Math 1AA3 Test \#2

Drs. Hurd, Conlon and Baker
March 6, 2012

1. Only the Casio FX-991 calculator is permitted. Please answer all questions in the booklet provided.
2. This test has $\mathbf{7}$ questions and $\mathbf{2}$ pages. The total number of marks is $\mathbf{4 0}$.
3. You may use the following facts without proof (except in question 1):

$$
\lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{ll}
0 & \text { if }|r|<1 \\
1 & \text { if } r=1 \\
\infty & \text { if } r>1 \\
\text { DIV } & \text { if } r \leq-1
\end{array} \quad \lim _{n \rightarrow \infty} \frac{1}{n^{k}}= \begin{cases}0 & \text { if } k>0 \\
1 & \text { if } k=0 \\
\infty & \text { if } k<0\end{cases}\right.
$$

[2] 1. (a) Give the definition of "the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of real numbers converges to the real number a ".
[2] (b) Prove that $\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0$ according to this definition.
Solution. (a) $\left\{a_{n}\right\}$ converges to a if for every $\epsilon>0$ there exists N such that whenever $n>N,\left|a_{n}-a\right|<\epsilon$.
(b) Given $\epsilon>0$, take $N>-\log _{2}(\epsilon)$. Then for any $n>N,\left|\frac{1}{2^{n}}-0\right|=2^{-n}<2^{-N}<$ $2^{\log _{2} \epsilon}=\epsilon$. So $\frac{1}{2^{n}} \rightarrow 0$.
[4] 2. In each of the following examples, show whether or not the sequence converges to a real number, and find the limit when the sequence converges. Name any test or rule that you use.
(a)

$$
\left\{\frac{(-1)^{n}+1}{n}\right\}
$$

(b)

$$
\left\{\frac{\sqrt{n}+7}{\sin (n)+3 \sqrt{n}}\right\}
$$

Solution. (a)

$$
0 \leq \frac{(-1)^{n}+1}{n} \leq \frac{2}{n}
$$

Since $\lim _{n \rightarrow \infty} 0=0$ and $\lim _{n \rightarrow \infty} \frac{2}{n}=2 \lim _{n \rightarrow \infty} \frac{1}{n}=2 \cdot 0=0$, the Sandwich Theorem tells us

$$
\lim _{n \rightarrow \infty} \frac{(-1)^{n}+1}{n}=0
$$

(b) Since $-1 \leq \sin (n) \leq 1$:

$$
\frac{\sqrt{n}+7}{1+3 \sqrt{n}} \leq \frac{\sqrt{n}+7}{\sin (n)+3 \sqrt{n}} \leq \frac{\sqrt{n}+7}{-1+3 \sqrt{n}}
$$

As:

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{n}+7}{1+3 \sqrt{n}}=\lim _{n \rightarrow \infty} \frac{1+\frac{7}{\sqrt{n}}}{\frac{1}{\sqrt{n}}+3}=\frac{1+7 \cdot 0}{1 \cdot 0+3}=\frac{1}{3}
$$

and:

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{n}+7}{-1+3 \sqrt{n}}=\lim _{n \rightarrow \infty} \frac{1+\frac{7}{\sqrt{n}}}{-\frac{1}{\sqrt{n}}+3}=\frac{1+7 \cdot 0}{-1 \cdot 0+3}=\frac{1}{3}
$$

the sandwich theorem tells us

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{n}+7}{\sin (n)+3 \sqrt{n}}=\frac{1}{3}
$$

[Alternative Solution: Using Limit Laws,

$$
\frac{\sqrt{n}+7}{\sin (n)+3 \sqrt{n}}=\frac{1+7 / \sqrt{n}}{\sin (n) / \sqrt{n}+3} \rightarrow \frac{1+0}{0+3}
$$

since $\lim _{n \rightarrow \infty} \sin (n) / \sqrt{n}=0$ by the Squeeze Theorem and $\lim _{n \rightarrow \infty} 1 / \sqrt{n}=0$.]
[6] 3. For each of the following statements, say whether it is true or false. For those statements that are false, give a reason or a counterexample.

Solution. (a) If $a_{n}>0$ for all $n \in \mathbb{N}$, and $a_{n} \longrightarrow a$, then $a>0$.
(b) The series $\sum_{n=1}^{\infty} a_{n}$ converges if its sequence of partial sums $\left(s_{n}\right)$ is bounded.
(c) $\sum_{n=p}^{\infty} a r^{n}=\frac{a r^{p}}{1-r}$ provided that $|r|<1$.
(a) FALSE. Counterexample: $1 / n>0$ for all n but $1 / n \longrightarrow 0$.
(b) FALSE. Counterexample: $\sum(-1)^{n}$ diverges.
(c) TRUE.
[3] 4. (a) Determine whether $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$ converges or diverges, by use of an appropriate test. In the case the series converges, find its sum.
[3] (b) Use the Integral test to determine the values of p for which the following series is convergent.

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}
$$

Solution. (a) This is a telescoping series.

$$
\begin{aligned}
s_{n} & =\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)=\sum_{n=1}^{\infty} \ln (n)-\ln (n+1) \\
& =\ln (1)-\ln (2)+\ln (2)-\ln (3)+\ln (3)-\ln (4)+\cdots+\ln (n)-\ln (n+1) \\
& =\ln (1)-\ln (n+1)=-\ln (n+1)
\end{aligned}
$$

As $n \rightarrow \infty, \ln (n+1) \rightarrow \infty$, so the series diverges.
(b)

$$
\int_{e}^{\infty} \frac{d x}{x(\ln (x))^{p}}=\int_{1}^{\infty} \frac{d u}{u^{p}}=\left.\frac{u^{1-p}}{1-p}\right|_{1} ^{\infty}
$$

converges if and only if $p>1$.
By the Integral Test, the series converges if and only if $p>1$.
[6] 5. Solve the following initial value problems on the indicated intervals.
(a) $x \frac{d y}{d x}=y, \quad y(1)=2 . \quad$ Give an answer valid for all x.
(b) $x \frac{d y}{d x}=x+y, \quad y(1)=2$. Give an answer valid for $x>0$.

