network structures have examined the variables that affect the global level of sys-
temic risk in the network (Nier et al., 2007; |Battiston et al.,|2009)) such as the connectivity, concentration,
capital levels, but the main results (such as the level of contagion and the role of interconnectedness)
strongly depend on the details of the model and the structure of the network, which have left open
whether these conclusions hold in actual banking networks. On the other hand, most of the empirical
studies have only partial information on the bilateral exposures in the network, and estimate missing
exposures with a maximum entropy method (Sheldon and Maurer, 1998} [Upper and Worms, [2004; |Wells|
2004; [Elsinger et al. [2006aybj; |Degryse and Nguyen) [2007)). However, the maximum entropy method is
found to underestimate the possibility of default contagion (Mistrulli, [2007; ivan Lelyveld and Liedorp,
2006). Our study, by making use of empirical data on all bilateral exposures, avoids this caveat.

Results Our empirical findings on the network structure of the Brazilian financial system are —
qualitatively and quantitatively— similar to statistical features observed in the Austrian financial system
(Boss et al., |2004). This suggests that these features could be a general characteristic of interbank net-
works, and it would interesting to check whether similar properties are also observed in other interbank
networks.

While most of the empirical studies on systemic risk and default contagion in interbank networks have
dismissed the importance of contagion, our study reveals that the risk of default contagion is significant in
the Brazilian financial system. We show examples in which the expected loss resulting from the default of



an institution can exceed up to forty times the size of its interbank liabilities and some defaults combined
with common shocks can initiate up to four additional defaults. In contrast with [Elsinger et al.| (20064)),
we find that scenarios with contagion are more frequent than those without contagion when grouped by
number of fundamental defaults. This difference in results is due to two reasons. First, our metric, the
Contagion Index, measures the magnitude of loss conditional to the default of a given institution, instead
of averaging across all defaults as in |Elsinger et al.| (2006a)). We argue that these conditional measures
provide a better assessment of risk in a heterogeneous system where the sample average may be a poor
statistic. Second, we use a heavy-tailed model for generating the correlated shocks to balance sheets: we
argue that this heavy-tailed model is more realistic than Gaussian factor models used in many simulation
studies.

We find that market shocks can play an essential role in propagating default across the network.
Specifically, we observe that the proportion of contagious exposures increases considerably when the
system is subject to a market shock scenario, thus creating additional channels of contagion in the
system. The Contagion Index, by compounding the effects of both market events and counterparty
exposure, accounts for this phenomenon.

Our study also complements the existing literature by studying the contribution of network-based
local measures of connectivity and concentration to systemic risk. Previous studies on simulated network
structures have examined the contribution of aggregate measures of connectivity and concentration such
as increasing the probability that two nodes are connected in an Erdos-Renyi graph, or increasing the
number of nodes in the system (Battiston et al., 2009; Nier et al., [2007). However, they fail to detect
the impact of connectivity and concentration locally around a single institution in the network. We
thus introduce the counterparty susceptibility and local network frailty that measure respectively the
susceptibility of the creditors of an institution to a potential default of the latter and the fragility of the
entire network in the event of default of this institution. We find that the two measures can explain
significantly default contagion.

The impact of capital requirements in limiting the extent of systemic risk and default contagion has
not been explored systematically in a network context. Based on analogies with epidemiology and peer-
to-peer networks (Cohen et al., 2003; [ Madar et al., 2004; [Huang et al., 2007)), we discuss targeted capital
requirements and show that targeting the creditors of the most contagious institutions is a more effective
procedure —in terms of the total capital it requires for the same level of systemic risk— than increasing
capital ratios for all institutions in the network.

1.3 Outline

The paper is organized as follows. Section [2 describes the data set and provides an empirical analysis of
the structure and statistical properties of the Brazilian financial network. Section [3|introduces a quanti-
tative approach for measuring contagion and systemic risk, following |Cont| (2009). Section [4] applies this
methodology to the Brazilian financial system. Section [5| investigates the role of different institutional
and network characteristics which contribute to the systemic importance of Brazilian financial institu-
tions. Section [6] analyzes the impact of capital requirements on these indicators of systemic risk and uses
the insights obtained from the network model to examine the impact of targeted capital requirements
which focus on the most systemic institutions and their counterparties.

2 The Brazilian financial system: a complex network

2.1 Data and consolidation procedure

The Brazilian financial system encompasses 2400 financial institutions chartered by the Brazilian Central
Bank and grouped into three types of operation: Type I are banking institutions that have commercial
portfolios, Type III are institutions that are subject to particular regulations, such as credit unions, and
Type II represent all other banking institutions. Despite their reduced number (see table , financial
institutions of Type I and IT account for the majority (about 98%) of total assets in the Brazilian financial
system (see table . We therefore consider in the Brazilian data set only Type I and Type II financial
institutions which is a very good proxy for the Brazilian financial system. Most of the financial institutions



belong to a conglomerate (75% of all financial institutions of Type I and II). Consequently, it is quite
meaningful to analyze the financial system from a consolidated perspective where financial institutions
are classified in groups that are held by the same shareholders. Only banking activities controlled
by the holding company are considered in the consolidation procedure. The accounting standards for
consolidation of financial statements were established by Resolutions 2,723 and 2,743, BCB; (2000ayb)), and
they are very similar to IASB and FASB directives. If we regard financial institutions as conglomerates,
the dimension of the exposures matrices reduces substantially, see table [1| for the number of financial
conglomerates in the Brazilian financial system after the consolidation procedure.

These exposures, reported at six dates (June 2007, December 2007, March 2008, June 2008, September
2008 and November 2008) cover various sources of risk:

1. fixed-income instruments (certificate of deposits and debentures);
2. borrowing and lending (credit risk);
derivatives (including OTC instruments such as swaps);

foreign exchange and,

oro W

instruments linked to exchange-traded equity risk.

Derivatives positions were taken into account at their market prices when available, or at fair value when
a model-based valuation was required.

The data set also gives the Tier I and Tier 2 capital of each institution, computed according to
guidelines provided in Resolution 3,444 BCB| (2007a) of the Brazilian Central Bank, in accordance with
the Basel I and IT Accords. Tier 1 capital is composed of shareholder equity plus net income (loss), from
which the value of redeemed preferred stocks, capital and revaluation of fixed assets reserves, deferred
taxes, and non-realized gains (losses), such as mark-to-market adjustments from securities registered as
available-for-sale and hedge accounting are deducted. Tier 2 capital is equal to the sum of redeemed
preferred stocks, capital, revaluation of fixed assets reserves, non-realized gains (losses), and complex or
hybrid capital instruments and subordinated debt. We shall focus on Tier 1 capital as a measure of a
bank’s capacity to absorb losses in the short term.

