
MATH 1AA3 Solutions to Written Assignment #3 April 5, 2012

1. Find the solution to the initial value problem y2 = 1−y′ cos(x), y(0) = 0 as follows:

(a) Write y =
∞∑

n=0

anx
n and plug into both sides of the equation. Solve for

a0, a1, a2, a3.

Solution. Since 0 = y(0) = a0 + a10 + a20
2 + · · · , we see a0 = 0 .[2]

(a1x + a2x
2 + a3x

3 + · · · )2 = 1− (a1 + 2a2x + 3a3x
2 + · · · )(1− x2

2
+ · · · )

0 + 0x + a2
1x

2 + · · · = (1− a1) + (−2a2)x + (
a1

2
− 3a3)x

2 + · · ·

Comparing coefficients:

0 = 1− a1 and 0 = −2a2 and a2
1 =

a1

2
− 3a3

The first two equations give a1 = 1 and a2 = 0 . The third becomes:[3]

1 =
1

2
− 3a3 =⇒ a3 = −1

6
.

(b) Guess y(x). Check that your guess is correct.

Solution. In part (a), we found y = x − x3

3!
+ · · · . This is a familiar Taylor[2]

series, so we guess y = sin(x) . Check:

(sin (x))2 ?
= 1− (sin (x))′ cos (x)

sin2(x)
X
= 1− cos2 (x)

2. (a) Using the fact that

arcsin(x) =

∫ x

0

dt√
1− t2

,

find a power series expansion for arcsin(x) centred at 0. State any theorems
you use.

Solution. By the Generalized Binomial Theorem,

(1−x2)−1/2 = 1+(−1

2
)(−x2)+

(−1/2)(−3/2)

2!
(−x2)2+

(−1/2)(−3/2)(−5/2)

3!
(−x2)3+· · ·

1√
1− x2

= 1+
1

2
x2+

1 · 3
2 · 4

x4+
1 · 3 · 5
2 · 4 · 6

x6+· · ·+1 · 3 · 5 · · · · (2n− 3) · (2n− 1)

2 · 4 · 6 · · · · (2n− 2) · (2n)
x2n+· · ·

By Theorem 11.5.17 of Stewart (integrating power series):[2]

arcsin(x) = x +
1

2
· x3

3
+

1 · 3
2 · 4

· x5

5
+

1 · 3 · 5
2 · 4 · 6

· x7

7
+ · · ·+ 1 · 3 · 5 · · · · (2n− 3) · (2n− 1)

2 · 4 · 6 · · · · (2n− 2) · (2n)
· x2n+1

2n + 1
+ · · ·
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(b) Write down the radius of convergence of the power series you derive in part
(a). Find the interval of convergence of this power series.

Solution. The ratio of successive terms is:[2]

�1 · �3 · �5 · · · ·�����(2n− 1) · (2n + 1)

�2 · �4 · �6 · · · ·���(2n) · (2n + 2)
· x2n+3

2n + 3
÷ �1 · �3 · �5 · · · ·�����(2n− 3) ·�����(2n− 1)

�2 · �4 · �6 · · · ·�����(2n− 2) ·���(2n)
· x2n+1

2n + 1

=
(2n + 1)2

(2n + 2)(2n + 3)
x2

which approaches x2 as n →∞. x2 < 1 ⇐⇒ −1 < x < 1.

So the radius of convergence is 1 .

We still need to test the endpoints. At x = 1, the series becomes:Bonus
[4]

1+
1

2
· 1
3
+

1 · 3
2 · 4

· 1
5
+

1 · 3 · 5
2 · 4 · 6

· 1
7
+· · ·+1 · 3 · 5 · · · · (2n− 3) · (2n− 1)

2 · 4 · 6 · · · · (2n− 2)(2n)
· 1

2n + 1
+· · ·

We use the limit comparison test to compare the series to
∑

1
n1.5 :

lim
n→∞

1 · 3 · 5 · · · · (2n− 3) · (2n− 1)

2 · 4 · 6 · · · · (2n− 2)(2n)
· 1

2n + 1
÷ n−1.5

= lim
n→∞

n1.5

(2n + 1)1.5
lim

n→∞

1 · 3 · 5 · · · · (2n− 3) · (2n− 1)
√

2n + 1

2 · 4 · 6 · · · · (2n− 2)(2n)
=

1

21.5
·
√

2

π

(The second factor comes from the square root of the reciprocal of the Wallis
product: lim

n→∞
2
1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · · · 2n

2n−1
· 2n

2n+1
= π

2
.)

Since this limit is a positive finite number and
∑

1
n1.5 converges, the power series

converges at x = 1. The series for x = −1 is just the negation of the series for

x = 1, so converges. Therefore, the interval of convergence is [−1, 1] .