Solution. (a)

$$
\begin{aligned}
\frac{d y}{y} & =\frac{d x}{x} \\
\int \frac{d y}{y} & =\int \frac{d x}{x} \\
\ln (y) & =\ln (x)+C \\
y & =e^{\ln (x)+C}=A x \quad \text { where } A=e^{C}
\end{aligned}
$$

Using $y(1)=2$, we see $2=A(1)$, so $A=2$. The solution is $y=2 x$.
(b)

$$
x \frac{d y}{d x}=x+y \Longrightarrow \frac{d y}{d x}-\frac{1}{x} y=1
$$

The integrating factor is $e^{\int-d x / x}=e^{-\ln (x)}=1 / x$.

$$
\begin{aligned}
\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} & =\frac{1}{x} \\
(y / x)^{\prime} & =\frac{1}{x} \\
y / x & =\int \frac{1}{x}=\ln (x)+C \\
y & =x \ln (x)+C x
\end{aligned}
$$

Since $y(1)=2,2=1 \ln (1)+C \cdot 1=C$, so the solution is $y=x \ln (x)+2 x$.
6. An RC-circuit (resistor-capacitor circuit) consists of a power source of voltage E, a capacitor of (constant) capacitance C, and a resistor of (constant) resistance R configured as in the diagram. The capacitor starts out with charge $q=0$ at time $t=0$, when the switch is closed. The circuit then obeys the differential equation:

$$
E=\frac{q}{C}+R \frac{d q}{d t}
$$

[5] (a) Determine the charge q on the capacitor as a function of time if E is a positive constant. (Your answer should give q in terms of E, R, C, t.)
[2] (b) What happens to the charge as time approaches ∞ ? (Again, assume E is positive constant.)

Solution. (a) Solution 1: As Separable Equation

$$
\begin{aligned}
E & =\frac{q}{C}+R \frac{d q}{d t} \\
E C-q & =R C \frac{d q}{d t} \\
\int \frac{R C d q}{q-E C} & =\int-d t \\
R C \ln (q-E C) & =-t+k \quad k=\text { const of integration } \\
\ln (q-E C) & =-t /(R C)+k_{2} \quad\left(\text { where } k_{2}=k /(R C)\right) \\
q-E C & =e^{-t /(R C)+k_{2}}=A e^{-t /(R C)} \quad \text { where } A=e^{k_{2}} \\
q & =E C-A e^{-t /(R C)}
\end{aligned}
$$

At $t=0,0=q=E C-A e^{0}=E C-A$, so $A=E C$. Thus $q=E C\left(1-e^{-t /(R C)}\right)$.
Solution 2: As Linear Equation

$$
\begin{aligned}
E & =\frac{q}{C}+R \frac{d q}{d t} \\
\frac{d q}{d t}+\frac{q}{R C} & =\frac{E}{R} \quad \text { integrating factor }=e^{\int \frac{d t}{R C}}=e^{t /(R C)} \\
e^{t /(R C)} \frac{d q}{d t}+e^{t /(R C)} \frac{q}{R C} & =\frac{E}{R} e^{t /(R C)} \\
\left(e^{t /(R C)} q\right)^{\prime} & =\frac{E}{R} e^{t /(R C)} \\
e^{t /(R C)} q & =\int E e^{t /(R C)} d t / R=E C e^{t /(R C)}+k \quad k=\text { const of integration } \\
q & =E C+k e^{-t /(R C)}
\end{aligned}
$$

When $t=0,0=q=E C+k e^{0}=E C+k$, so $k=-E C$. Thus $q=E C\left(1-e^{-t /(R C)}\right)$.
(b) Ast $\rightarrow \infty, e^{-t /(R C)} \rightarrow e^{-\infty}=0$. So $q \rightarrow E C$.
7. Consider the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ where $s_{n}=1-\frac{1}{(n+1)^{2}}, n=1,2 \ldots$
(a) Find the series $\sum_{n=1}^{\infty} a_{n}$ that has $\left\{s_{n}\right\}$ as its sequence of partial sums.
(b) Determine if the series $\sum_{n} a_{n}$ converges, and if it does, compute its sum.
(c) What is the minimum number n of terms needed so that the remainder $R_{n}=s-s_{n}$ is less than 10^{-4} ?

Solution. (a) $a_{n}=s_{n}-s_{n-1}=\left(1-\frac{1}{(n+1)^{2}}\right)-\left(1-\frac{1}{n^{2}}\right)=\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}=\frac{2 n+1}{(n(n+1))^{2}}$, so the series whose partial sum is s_{n} is $\sum_{n=1}^{\infty} \frac{2 n+1}{(n(n+1))^{2}}$.
(b) $s_{n} \longrightarrow 1$ as $n \longrightarrow \infty$, therefore the series converges and its sum is 1 .
(c) $R_{n}=s-s_{n}=\frac{1}{(n+1)^{2}}<10^{-4}$ if $(n+1)^{2}>10^{4}$, i.e., if $n>99$, so the minimum number of terms is $n=100$.

END OF TEST

