
MATH 1AA3 Solutions to Written Assignment #2 March 14, 2012

1. (a) To show an ≤ 3 for all n, first note a1 ≤ 3. Now assume an ≤ 3 and note[2]
an+1 =

√
3an ≤

√
3 · 3 = 3 to conclude the inductive proof.

(b) To show an+1 > an for all n, first note a2 =
√

3 > a1. Now assume an > an−1[2]
and note an+1 =

√
3an >

√
3an−1 = an to conclude the inductive proof.

(c) Since the sequence is bounded and monotonic, it converges to some value M .[2]
By the limit law for continuous functions

M = lim
n→∞

√
3an−1 =

√
3 ∗ lim

n→∞
an−1 =

√
3M.

Since M > 1 we have M2 = 3M or M = 3.

2. By definition of a sequence diverging to ∞, given any M > 0 there is an N such[4]
that bn > M for all n > N . Suppose {an} is bounded below by m. Given any
M > 0, there is an N ′ such that bn > M + m for all n > N ′. For any n > N ′,
an + bn > m + (M −m) = M , and thus {an + bn} diverges to ∞.

3. Consider the three cases x ≤ 0, 0 < x ≤ 1, and x > 1. In case x ≤ 0, the terms[6]
an do not converge to 0, hence the series diverges by the Test for Divergence. In
both cases 0 < x ≤ 1 and x ≥ 1 use the integral test. To check the hypotheses
of the integral test, note that the function f(z) = z−x is continuous, positive and
decreasing on [1,∞) for any x > 0. In case 0 < x ≤ 1,

∫∞
1

f(z)dz diverges, hence
the zeta series diverges. In case x > 1, the integral

∫∞
1

f(z)dz converges, hence the
zeta series converges. We conclude that the domain of the zeta function is (1,∞).

4. Note that the function f(x) = x−5 is continuous, positive and decreasing on [1,∞)[5]
and note that

∫∞
n

x−5dx = n−4/4 for any n > 0. By the integral test remainder
formula, sn +

∫∞
n+1

x−5dx ≤ s ≤ sn +
∫∞

n
x−5dx. For the width of this interval to be

less than 2 × 10−3 one needs to have (n−4 − (n + 1)−4
/ 4 ≤ 2 × 10−3. It is sufficient

to take n = 4 terms, whereas 3 terms is not enough. We find s4 + (5)−4/4 =
1.0367 ≤ s ≤ s4 + (4)−4/4 = 1.0373. Taking the midpoint as the estimate s̄, we
have s ∼ s̄ = 1.0370 with an error less than 0.0003.

[Alternative: we also have an upper bound s ≤ sn +
∫∞

n+1
x−5dx + an leading to an

estimate s̄ = sn +
∫∞

n+1
x−5dx + 1

2
an with error less than an/2, which leads again to

the optimal value n = 4.]

5. When an = 1
n1+1/n , one can compare to the divergent series with bn = 1/n. We note[3]

limn→∞
an

bn
= limn→∞ n1/n = elimn→∞ ln(n)/n = e0 = 1. By the limit comparison test,∑

an diverges.
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6. By the comparison test, the error
∑∞

n=11 an is positive and bounded above by the[5]
series

∑∞
n=11

1
n3 , which by the integral test is bounded above by a11 +

∫∞
11

dx
x3 =

11−3 + 2
112 = 0.0173. Hence the error s − s11 is positive and bounded by 0.0173.

(Not asked for: On computer (MATLAB) I compute s10 = 0.8325298.)

7. We note that the function f(x) =
√

x + 1−
√

x is positive and decreasing on [1,∞).[5]
We also note that using l’Hospital’s rule shows

lim
x→∞

f(x) = lim
x→∞

√
1 + 1/x− 1

1/
√

x
= lim

x→∞

2(−1/x2)/
√

1 + 1/x

−2/x3/2
= lim

x→∞

1
√

x
√

1 + 1/x
= 0

By the alternating series test, one concludes that
∑

n(−1)nf(n) converges.

8. We note that the series starts with 1 − 2−6 + 3−6 − . . . , and that f(x) = x−6 is[5]
positive and decreasing. By the alternating series estimate, s2n ≤ s ≤ s2n+1 for any
n. To make the error interval width less than 2 × 10−4 we need a2n+1 < 2 × 10−4.
One finds 2n+1 = 5 > 4.135 = (2× 10−4)−1/6, so s4 = 0.98550 ≤ s ≤ s5 = 0.98556.
Taking the midpoint as the estimate, we have s ∼ s̄ = 0.98553 with an error less
than 0.00003.

9. (a) The number of sides sn satisfies the recurrence sn = 4sn−1 with s0 = 3. Thus[3]
sn = 3 · 4n. The lengths of the sides are ln = (1/3)n. The perimeters are
pn = sn ∗ ln = 3(4/3)n.

(b) The sequence pn diverges since the common ration r = 4/3 > 1.[1]

(c) (Note: this problem is trickier than I thought! This is the corrected solution)
Let A0 =

√
3/4 be the area of the initial equilateral triangle. The area of each[3]

of the 3 smaller triangles added are A0 ∗ (1/9). At the second step we add 4*3
triangles of area A0 ∗ (1/9). The areas inside the snowflake after n ≥ 2 steps
are An = A0 ∗ (1 + 3 ∗ (1/9) + (1/3) ∗ (4/9) + · · ·+ (1/3) ∗ (4/9)n−1.This is A0

plus a geometric series with a = A0/3 and r = 4/9 and hence the total area in

the limit is A = A0[1 + 1/(3 ∗ (1− 4/9))] =
2
√

3

5
.

10. Using the hint with the two convergent geometric series
∑

bn,
∑

, cn with a = 1 and[4]
r = 1/2 and r = 1/3 we see that the product(

1 + 2−1 + 2−2 + 2−3 + . . .
) (

1 + 3−1 + 3−2 + 3−3 + . . .
)

generates precisely the desired series
∑

an. Let the partial sums of
∑

bn,
∑

cn

be {tn}, {un} respectively. We can see that
∑

an should converge to the product∑
bn ·

∑
cn = 1

1−1/2
1

1−1/3
= 3.

[BONUS 2 marks, because this is tricky] By some reordering of terms, we can rewrite[2]
the product series as

∑
n dn where dn = tnun−tn−1un−1. In this case the partial sums

sn =
∑n

i=1 dn are tnun. By the product limit law, limn tnun = limn tn · limn un = 3.
Hence

∑
an =

∑
dn converges to 3.
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