(c) By choosing an appropriate value of x to plug into the power series you found
in part (a), find a series that converges to π/2.

Solution. π/2 = arcsin(1), so :[2]

π

2
= 1 +

1

2
· 1

3
+

1 · 3
2 · 4

· 1

5
+

1 · 3 · 5
2 · 4 · 6

· 1

7
+ · · ·+ 1 · 3 · 5 · · · · (2n− 3) · (2n− 1)

2 · 4 · 6 · · · · (2n− 2)(2n)
· 1

2n + 1
+ · · ·

(d) Rederive your formula in (a) by determining the sequence {cn} of numbers for
which ∑

cn

(
x− x3

3!
+

x5

5!
− · · ·

)n

= x

are equal power series.
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Solution. Writing arcsin(y) = c0 + c1y + c2y
2 + c3y

3 + · · · , we have:Bonus
[4]

x = arcsin(sin(x)) =
∑

cn

(
x− x3

3!
+

x5

5!
− · · ·

)n

x = c0 + c1x + c2x
2 + (c3 −

c1

3!
)x3 + (c4 − 2

c2

3!
)x4 + (c5 − 3

c3

3!
+

c1

5!
)x5 + · · ·

Comparing the first few terms, 0 = c0, 1 = c1, 0 = c2 . Further terms yield:

0 = c3 −
c1

3!
=⇒ c3 =

1

6

0 = c4 − 2
c2

3!
=⇒ c4 = 0

0 = c5 − 3
c3

3!
+

c5

5!
=⇒ c5 =

3

40

So arcsin(x) = x + x3

6
+ 3x5

40
+ · · · .

3. Question 19., Problems Plus, p.783, Stewart 7th Ed. (Hint: Use the Maclaurin
series for arctan(x)).

Solution. By Table 1 in Section 11.10, arctan(x) =
∑∞

n =0(−1)n x2n+1

2n+1
for |x| < 1.[2]

In particular, for x = 1√
3
, we have[1]

π

6
= arctan

(
1√
3

)
=

∞∑
n =0

(−1)n (1/
√

3)2n+1

2n + 1
=

∞∑
n =0

(−1)n

(
1

3

)n
1√
3

1

2n + 1
,

so[2]

π =
6√
3

∞∑
n =0

(−1)n

(2n + 1)3n
= 2

√
3
∞∑

n =0

(−1)n

(2n + 1)3n
= 2

√
3

(
1 +

∞∑
n =1

(−1)n

(2n + 1)3n

)

⇒
∞∑

n =1

(−1)n

(2n + 1)3n
=

π

2
√

3
− 1 .

4. (a) What is the Taylor series for ex about x = 0?

Solution.[1]

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ · · ·

(b) For e−x?
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Solution. Replacing x with −x in (a), we get:[1]

e−x = 1− x +
x2

2!
− x3

3!
+

x4

4!
− x5

5!
+ · · ·

(c) The hyperbolic sine function is given by the power series: sinh(x) = x + x3

3!
+

x5

5!
+ x7

7!
+ · · · . Using your answers to (a) and (b), write down a formula for

sinh(x) that does not involve any infinite series.

Solution. The hyperbolic sine function’s power series is half the difference[1]

between the power series in (a) and (b). Therefore, sinh(x) =
ex − e−x

2
.

(d) The hyperbolic cosine function, cosh(x), is the derivative of sinh(x). Write
down an explicit formula for cosh(x).

Solution.[1]

cosh(x) := (sinh(x))′ =

(
ex − e−x

2

)′
=

ex + e−x

2

(e) Determine the power series expansion for cosh(x) about x = 0.

Solution. Taking the derivative of the power series in (c), we get[1]

cosh(x) = 1 +
x2

2!
+

x4

4!
+

x6

6!
+ · · ·

(f) What is the derivative of cosh(x)?

Solution. Taking the derivative of the answer to either (d) or (e) shows[1]

cosh′(x) = sinh(x) .

(g) Sketch the parametric curve x = cosh(t), y = sinh(t). Eliminate the parameter
to find a Cartesian equation of the curve. Which conic (or piece of a conic) is
this?

Solution.[3]

x2 = cosh2(t) =

(
ex + e−x

2

)2

=
e2x + 2 + e−2x

4

and

y2 = sinh2(t) =

(
ex − e−x

2

)2

=
e2x − 2 + e−2x

4
.

Subtracting the two equations yields:

x2 − y2 = 1 .

This equation is a hyperbola , and the parametric curve consists of its right half .
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5. Find the Taylor polynomial of smallest degree of an appropriate function about a
suitable point to approximate

√
9.01 to within 0.00005.