Financial conglomerates in Brazil are subject to minimum capital requirements. The required capital
is a function of the associated risks regarding each financial institution’s operations, whether registered
in their balance sheets (assets and liabilities) or not (off-balance sheet transactions), as defined in Reso-
lution 3,490, BCB| (2007b). The required capital is computed as ¢, = d x Risk Base where the § = 11%
is the so-called Basel Index and the risk base is the sum of credit exposures weighted by their respective
risk weights, foreign currency and gold exposures, interest rate exposures, commodity exposures, equity
market exposures, and operational risk exposures. It is important to highlight that the exposures con-
sidered in the computation of the risk base include not only interbank exposures but also exposures to
all counterparties.

2.2 Network representation of the Brazilian financial system

Counterparty relations in financial system may be represented as a weighted directed graph, or a network
, defined as a triplet I = (V| E, ¢), consisting of

e a set V of financial institutions, whose number we denote by n,

e a matrix E of bilateral exposures: E;; represents the exposure of node ¢ to node j defined as the
(mark-to-)market value of all liabilities of institution j to institution ¢ at the date of computation.
It is thus the maximal short term loss of 7 in case of an immediate default of j.

e ¢ = (¢;,i € V) where ¢; is the capital of the institution ¢, representing its capacity for absorbing
losses.

Such a network may be represented as a graph in which nodes represent institutions and links represent
exposures. Figure|l|illustrates the Brazilian interbank network in December 2007. It is observed to have
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Figure 1: Brazilian interbank network, December 2007. The number of financial conglomerates is n = 125
and the number of links in this representation at any date does not exceed 1200.
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a heterogeneous and complex structure, some highly connected institutions playing the role of “hubs”
while others are at the periphery. We define the in-degree k;, (i) of a node i € V' as the number of its
debtors and out-degree ko1 (i) the number of its creditors:

k’L’rL(Z) = Z ]]-{E,-j>0}>

jeEV

kout(i) = Z ]]-{Ej,->0}a

JEV

The degree k(i) of a node i is defined as k(7)) = kin (i) + kout (i) and measures its connectivity.
Although all institutions in the network are not banks, we will refer to the exposures as “interbank”
exposures for simplicity. We denote A(7) the interbank assets of financial institution ¢, and L(i) its

L(i) =Y Ej,

interbank liabilities:

A(l) =Y Eij,

jev

jev

Table |3| presents some descriptive statistics of these variables.

‘ In-Degree ‘ Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 ‘
Mean 8.56 8.58 8.75 8.98 8.99 7.88
Standard Deviation 10.84 10.86 10.61 11.15 11.32 11.02
5% quantile 0 0 0 0 0 0
95% quantile 30.50 29.30 30.45 31 32 30.60
Maximum 54 54 51 57 60 62
Out-Degree ‘ Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 ‘
Mean 8.56 8.58 8.75 8.98 8.99 7.88
Standard Deviation 8.71 8.82 9.02 9.43 9.36 8.76
5% quantile 0 0 0 0 0 0
95% quantile 26 26 27.90 29.25 30.20 27.40
Maximum 36 37 39 41 39 44
Exposures (in billions of BRL) | Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08
Mean 0.07 0.05 0.05 0.05 0.05 0.08
Standard Deviation 0.77 0.32 0.32 0.30 0.38 0.54
5% quantile 0.00 0.00 0.00 0.00 0.00 0.00
95% quantile 0.20 0.17 0.17 0.18 0.19 0.35
Maximum 23.22 9.89 9.90 9.36 12.50 15.90
| Relative Exposures (Eq;/c(i)) | Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08
Mean 0.23 0.20 0.04 0.04 0.03 0.05
Standard Deviation 1.81 1.62 0.16 0.17 0.06 0.21
5% quantile 0.00 0.00 0.00 0.00 0.00 0.00
95% quantile 0.70 0.59 0.20 0.21 0.16 0.18
Maximum 49.16 46.25 4.57 5.17 0.69 6.02
Distance ‘ Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 ‘
Mean 2.42 2.42 2.38 2.38 2.33 2.35
Standard Deviation 0.84 0.85 0.84 0.82 0.77 0.78
5% quantile 1 1 1 1 1 1
95% quantile 4 4 4 4 3 4
Maximum (Diameter) 5 6 6 6 5 6

(1)

(2)

Table 3: Descriptive statistics of the number of debtors (in-degree), number of creditors (out-degree),
exposures, relative exposures (ratio of the exposure of institution ¢ to institution j to the capital of i),
and distance between two institutions (nodes) in the network.

2.3 A heterogeneous network

2.3.1 Distribution of connectivity

Casual inspection of the graph in figure|l|reveals the existence of nodes with widely differing connectivity.
This observation is confirmed by further analyzing the data on in-degrees and out-degrees of nodes.
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Figures[2 and [3|show, respectively, the double logarithmic plot of the empirical complementary cumulative
distribution for the in-degree I@(Km > k) and out-degree I@’(Kout > k) for k > 1. We notice that the tails
of the distributions exhibit a linear decay in log-scale, suggesting a heavy Pareto tail.

This observation is confirmed through semiparametric tail estimates. Maximum likelihood estimates
for the tail exponent « and tail threshold k,,;, (Clauset et al. 2009) are shown in Table |4| for the in-
degree, out-degree and degree distributions. Maximum likelihood estimates for & range from 2 to 3. The
results are similar to the findings of Boss et al.| (2004) for the Austrian network.

‘ In-Degree ‘ Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 ‘ Mean

& 2.19 2.70 2.20 3.36 2.16 2.13 2.46
6 (&) 0.48 0.46 0.47 0.53 0.47 0.44 0.48
kin,min 6 13 7 21 6 5 9.7

‘ Out-Degree ‘ Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 | Mean
& 1.98 3.41 3.40 2.91 2.43 2.88 2.83
6 (&) 0.63 0.59 0.48 0.43 0.41 0.49 0.51
kout,min 5 15 16 12 9 11 11.3

‘ Degree ‘ Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 | Mean
& 2.61 3.37 2.29 2.48 2.27 2.23 2.54
6 (&) 0.52 0.47 0.48 0.41 0.43 0.35 0.44
Kmin 17 34 12 15 12 10 16.7

‘ Exposures* ‘ Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 ‘ Mean ‘
a 1.97 2.22 2.23 2.37 2.27 2.52 2.27
6 (&) 0.02 0.60 0.21 0.69 0.38 0.98 0.48
Erin 39.5 74.0 80.0 101.7 93.4 336.7 120.9

*values in millions of BRL (Brazilian Reals)

Table 4: Statistics and maximum likelihood estimates for the distribution of in/out degree: tail exponent
o, tail threshold for in-degree k;;, min, out-degree kot min, degree kpipn, and exposures Epp.

