1. (a) To show $a_{n} \leq 3$ for all n, first note $a_{1} \leq 3$. Now assume $a_{n} \leq 3$ and note $a_{n+1}=\sqrt{3 a_{n}} \leq \sqrt{3 \cdot 3}=3$ to conclude the inductive proof.
(b) To show $a_{n+1}>a_{n}$ for all n, first note $a_{2}=\sqrt{3}>a_{1}$. Now assume $a_{n}>a_{n-1}$ and note $a_{n+1}=\sqrt{3 a_{n}}>\sqrt{3 a_{n-1}}=a_{n}$ to conclude the inductive proof.
(c) Since the sequence is bounded and monotonic, it converges to some value M. By the limit law for continuous functions

$$
M=\lim _{n \rightarrow \infty} \sqrt{3 a_{n-1}}=\sqrt{3 * \lim _{n \rightarrow \infty} a_{n-1}}=\sqrt{3 M}
$$

Since $M>1$ we have $M^{2}=3 M$ or $M=3$.
[4] 2. By definition of a sequence diverging to ∞, given any $M>0$ there is an N such that $b_{n}>M$ for all $n>N$. Suppose $\left\{a_{n}\right\}$ is bounded below by m. Given any $M>0$, there is an N^{\prime} such that $b_{n}>M+m$ for all $n>N^{\prime}$. For any $n>N^{\prime}$, $a_{n}+b_{n}>m+(M-m)=M$, and thus $\left\{a_{n}+b_{n}\right\}$ diverges to ∞.
[6] 3. Consider the three cases $x \leq 0,0<x \leq 1$, and $x>1$. In case $x \leq 0$, the terms a_{n} do not converge to 0 , hence the series diverges by the Test for Divergence. In both cases $0<x \leq 1$ and $x \geq 1$ use the integral test. To check the hypotheses of the integral test, note that the function $f(z)=z^{-x}$ is continuous, positive and decreasing on $[1, \infty)$ for any $x>0$. In case $0<x \leq 1, \int_{1}^{\infty} f(z) d z$ diverges, hence the zeta series diverges. In case $x>1$, the integral $\int_{1}^{\infty} f(z) d z$ converges, hence the zeta series converges. We conclude that the domain of the zeta function is $(1, \infty)$.
4. Note that the function $f(x)=x^{-5}$ is continuous, positive and decreasing on $[1, \infty)$ and note that $\int_{n}^{\infty} x^{-5} d x=n^{-4} / 4$ for any $n>0$. By the integral test remainder formula, $s_{n}+\int_{n+1}^{\infty} x^{-5} d x \leq s \leq s_{n}+\int_{n}^{\infty} x^{-5} d x$. For the width of this interval to be less than 2×10^{-3} one needs to have $\left(n^{-4}-(n+1)_{/}^{-4} 4 \leq 2 \times 10^{-3}\right.$. It is sufficient to take $n=4$ terms, whereas 3 terms is not enough. We find $s_{4}+(5)^{-4} / 4=$ $1.0367 \leq s \leq s_{4}+(4)^{-4} / 4=1.0373$. Taking the midpoint as the estimate \bar{s}, we have $s \sim \bar{s}=1.0370$ with an error less than 0.0003 .
[Alternative: we also have an upper bound $s \leq s_{n}+\int_{n+1}^{\infty} x^{-5} d x+a_{n}$ leading to an estimate $\bar{s}=s_{n}+\int_{n+1}^{\infty} x^{-5} d x+\frac{1}{2} a_{n}$ with error less than $a_{n} / 2$, which leads again to the optimal value $n=4$.]
[3] 5. When $a_{n}=\frac{1}{n^{1+1 / n}}$, one can compare to the divergent series with $b_{n}=1 / n$. We note $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} n^{1 / n}=e^{\lim _{n \rightarrow \infty} \ln (n) / n}=e^{0}=1$. By the limit comparison test, $\sum a_{n}$ diverges.
6. By the comparison test, the error $\sum_{n=11}^{\infty} a_{n}$ is positive and bounded above by the series $\sum_{n=11}^{\infty} \frac{1}{n^{3}}$, which by the integral test is bounded above by $a_{11}+\int_{11}^{\infty} \frac{d x}{x^{3}}=$ $11^{-3}+\frac{2}{11^{2}}=0.0173$. Hence the error $s-s_{11}$ is positive and bounded by 0.0173 . (Not asked for: On computer (MATLAB) I compute $s_{10}=0.8325298$.)
7. We note that the function $f(x)=\sqrt{x+1}-\sqrt{x}$ is positive and decreasing on $[1, \infty)$. We also note that using l'Hospital's rule shows
$\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\sqrt{1+1 / x}-1}{1 / \sqrt{x}}=\lim _{x \rightarrow \infty} \frac{2\left(-1 / x^{2}\right) / \sqrt{1+1 / x}}{-2 / x^{3 / 2}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x} \sqrt{1+1 / x}}=0$
By the alternating series test, one concludes that $\sum_{n}(-1)^{n} f(n)$ converges.
9. (a) The number of sides s_{n} satisfies the recurrence $s_{n}=4 s_{n-1}$ with $s_{0}=3$. Thus $s_{n}=3 \cdot 4^{n}$. The lengths of the sides are $l_{n}=(1 / 3)^{n}$. The perimeters are $p_{n}=s_{n} * l_{n}=3(4 / 3)^{n}$.
(b) The sequence p_{n} diverges since the common ration $r=4 / 3>1$.
(c) (Note: this problem is trickier than I thought! This is the corrected solution) Let $A_{0}=\sqrt{3} / 4$ be the area of the initial equilateral triangle. The area of each of the 3 smaller triangles added are $A_{0} *(1 / 9)$. At the second step we add $4^{*} 3$ triangles of area $A_{0} *(1 / 9)$. The areas inside the snowflake after $n \geq 2$ steps are $A_{n}=A_{0} *\left(1+3 *(1 / 9)+(1 / 3) *(4 / 9)+\cdots+(1 / 3) *(4 / 9)^{n-1}\right.$. This is A_{0} plus a geometric series with $a=A_{0} / 3$ and $r=4 / 9$ and hence the total area in the limit is $A=A_{0}[1+1 /(3 *(1-4 / 9))]=\frac{2 \sqrt{3}}{5}$.
[4] 10. Using the hint with the two convergent geometric series $\sum b_{n}, \sum, c_{n}$ with $a=1$ and $r=1 / 2$ and $r=1 / 3$ we see that the product

$$
\left(1+2^{-1}+2^{-2}+2^{-3}+\ldots\right)\left(1+3^{-1}+3^{-2}+3^{-3}+\ldots\right)
$$

generates precisely the desired series $\sum a_{n}$. Let the partial sums of $\sum b_{n}, \sum c_{n}$ be $\left\{t_{n}\right\},\left\{u_{n}\right\}$ respectively. We can see that $\sum a_{n}$ should converge to the product $\sum b_{n} \cdot \sum c_{n}=\frac{1}{1-1 / 2} \frac{1}{1-1 / 3}=3$.
[BONUS 2 marks, because this is tricky] By some reordering of terms, we can rewrite the product series as $\sum_{n} d_{n}$ where $d_{n}=t_{n} u_{n}-t_{n-1} u_{n-1}$. In this case the partial sums $s_{n}=\sum_{i=1}^{n} d_{n}$ are $t_{n} u_{n}$. By the product limit law, $\lim _{n} t_{n} u_{n}=\lim _{n} t_{n} \cdot \lim _{n} u_{n}=3$. Hence $\sum a_{n}=\sum d_{n}$ converges to 3 .

