MATH 1AA3 Written Assignment #3 March

Due in the Hamilton Hall basement dropbox by noon, Wednesday April 4, 2012.

- 1. Find the solution to the initial value problem $y^2 = 1 y' \cos(x), y(0) = 0$ as follows:
 - (a) Write $y = \sum_{n=0}^{\infty} a_n x^n$ and plug into both sides of the equation. Solve for a_0, a_1, a_2, a_3 .
 - (b) Guess y(x). Check that your guess is correct.
- 2. (a) Using the fact that

$$\arcsin(x) = \int_0^x \frac{dt}{\sqrt{1-t^2}},$$

find a power series expansion for $\arcsin(x)$ centred at 0. State any theorems you use.

- (b) Write down the radius of convergence of the power series you derive in part (a). Find the interval of convergence of this power series.
- (c) By choosing an appropriate value of x to plug into the power series you found in part (a), find a series that converges to $\pi/2$.
- (d) Rederive your formula in (a) by determining the sequence $\{c_n\}$ of numbers for which

$$\sum c_n \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \right)^n = x$$

are equal power series.

- 3. Question 19., Problems Plus, p.783, Stewart 7th Ed. (Hint: Use the Maclaurin series for $\arctan(x)$).
- 4. (a) What is the Taylor series for e^x about x = 0?
 - (b) For e^{-x} ?
 - (c) The hyperbolic sine function is given by the power series: $\sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$. Using your answers to (a) and (b), write down a formula for $\sinh(x)$ that does not involve any infinite series.
 - (d) The hyperbolic cosine function, $\cosh(x)$, is the derivative of $\sinh(x)$. Write down an explicit formula for $\cosh(x)$.
 - (e) Determine the power series expansion for $\cosh(x)$ about x = 0.
 - (f) What is the derivative of $\cosh(x)$?
 - (g) Sketch the parametric curve $x = \cosh(t), y = \sinh(t)$. Eliminate the parameter to find a Cartesian equation of the curve. Which conic (or piece of a conic) is this?
- 5. Find the Taylor polynomial of smallest degree of an appropriate function about a suitable point to approximate $\sqrt{9.01}$ to within 0.00005.

- 6. (a) Using the Maclaurin series for e^x , $\sin(x)$, and $\cos(x)$, prove that $e^{ix} = \cos(x) + i\sin(x)$. Here, $i = \sqrt{-1}$ satisfies $i^2 = -1$. Read Stewart p. A63 if you get stuck.
 - (b) Deduce that $e^{i\pi} = -1$.
- 7. Which of the following are hyperbolas? For the hyperbolas, determine their foci.
 - (a) $x^2 2x 4y^2 = 3$ (b) y = 1/x(c) $y = 1/x^2$

(c)
$$y = 1/x$$

- 8. Stewart Exercise 50, p 687.
- 9. Stewart Exercise 52, p 687.