We test the goodness-of-fit of the power law tails for in-degree, out-degree and degree via the one-
sample Kolmogorov-Smirnov test with respect to a reference power law distribution. The results in
figures [2| and [3| provide evidence for the Pareto tail hypothesis at the 1% significance level.

2.3.2 Stationarity of degree distributions

The precise pattern of exposure across institutions may vary a priori in time: it is therefore of interest to
examine whether the large scale structure of the graph, as characterized by the cross-sectional distribu-
tions of in- and out-degrees, is stationary, that is, may be considered as time-independent. Comparing
quantiles of the degree distributions at different dates ( figure [4)) shows that the empirical distribution
of the degree, in-degree and out-degree are in fact stable over time, even though the observations span
the turbulent period of 2007-2008. This is confirmed by a two-sample Kolmogorov-Smirnov test for
consecutive dates, which produces p-values all greater than 0.6, suggesting that the null hypothesis that
the samples are drawn from the same distribution cannot be rejected.

2.3.3 Heterogeneity of exposure sizes

The distribution of interbank exposures is also found to be heavy-tailed, with Pareto tails. Figure[5]shows
the existence of a linear decay in the tail of the double logarithmic plot for the empirical distribution
of exposure sizes. Maximum likelihood estimates for the tail exponent « and the tail cutoff k,,;, for
the distribution of exposures are shown in Table 4] Note that an interbank asset for an institution is
an interbank liability for its counterparty, thus, the distribution of interbank liability sizes is the same.
The only difference is how these exposures are allocated among the financial institutions in the network.
Figure [5] shows evidence for Pareto tails in the exposure distributions at all dates.
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Figure 4: Scatterplot of the the empirical cumulative distributions at consecutive dates for the degree,

in-degree and out-degree in the Brazilian interbank network.

It is interesting to measure the sizes of these exposures in terms of each institutions’ (Tier 1) capital.
The linear regression of the interbank assets size against the Tier 1 capital gives a positive slope smaller
than 1, indicating that financial institutions in Brazil have on average sufficient Tier 1 capital to cover
their interbank exposures. Figure [f] shows that in June 2007 the ratio of interbank exposures to Tier 1
capital exhibits a heterogenous distribution: most financial institutions hold much more Tier 1 capital
than their interbank exposures, which means that they have a strong capacity to absorb losses. However,
some institutions have interbank exposures more than a hundred times their Tier 1 capital. Thus, these
ones can be very fragile to losses and may present a significant risk of default. We will see in section [5.2
that these fragile nodes are counterparties of the five most systemic institutions in the network and play
a crucial role in the propagation of default across the network.
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Figure 6: Distribution of the ratio of the interbank assets size to the Tier 1 capital in the network in
June 2007.

Model: A =By + Bic+e¢
Coefficients Standard error t-statistic R?
by = —0.00 0.07 -0.00 36%
by = 0.60 ** 0.07 8.37
* significant at 5% confidence level
** gignificant at 1% confidence level

Table 5: Linear regression of interbank assets size on the Tier 1 capital in the network in June 2007.

2.3.4 Relation between exposure size and connectivity

Another interesting observation is that more (less) connected financial institutions have larger (smaller)
exposures. We investigate the relationship between the in-degree k;, (i) of a node i and its average
exposure size A(i)/ki, (i) and also examine the relation between the out-degree k,,+(7) and the average
liability size L(7)/koyt(i) and between k(i) and A(:)/k(i) by computing the Kendall tau for each of these
pairs. Table |§| displays the Kendall tau Txendgan coefficients that measure the statistical dependence
between the variables, and their respective p-values. The results show that the in-degree and the average
interbank asset size, as well as the out-degree and the average interbank liability size, show positive
dependence.

2.3.5 Clustering

The clustering coefficient of a node is defined as the ratio of the number of its links between its neighbors
to the total number of possible links among its neighbors (Watts and Strogatz, [1998): this ratio, between
0 and 1, tells how connected among themselves the neighbors of a given node are. In complete graphs,
all nodes have a clustering coefficient of 1 while in regular lattices the clustering coefficient shrinks to
zero with the degree.

A property often discussed in various networks is the small world property (Watts and Strogatz, [1998)
which refers to networks where, although the network size is large and each node has a small number of
direct neighbors, the distance between any two nodes is very small compared to the network size. [Boss
et al| (2004) report that in the Austrian interbank network any two nodes are on average 2 links apart,
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| kin vs. A/ki, | Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 |

TKendall 0.28 0.25 0.22 0.26 0.24 0.21

(p-value) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

‘ kout VS. L/kout ‘ Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 ‘

TKendall 0.27 0.28 0.31 0.32 0.34 0.30

(p-value) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

| kvs. A/k | Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 |

TKendall 0.24 0.24 0.21 0.23 0.23 0.23

(p-value) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table 6: Brazilian interbank network: Kendall Txenqgqn coefficients for in-degree k;,, vs. interbank assets

A, out-degree k¢ vs. interbank liabilities L, and degree k vs. exposures w.

and suggest that the Austrian interbank network is a small-world. However, a small graph diameter
does not characterize the small world property: indeed, complete networks are not small worlds and have
diameter one. Another signature of the small world property is that, while the diameter is bounded or
slowly increasing with the number of nodes, the clustering coefficient of nodes remain bounded away from
zero (Cont and Tanimura, [2008). In the Brazilian financial system, we observe nodes with an arbitrary
small clustering coefficient across all time periods (Figure . This absence of uniform clustering shows
that the Brazilian financial system is not a small world network.

Figure [7| shows the relationship between the local clustering coefficient and number of degrees for
the Brazilian interbank network. The negative slope of the plots shows that financial institutions with
few connections (small degree) have counterparties that are very connected to each other (large cluster-
ing) while financial institutions with many connections (large degree) have counterparties with sparsely
connected neighbors.

3 Systemic risk and default contagion

We now define indicators of default contagion and systemic impact for a financial institution, following
Cont| (2009). These indicators aim at quantifying the impact of the default of a given institution in terms
of the (expected) loss it incurs for other institutions in the network, taking into account both balance
sheet contagion and common shocks affecting balance sheets.

3.1 Default mechanism

Default occurs when an institution fails to fulfill a legal obligation such as a scheduled debt payment of
interest or principal, or the inability to service a loan.