Solution. We use the Taylor series for f(x) =
√

x centered at 9.[1]

The first few derivatives of
√

x are f ′(x) = 1
2
x−1/2, f ′′(x) = −1

4
x−3/2, f ′′′(x) =[1]

3
8
x−5/2. Note: the coefficients alternate in sign.

Computing f(9) = 3, f ′(9) = 1
6
, f ′′(9) = − 1

108
, we find the Taylor series (at 9):[1]

√
x = 3+

1

6
(x−9)− 1

2! · 108
(x−9)2+· · · =⇒

√
9.01 = 3+

1

6
(0.01)− 1

216
(.01)2+· · · .

Since the series is (eventually) alternating and 1
216

(.01)2 < .0000005 < .00005, we[1]
can stop before the third term.

Thus the degree one Taylor polynomial
√

9.01 ≈ 3 +
1

6
(0.01) ≈ 3.00167 suffices.[1]

6. (a) Using the Maclaurin series for ex, sin(x), and cos(x), prove that eix = cos(x)+
i sin(x). Here, i =

√
−1 satisfies i2 = −1. Read Stewart p. A63 if you get

stuck.

(b) Deduce that eiπ = −1.

Solution. (a) We know that[4]

ey = 1 + y +
y2

2!
+

y3

3!
+

y4

4!
+

y5

5!
+ · · ·

Setting y = ix into this formula, where x ∈ R and i2 = −1, yields

eix = 1 + ix +
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+ · · ·

= 1 + ix− x2

2!
− i

x3

3!
+

x4

4!
+ i

x5

5!
− · · ·

=

(
1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

)
+ i

(
x− x3

3!
+

x5

5!
− · · ·

)
= cos x + i sin x,

as desired.

(b) Setting x = π into the formula obtained in part (a) yields eiπ = cos π + i sin π = −1 .[1]

7. Which of the following are hyperbolas? For the hyperbolas, determine their foci.

(a) x2 − 2x− 4y2 = 3

5



Solution.
(x2 − 2x + 1)− 4y2 = 3 + 1

(x− 1)2 − 4y2 = 4

(x− 1)2

22
− y2

12
= 1

This is a hyperbola with foci at (1 ± c, 0) where c2 = a2 + b2 = 22 + 12 = 5.[3]

Foci: (1±
√

5, 0) .

(b) y = 1/x

Solution. This curve is asymptotic to the coordinate axes. For it to be aBonus
[4] hyperbola, the foci must lie on the line bisecting the angle between the asymp-

totes (there are two angle bisectors, but we mean the one passing through the
curve). By symmetry, the foci would have to be F1 = (f, f) and F2 = (−f,−f).

For points P = (x, y) on a hyperbola, |PF1 − PF2| is constant. Looking from
a point far up the vertical asymptote, the constant is seen to be the difference
in vertical coordinates of the foci, or 2f . The hyperbola would have to be:

±2f = PF1 − PF2

±2f =
√

(x− f)2 + (y − f)2 −
√

(x + f)2 + (y + f)2√
(x− f)2 + (y − f)2 =

√
(x + f)2 + (y + f)2 ± 2f

(x− f)2 + (y − f)2 = (x + f)2 + (y + f)2 + (2f)2 ± 4f
√

(x + f)2 + (y + f)2

x2 − 2xf + y2 − 2yf + 2f 2 = x2 + 2xf + y2 + 2yf + 2f 2 + 4f 2 ± 4f
√

(x + f)2 + (y + f)2

−4xf − 4yf − 4f 2 = ±4f
√

(x + f)2 + (y + f)2

∓(x + y + f) =
√

x2 + 2xf + f 2 + y2 + 2yf + f 2

x2 + y2 + f 2 + 2(xy + xf + yf) = x2 + 2xf + f 2 + y2 + 2yf + f 2

2xy = f 2

y =
f 2

2x

Taking f =
√

2, we see that y = 1
x

is indeed a hyperbola with foci (
√

2,
√

2) and (−
√

2,−
√

2) .

(c) y = 1/x2

Solution. This curve has only one axis of symmetry (the y-axis), but hyper-[2]

bolas have two axes of symmetry. Therefore it is not a hyperbola .

8. Stewart Exercise 50, p 687.

Solution. The distance from the focus (2, 1) to the directrix x = −4 is 2−(−4) = 6,[4]
so the distance from the focus to the vertex is 1

2
(6) = 3 and the vertex is (−1, 1).
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Since the focus is to the right of the vertex, p = 3. An equation is (y − 1)2 =

4 · 3[x− (−1)], or (y − 1)2 = 12(x + 1) .

9. Stewart Exercise 52, p 687.

Solution. Centre is (3, 0), and a = 8
2

= 4, c = 2 ⇒ b =
√

42 − 22 =
√

12 ⇒ an[4]

equation of the ellipse is
(x− 3)2

12
+

y2

16
= 1 .
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