When discussing default modeling, it is important to differentiate between insolvency and illiquidity.
Insolvency happens when the net worth of an institution is reduced to zero, i.e. losses exceed capital, while
illiquidity occurs when reserves in liquid assets, such as cash and cash equivalents, are insufficient to cover
short term liabilities. Illiquidity leads to default while, in principle insolvency may not necessarily entail
default as long as the institution is able to obtain financing to meet payment obligations. Nevertheless,
in the current structure of the financial sector where financial institutions are primarily funded through
short-term debt, which must be constantly renewed, insolvent institutions would have great difficulties
in raising liquidity as their assets lose in value. Indeed, renewal of short term funding is subject to the
solvency and creditworthiness of the institution. Thus, in practice, insolvency leads to illiquidity which
in turn leads to default.
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Thus, in line with various previous studies, we define default as the event when the losses incurred by
a financial institution render it insolvent. In practice, this may be defined as a scenario where losses in
asset value exceed Tier 1 capital. If Tier 1 capital is wiped out, the institution becomes insolvent which
is very likely to generate a loss of short term funding leading to default.

We recognize that institutions may default due to lack of liquidity even when just a portion of their
Tier 1 capital is wiped out: the example of Bear Stearns is illustrative in this sense (Cox,[2008). However,
given the current funding structure of financial institutions through short term debt, it is difficult to argue
the opposite: absent a government bailout, insolvency due to market losses which exceed the level of
capital will most probably lead to a loss of funding opportunities and credit lines and entail default.
Thus, our estimates for the extent of default contagion will, if anything, lead to lower bounds for its
actual extent in absence of government intervention.

3.2 Loss contagion

When a financial institution (say, ¢) defaults, it leads to an immediate writedown in value of all its
liabilities to its creditors. These losses are imputed to the capital of the creditors, leading to a loss of
Ej; for each creditor j. If this loss exceeds the creditor’s capital i.e. F;; > c; this leads to the insolvency
of the institution j, which in turn may generate a new round of losses to the creditors of j. This domino
effect may be modeled by defining a loss cascade, updating at each step the losses to balance sheets
resulting from previously defaulted counterparties:

Definition 1 (Loss cascade). Consider an initial configuration of capital reserves (c(j),j € V). We
define the sequence (ck(j),7 € V)k>0 as

co(f) =)  and cpa(f) =max(eo() — Y, (1—Ri)E;,0), (3)
{irex ()=0}

where R; is an exogenous recovery rate at the default of institution i. (c,—1(j),j € V), where n = |V|
s the number of nodes in the network, then represents the remaining capital once all counterparty losses
have been accounted for. The set of insolvent institutions is then given by

D(c, E) ={j €V : cn1(j) = 0} (4)

Remark 1 (Fundamental defaults vs defaults by contagion). The set D(c, E) of defaulted institutions
may be partitioned into two subsets

D(c, B) ={j €V :co(j) =0} J{j € V:cold) >0, ¢n1(j) =0}

Fundamental defaults Defaults by contagion

where the first set represents the initial defaults which trigger the cascade —we will refer to them as
fundamental defaults— and the second set represents the defaults due to contagion.

The default of an institution can therefore propagate to other participants in the network through
the contagion mechanism described above. To measure the systemic importance of the institution (say,
i) triggering the loss cascade, we introduce the Default Impact DI(i) of i that measures the loss incurred
by the network in the default cascade triggered by the default of institution i:

Definition 2 (Default Impact). The Default Impact DI(i, ¢, E) of a financial institution i € V is defined
as the total loss in capital in the cascade triggered by the default of i:

Dl(i7c7E):ZCO(j)_Cnfl(jL (5)

jev
where (c(4),J € V)i>o is defined by the recurrence relation , with initial condition is given by

co(j) =c(j) for j#i and co(i)=0.
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It is important to note that the Default Impact does not include the loss of the institution triggering
the cascade, but focuses on the loss this initial default inflicts to the rest of the networks: it thus measures
the loss due to contagion.

The contagion mechanism described above is similar to the one presented in [Furfine| (2003); [Upper
and Worms| (2004)); Mistrulli (2007)). Since liquidation procedures are usually slow and settlements may
take up several months to be effective, creditors cannot recover the residual value of the defaulting
institution according to such a hypothetical clearing mechanism, and write down their entire exposure
in the short-run, leading to a short term recovery rate of zero. In absence of a clearing mechanism, this
approach seems more reasonable than the one proposed by [Eisenberg and Noe| (2001]) which corresponds
to a hypothetical situations where all portfolios are simultaneously liquidated. Finally, we note that this
model does not capture medium- or long-term contagion: maintaining exposures constant over longer
term horizons, as in (Elsinger et al., [2006a)) is unrealistic since exposures and capital levels fluctuate
significantly over such horizons.

3.3 Contagion Index of a financial institution

Economic downturns, market-place events, or decreased liquidity conditions can be a major source of
systemic losses. It would be then interesting to introduce a metric of systemic importance that considers
not only credit risk- such as the Default Impact- but also systemic events, such as market shocks that
could affect the capital of all institutions at the same time.

We adopt the same approach as|Cont and Moussa| (2010). We introduce correlated negative market
shocks €;,7 = 1..n that reduce the Tier 1 capital of all institutions in the network with a severity that
depends on the credit worthiness of each institution: institutions with higher default probabilities are
affected by larger market shocks.

Each scenario of market shocks leads an initial set of institutions to default, and the default can
propagate across the network through the loss cascade mechanism described in the previous section; that
is the loss cascade starting with initial capital levels max(c(z) 4 €;,0). We introduce the Contagion Index
CI(i,c, E) of an institution ¢ as a measure of the expected loss incurred by the network in the default
cascade triggered by the default of institution ¢ when the entire network is subject to correlated market
shocks, conditional on the event that institution 7 has defaulted due to the market shock. Thus, while
the Default Impact is a deterministic measure of the loss generated by an exogenous default of 7, the
Contagion Index is a measure of the expected loss generated by the failure of 7 in a stressed market,
compounding the effects of both credit and market risks.

Given a (statistical) model for the market shocks e generating stress scenarios, we now define, following
Cont| (2009), the

Definition 3 (Contagion Index). The Contagion Index CI(i,c, E) of institution i € V is defined as its
expected Default Impact in a market stress scenario:

ClI(i,c,E) = E[DI(i, (c+ €)1, E)| c(i) + & < 0] (6)

CI(i,c, E) is the expected loss ~measured in terms of capital- inflicted to the network in the default
cascade triggered by the initial default of ¢. The averaging is done over scenarios where the market
shocks trigger the default of 7. As argued in [Cont| (2009), the Contagion Index measures the systemic
impact of the failure of an institution.

The computation of this index involves a model of correlated market shocks affecting balance sheets.
This correlation has been found to be significant in banking systems across different countries [Lehar
(2005). Different specifications —static or dynamic, factor-based or copula-based— are possible (see |Cont
and Moussa, (2010)).

In this paper we consider a factor model of market shocks:

€ = fi(S, Zi) (7)

where S is a common factor and the Z;’s are IID random variables representing idiosyncratic shocks.
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In the examples below, we model the joint distribution of shocks to balance sheets using a multivariate
model with heavy-tailed marginals and a dependence structure described by a Cauchy copula (Cont and
Moussa, [2010): The shock to the balance sheet of i — th institution is given by:

¢ =0 F oG (pS+ (1 - p)Zi) (8)
(9)

where G is the cumulative distribution function of a standard Cauchy. F is the cumulative distribution
function of a negative heavy-tailed random variable; as an example we use the law of a Cauchy variable
conditioned to be negative. Here p is a dependence parameter, S represents a common factor and
Z;,i = l..n independent idiosyncratic factor with a standard Cauchy distribution. o; is a scale factor
which is calibrated to the probability of default p; of institution é:

c(d)
F=1(pi)

The probabilities of default are calibrated to historical default rates given by Standard & Poors ratings
for the firms. Unlike the standard Gaussian copula model, where large shocks to a given balance sheet
can only result from large systemic shocks, this model allows for defaults either due to large idiosyncratic
shocks or large system-wide shocks.

The Contagion Index is computed by Monte Carlo simulation. It should be noted that, since we
condition of “rare events”, a naive Monte Carlo simulation is quite inefficient. We use an improved
simulation procedure of the Contagion Index, based on a stratification method, presented in |Cont and
Moussa/ (2010).

g; = —

(10)

4 Is default contagion a significant source of systemic risk?

Most empirical studies of interbank networks have pointed to the limited extent of default contagion
(Sheldon and Maurer, [1998; [Furfine, |2003; [Upper and Worms, 2004; |Wells, 2004} |Elsinger et al., [2006allb;
Mistrulli, 2007). However, almost all these studies (with the exception [Elsinger et al.| (2006alb))) examine
the sole knock-on effects of the sudden failure of a single bank by an idiosyncratic shock, thus ignoring
the compounded effect of both correlated market events and default contagion. A correlated market
shock affecting the capital of all institutions in the network can considerably reduce the capital of
the network, which makes it more vulnerable to potential losses and increases the likelihood of large
default cascades. We explore in this section the extent of default contagion in the Brazilian financial
system (section , and study the role market shocks have in generating channels of contagion across
the network (section . We also analyze the contribution of fundamental defaults and defaults by
contagion to the systemic risk of the network as whole (section . We compare the latter to the results
obtained in [Elsinger et al. (2006al) for the Austrian banking system.

4.1 Evidence for contagion

When studying the contagion risk an institution ¢ may pose to the financial system, two interesting
questions arise:

e How much would the financial system suffer if institution ¢ fails?
e How many institutions in the system would become insolvent if institution ¢ fails?

The Contagion Index provides an answer to the first question by measuring the contagion loss induced by
the failure of institution ¢ in a stressed market. The second question relates to the number of institutions
that default by contagion in the cascade triggered by a default of institution 7.

Definition 4. We define the size k(i,c, E) of the default cascade initiated by the default of institution i
as the expected number of defaults by contagion generated when the system is subject to correlated market
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shocks given that the shock triggers the default of i.

We find that the size of default cascades varies across the institutions that trigger the cascade: most
institutions do not seem to generate other defaults due to contagion in the system (see figure , however
some institutions can trigger up to 4 defaults which represents about 3% of the financial system. This
means that domino effects should not be measure by averaging across the entire network: one should

k(i e, E) =E Z Le(j)4e; 50,01 (j)=0lc(i) + € <0
j=1

condition on the event of default of each individual institution in the system.

This presence of contagion is confirmed by comparing the Contagion Index of each institution to its
interbank liabilities: a Contagion Index which exceeds the institution’s interbank liabilities is a signature
of contagion. As shown in figure |§| the Contagion Index can significantly exceed (up to forty times) the
interbank liabilities for the most systemic nodes. This indicates that default contagion is a significant

component of systemic risk for these systemically important institutions.
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Figure 8: Distribution of the size of default cascade.
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Figure 9: Ratio of the Contagion Index to the interbank liabilities: the Contagion Index can be up to
forty times the size of interbank liabilities.

4.2 The role of correlated market shocks

Both the Default Impact and the Contagion Index exhibit heavy tailed distributions (see figures
indicating the existence of few institutions that present a high contagion risk to the financial system
(up to 10% of the total capital of the network) while most institutions exhibit a small risk. We also
note that the probability of observing a large Default Impact and a large Contagion Index is the highest
during June 2007 and December 2007 (see figure . These periods correspond to the appearance of the
subprime mortgage crisis in the United States.

Figure [13| displays the cross-sectional distribution of the ratio of the Contagion Index to the Default
Impact, in June 2007. We observe that the Contagion Index may, for some nodes, significantly exceed
the Default Impact. Thus correlated shocks to balance sheets seem to amplify contagion. This comes
from the fact that market shocks reduce the capital available to financial institutions and render them
more susceptible to default.

Exposures that are not covered by an adequate amount of capital to sustain their loss in the event
of default constitute channels of contagion across the system. We will call such exposures contagious
eTposures:

Definition 5 (Contagious Exposure). An exposure of institution i to j is called contagious if its size
exceeds the capital of i: E;j > c(i).

If the link ¢ — j represents a contagious exposure, the default of j leads to the default of i in all stress
scenarios. Thus, the subgraph constituted of contagious exposures will be a primary support for the
propagation of default cascades: the larger this subgraph, the larger the extent of contagion. In a stress
scenario in which balance sheets are subjected to negative market shocks, new contagious exposures may
appear, leading to a higher degree of contagion. Figure shows the graph of contagious exposures
(black) in the Brazilian network in June 2007, with, in red, the exposures that become contagious once a
(particular) set of correlated market shocks is applied to balance sheets. The role of contagious exposures
is further explored in |Amini et al.| (2010)) from a theoretical point of view.
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Figure presents the proportion of contagious exposures in the Brazilian system, their expected
proportion under stress test scenarios, and their expected proportion in scenarios where the level of
common downward shocks to balance sheets exceeds its 5% quantile. We find that correlated market
shocks may increase the proportion of contagious exposures considerably, so ignoring market risk when
assessing contagion effects can lead to a serious underestimation of the extent of default contagion.
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Figure 10: Brazilian interbank network: distribution of the default impact and the Contagion Index on
the logarithmic scale. The highest probabilities of having a large Default Impact and a large Contagion

®  Jun 2007

A Mar 2008

Dec 2007

Jun 2008
Sep 2008
Nov 2008

P(CI>s)

®  Jun 2007

Dec 2007
A Mar 2008
Jun 2008
Sep 2008
Nov 2008

Index are observed in June 2007 and December 2007.

Network in June 2007

Network in December 2007

Network in March 2008

1 1 1
0.8 0.8 0.8
g 3 )
c 0.6 c 0.6 c 0.6
(0] () (0]
z = =
© 04 © 04 © 04
i [ w
0.2 0.2 0.2
0 (O Yiatk s—u 0
0 0.1 0.2 0 0.01 0.02 0.03 0 0.02 0.04 0.06
DI DI DI
Network in June 2008 Network in September 2008 Network in November 2008
1 1 1
0.8 0.8 0.8
oy 3 g
c 0.6 c 0.6 c 0.6
[} [} [}
2 = | 2
© 04 © 04 © 04
[T (' [T
0.2 0.2 0.2
0 0 0
0 0.02 0.04 0.06 0 0.02 0.04 0.06 0 0.05 0.1
DI DI DI

Figure 11: Distribution of the Default Impact. Most institutions have a small Default Impact, however,

some can have an impact up to 10% of the total network capital (June 2007).
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some can have an impact up to 10% of the total network capital (June 2007).
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Figure 14: Network of contagious exposures before (dashed lines) and after (dashed and red lines) market
shocks.
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Figure 15: Proportion of contagious exposures (a) in the initial network, (b) averaged across market
shock scenarios, (c) averaged across scenarios where common factor falls below 5% quantile level.

4.3 Fundamental losses vs losses by contagion

Elsinger et al.| (2006al) distinguish fundamental defaults -due to exogenous market shocks- from defaults by
contagion and perform a simulation study of the respective contributions to systemic risk of fundamental
defaults and contagion effects. In their study on the Austrian banking network, fundamental defaults
are found to be more frequent than contagion effects, which leads them to conclude that the main source
of systemic risk is the correlation among risk factors influencing balance sheets.

We conduct a similar analysis to study the contribution of default contagion to systemic risk, albeit
with a different metric, the Contagion Index. We classify all simulated default events into those resulting
from large market shocks and those resulting from contagion. We define the expected loss (EL) incurred
by the institutions at the end of the default cascade when the system is subject to market shocks
given that the common factor of the market shocks falls below its 5%-quantile level. We decompose
the (expected) losses into losses resulting from fundamental market shocks L and those resulting from
contagion Lo = FL — Lp:

EL =Y Elc(v) — cno1(v)[S < So0s]  Lr =Y Elc(v) = co(v)|S < So.0] (12)

where co(v) = (c(v) + €,)+ and Sps is the 5%-quantile of S. Figure [16] shows that the losses due to
fundamental defaults are significantly larger (by a factor of 10) than the loss due to contagion. However,
the number of defaults by contagion (Figure below) is comparable to the number of fundamental
defaults especially in June and December 2007. Thus, although fundamental defaults seem to be a major
source of systemic risk, one cannot neglect the impact of contagion.
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Figure 16: Fundamental loss vs loss by contagion when the system is subject to correlated market shocks,
given that the common factor in the market shocks falls below its 5%-quantile. Above: fundamental loss
vs loss by contagion in BRL. Below: expected number of fundamental vs contagious defaults.

As in |[Elsinger et al| (2006al), we also compute the probabilities of occurrence of contagion and the
expected number of defaults due to contagion grouped by the number of fundamental defaults. We find
much more scenarios with contagion than in |Elsinger et al| (2006a): for more than two fundamental
defaults, the scenarios with contagion are more frequent than those without contagion. Thus, default
contagion cannot be ignored.
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Fundamental defaults Scenarios with no contagion (%) Scenarios with contagion (%) Number of defaults by contagion

0 47.67 0.00 0.00
1 25.52 10.11 0.78
2 6.81 6.23 1.49
3 1.18 1.90 2.00
4 0.13 0.28 2.79
5 0.02 0.10 5.44
6 and more 0.00 0.05 10.52
Total 81.34 18.66

Table 7: Probabilities of occurrence of contagion and expected number of defaults due to contagion,
grouped by the number of fundamental defaults.

5 What makes an institution systemically important?

Previous studies on contagion in financial networks (Allen and Gale, [2000; |[Battiston et al.| |2009; [Elsinger
et al., [2006a; [Nier et al. 2007)) have examined how the network structure may affect the global level of
systemic risk but do not provide metrics or indicators for localizing the source of systemic risk within
the network. The ability to compute a Contagion Index for measuring the systemic impact of each
institution in the network, enables us to locate the institutions which have the largest systemic impact
and investigate their characteristics.

We first investigate (section the effect of the size, measured in terms of interbank liabilities or
assets on the Contagion Index. Then we examine (section the effect of network structure on the
Contagion Index and define, following|Cont and Moussa| (2010)), network-based indicators of connectivity
counterparty susceptibility and local network frailty, which are then shown to be significant factors for
contagion.

5.1 The role of balance sheet size

Size is generally considered a factor of systemic importance. In our modeling approach, where losses
flow in through the asset side and flow out through the liability side of the balance sheet, it is intuitive
that, at least at the first iteration of the loss cascade, firms with large liabilities to other nodes will
be a large source of losses for their creditors in case of default. Accordingly, interbank liabilities are
highly correlated with any measure of systemic importance. A simple plot on the logarithmic scale of
the Contagion Index against the interbank liability size reveals a strong positive relationship between
the interbank liabilities of an institution in the Brazilian financial system and its Contagion Index (see
figure . A linear regression of the logarithm of the Contagion Index on the logarithm of the interbank
liability size supports this observation: interbank liabilities explains 96% of the cross-sectional variability
of the Contagion Index.

Therefore, balance sheet size does matter, not surprisingly. However, the size of interbank liabilities
does not entirely explain the variations in the Contagion Index across institutions: the interbank liability
size does exhibit a strong positive relationship with the Contagion Index, but the ranking of institutions
according to liability size does not correspond to their ranking in terms of systemic impact (see figure

17).
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Figure 17: Scatterplot on the logarithmic scale of the Contagion Index versus the interbank liability size
in June 2007.

Model: log(CI) = Sy + pilog(L) + ¢
Coefficients Standard error t-statistic R?
by = -0.58 0.36 -1.41 96%
by = 1.04** 0.02 51.75
* significant at 5% confidence level
** gignificant at 1% confidence level

Table 8: Log-log cross-sectional regression of the Contagion Index (expressed in percentage of the total
network capital) on the interbank liability in June 2007.

Table[9] where nodes are labeled according to their decreasing ranking in terms of the Contagion Index,
shows that Node 5 has interbank liabilities less than the 90% quantile of the cross sectional interbank
liability sizes. This suggests that factors other than size contribute to their systemic importance.

Ranking Contagion index (in billion BRL) Number of creditors Interbank liability (in billion BRL)

1 20.77 8 23.27

2 4.95 32 1.57

3 4.58 13 2.96

4 3.85 14 1.95

5 3.40 21 0.97
Network median 0.10 5 0.07
90%-quantile 2.45 21 1.11

Table 9: Analysis of the five most contagious nodes in June 2007.

Plotting the Contagion Index against the interbank asset size (figure shows that the contribution
of the size of interbank assets to the Contagion Index is less significant. Note that interbank liabilities

are not balanced with respect to interbank assets, due to deposits and other types of liabilities which are
excluded from interbank liabilities.
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Figure 18: Scatterplot on the logarithmic scale of the Contagion Index versus the interbank assets size
in June 2007.

Model: log(CI) = By + 1 log(A) + €
Coefficients Standard error t-statistic Adjusted R?
by = 8.00 ** 1.99 4.02 22%
by = 0.58 ** 0.11 5.20

* significant at 5% confidence level
** gignificant at 1% confidence level

Table 10: Log-log cross-sectional regression of the Contagion Index on the size of interbank assets in
June 2007: R? = 22%.

5.2 The role of network structure

Table [J] shows that, while the sheer size of liabilities of the node with the highest Contagion Index
can explain its ranking, the four other most systemic nodes have liability sizes roughly in line with the
network average, so size effects alone do not explain the magnitude of their systemic impact. This points
to the possible contribution of interconnectedness, or network structure, in explaining the magnitude
of their Contagion Index. As shown in figure [I9] the five most systemic nodes are not very connected
and just have few contagious exposures (in red) but, as shown in figure their creditors are heavily
connected and many of their cross-exposures are contagious exposures (in the sense of Definition . This
motivates to define indicators which go beyond simple measures of connectivity such as the degree (or
weighted degree): following |Cont and Moussa) (2010)), we define the following indicators which attempt
to quantify the sensitivity of the counterparties of these nodes to their default:
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Figure 19: Subgraph of the five institutions with highest Contagion Index and their creditors in the
network in June 2007. Non contagious exposures are dashed lines. Contagious exposures are full red
lines.
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Figure 20: Subgraph of the five institutions with highest Contagion Index and their first and second-

order neighbors in the network in June 2007. Non contagious exposures are dashed lines. Contagious
exposures are full red lines.

Definition 6. Susceptibility coefficient

The susceptibility coefficient of a node is the maximal fraction of capital wiped out by the default of a
single counterparty.

. Eij
i) = max —%
x(@) #X ()

A node with () > 100% may become insolvent due to the default of a single counterparty. Coun-
terparty risk management in financial institutions typically imposes an upper limit on this quantity.

Definition 7. Counterparty susceptibility

The counterparty susceptibility CS(i) of a node i is the mazimal (relative) exposure to node i of its
counterparties:

05(1):—‘“&"]%;0 7
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CS(i) is thus a measure of the maximal vulnerability of creditors of i to the default of i.

Definition 8. Local network frailty
The local network frailty f(i) at node i is defined as the maximum, taken over counterparties exposed to
i, of their exposure to i (in % of capital), weighted by the size of their interbank liability:
. Ej; .
i) = max —~ L
f(@) S ) (4)

Thus, local network frailty combines two risk components: the risk that the counterparty incurs due
to its exposure to node 4, and the risk that the (rest of the) network incurs if this counterparty fails.
A large value f(i) indicates that ¢ is a node whose counterparties have large liabilities and are highly
exposed to 1.

The analysis of the creditors of the five most systemic institutions in the network (see table
indicates that the number of creditors and the size of interbank liabilities of the counterparties, as well
as the counterparty susceptibility and local network frailty, can explain a high Contagion Index of a
financial institution when the size of its interbank liabilities fails to explain. We observe that the five
most systemic nodes have each at least one very connected counterparty with a large interbank liability
size. They exhibit in general a high counterparty susceptibility and local network frailty.

Ranking max; m;;>0 kout (j)  max; p,;>0 L(j)  CS(4) f @)
1 36 1.10 0.85 0.95
2 36 2.91 3.83 3.25

3 34 11.23 23.42  263.15

4 34 11.23 5.60 62.97
5 34 23.27 1.65 3.15
Network median 34 2.01 1.25 2.05
90%-quantile 36 11.23 3.04 6.89

Table 11: Analysis of the counterparties of the five most contagious nodes in June 2007. The counterparty
interbank liability and local network frailty are expressed in billion BRL.

We are thus led to investigate whether we could rank systemically important institutions based on the
measures of connectivity and centrality defined above. We classify institutions in the Brazilian system into
those with a high Contagion Index (higher than 1% of the total network capital) and those with a small
Contagion Index (smaller than 1% of the total network capital), according to their interbank liability,
counterparty susceptibility and local network frailty. This can be achieved by conducting a logistic
regression of the indicator of the Contagion Index being higher than 1% of the total network capital
once on the interbank liability and counterparty susceptibility, and once on the interbank liability and
local network frailty. Figure [21| displays the decision boundaries at the probabilities 10% and 50% when
observing once the interbank liability size and the counterparty susceptibility and once the interbank
liability size and the local network frailty: a node outside the 10% decision boundary has an estimated
probability of 10% to have a Contagion Index higher than 1% of the network capital; a node outside
the 50% decision boundary has an estimated probability of 50% to have a Contagion Index higher than
1% of the network capital. We note that institutions with a high Contagion Index tend to have a large
interbank liability, local network frailty and counterparty susceptibility.
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Figure 21: Counterparty susceptibility (upper figure) and local network frailty (lower figure) of the most
systemic nodes (with a Contagion Index higher than 1% of the network capital) and the less systemic
nodes (with a Contagion Index smaller than 1% of the network capital). Nodes above the 10% decision
boundary have with 10% probability a Contagion Index higher than 1% of the network capital. The ones
above the 50% decision boundary have with 50% probability a Contagion Index higher than 1% of the
capital in the Brazilian system.

The outputs of the logistic regression are summarized in table We observe that the counterparty
susceptibility and the local network frailty contribute significantly to the variability of the probability
of observing a large Contagion Index E positive coefficients at the 1% significance level and a very high
pseudo-R2.

!The Adjusted Pseudo-R? in a logistic regression is defined as 1 —logL(M)/logL(0)((n—1)/(n—k— 1)) where logL(M)
and logL(0) are the maximized log likelihood for the fitted model and the null model, n is the sample size and k is the
number of regressors.
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Model: logit(p(CI > 1%)) = Bo + B1log(L) + B2 log(CS) + €

Coefficients Standard error  Adjusted
Pseudo-R?

Bo = -20.85%* 7.96 93.46%

B, = 0.96* 0.39

By = 0.98* 0.40

Model: logit(p(CI > 1%)) = Bo + f1log(L) + ¢

Coefficients Standard error  Adjusted
Pseudo-R?

By = -29.24%* 7.11 94.54%

By = 1.39%* 0.34

Model: logit(p(CI > 1%)) = Bo + B11og(CS) + €

Coefficients Standard error  Adjusted
Pseudo-R?

By = -1.46%* 0.37 43.36%

Bi = 1.31%* 0.33

Model: logit(p(C1 > 1%)) = By + B1log(L) + B2 log(f) + €

Coefficients Standard error  Adjusted
Pseudo-R?

By = -43.20%* 11.06 97.76%

By = 1.05%* 0.39

By = 0.97%* 0.29

Model: logit(p(CT > 1%)) = fo + B1log(f) + €

Coefficients Standard error  Adjusted
Pseudo-R?

By = -21.32%* 4.75 93.79%

Bi = 0.95%* 0.22

* significant at 5% confidence level
** gignificant at 1% confidence level

Table 12: Marginal contribution of the interbank liabilities, counterparty susceptibility and local network
frailty to the Contagion Index.

We also test for the differences in median between the counterparty susceptibility of the institutions
with a Contagion Index higher than 1% of the total network capital and the counterparty susceptibility
of those with a Contagion Index smaller than 1% of the total network capital. The Wilcoxon signed-
rank test rejects the hypothesis of equal medians at the 1% level of significance. The median of the
counterparty susceptibility of the institutions with a high Contagion Index (2.29) is significantly higher
than the median of the counterparty susceptibility of the institutions with a small Contagion Index
(0.06). Similarly, the median of the local network frailty of the institutions with a high Contagion Index
(18.79 billion BRL) is significantly higher than the median of the local network frailty of the institutions
with a small Contagion Index (0.02 billion BRL).
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6 Does one size fit all? The case for targeted capital require-
ments

Capital requirements are a key ingredient of bank regulation: in the Basel Accords, a lower limit is
imposed on the ratio of capital to (risk-weighted) assets. It is clear that globally increasing the capital
cushion of banks will decrease the risk of contagion in the network, but given the heterogeneity of systemic
importance, as measured by the Contagion index, it is not clear whether a uniform capital ratio for all
institutions is the most efficient way of reducing systemic risk. Indeed, recent debate has considered the
option of more stringent capital requirements on systemically important institutions. One idea, which
we explore here, is to impose higher capital requirements on institutions whose position in the network
plays a key role in the network’s resilience to contagion.

Studies in epidemiology or the spread of viruses in peer-to-peer networks (Cohen et al.l |2003; Madar
et al., 2004; Huang et al.l [2007) have explored similar problems in the context of immunization of
heterogeneous networks to contagion. Madar et al. (2004]) study various immunization strategies in
the context of epidemic modeling. They show that in random immunization schemes, where nodes are
randomly chosen and vaccinated, the whole population must get vaccinated to effectively control epidemic
propagation. They propose instead a targeted immunization strategy that consists in vaccinating first
the nodes with largest degrees. A third approach, called acquaintance immunization (Cohen et al.|
2003; [Madar et al.l 2004]), which consists in immunizing randomly selecting individuals as well as their
acquaintances, is shown to perform better than random immunization, especially in scale-free networks.

Based on these analogies, we consider targeted capital requirement policy which consists in imposing
capital requirements on the the 5% most systemic institutions in the network and their creditors: this
aims at reducing the number of contagious links (see Definition [5) emanating from the most systemic
institutions, since these links play a major role in contagion of default in the network |[Amini et al.| (2010)).

We consider two different policies for setting capital requirements:

e Minimum capital-to-exposure ratio: in this case, we require institutions to hold a capital larger
than ¢ that could cover at least a portion 8 of their interbank exposures:

¢(i) = max(c(i), 0A(i)) (13)

e Cap on susceptibility: Counterparty susceptibility (Definition [7)) and local network frailty (Defi-
nition [§) are a significant source of systemic risk. Thus, preventing large values of counterparty
susceptibility or network frailty from occuring can decrease systemic risk. This could be achieved
by requiring that no exposure should represent more than a fraction 7 of capital. In this case, a
financial institution 4 is required to hold a capital larger than ¢ given by:

max; i (L)

¢(i) = max(c(7), 5

) (14)

We compare the situations in which (i) these policies are applied to all financial institutions in the
network (non-targeted capital requirements), (ii) they are applied only to the creditors of the 5% most
systemic institutions (targeted capital requirements), by computing, in each case, the average of 5%
largest Contagion Indexes (i.e. the 5% tail conditional expectation of the cross sectional distribution of
Contagion Index) in the Brazilian network

Targeted capital requirements are observed to be more efficient in the sense that one can achieve the
same reduction in systemic risk -in terms of the cross-sectional tail of the Contagion Index- with the
same amount of capital, differently distributed across the network. Figure 22]shows that targeted capital
requirements can achieve the same reduction in the size of default cascades while requiring less capital.
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Figure 22: Comparison of various capital requirement policies: (a) imposing a floor on the capital ratio for
all institutions in the network, (b) imposing a cap on the susceptibility for all institutions in the network,
(¢) imposing a floor on the capital ratio only for the creditors of the 5% most systemic institutions, (d)
imposing a cap on the susceptibility only for the creditors of the 5% most systemic institutions.

While it is clear that raising capital requirements reduces the number of defaults by contagion, the
impact on the Contagion Index is the result of two competing effects. One has to bear in mind that
increasing capital requirements will mainly increase the capital of the most fragile institutions, since those
already well-capitalized satisfy the requirements without any additional capital. Thus, the proportion of
total capital invested in fragile institutions increases, and consequently the Contagion Index expressed in
percentage of the total capital in the system may increase. In fact, we observe that the Contagion Index
is decreasing when imposing these restrictions on the creditors of the 5% most systemic institutions (see
figure , and globally decreasing when imposing these restrictions on all the institutions in the system.
We also find that targeting the creditors of the most systemic nodes is a more efficient procedure to
reduce the Contagion Index: for a same level of total capital the Contagion Index is smaller.
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Figure 23: Comparison of various capital requirement policies: (a) imposing a floor on the capital ratio for
all institutions in the network, (b) imposing a cap on the susceptibility for all institutions in the network,
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