Math 1AA3 Practice Test #2

Drs. Hurd, Conlon and Baker

March 6, 2012

- 1. Only the Casio FX-991 calculator is permitted. Please answer all questions in the booklet provided. Please write in pen, not pencil.
- 2. You may use the following facts without proof:

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } |r| < 1\\ 1 & \text{if } r = 1\\ \infty & \text{if } r > 1\\ \text{DIV} & \text{if } r \le -1 \end{cases} \qquad \lim_{n \to \infty} \frac{1}{n^k} = \begin{cases} 0 & \text{if } k > 0\\ 1 & \text{if } k = 0\\ \infty & \text{if } k < 0 \end{cases}$$

- 1. For each of the following statements, say whether it is true or false. For those that are false, give a reason or a counterexample.
 - (a) The sequence $(a_n) \longrightarrow 0$ if and only if the series $\sum_{n=1}^{\infty} a_n$ converges.
 - (b) If $\{a_n\}$ is divergent, then $\{|a_n|\}$ is divergent.
 - (c) If $\lim_{n\longrightarrow\infty} |a_n|$ exists, then $\lim_{n\longrightarrow\infty} a_n$ exists.
 - (d) If $\lim_{n\to\infty} a_n = L$, then the telescoping series $\sum_{n=1}^{\infty} (a_{n+1} a_n)$ converges and has sum $L a_1$.
 - (e) If $\sum_{n=1}^{\infty} a_n$ is a convergent series with positive terms, then $\sum_{n=1}^{\infty} \sqrt{a_n}$ must also converge.
- 2. (a) Give the definition of "the sequence $\{a_n\}$ of real numbers tends to infinity".
 - (b) Prove that $\lim_{n\to\infty} \ln(\sqrt{n}) = \infty$ according to this definition.
- 3. Let p be any positive integer. Consider the sequence $\{b_n\}_{n=1}^{\infty}$ with $b_n = n^p e^{-n}$.
 - (a) Show that $\lim_{n\to\infty} b_n = 0$.
 - (b) For p=2, use the integral test to show that $\sum b_n$ converges.
 - (c) For p=2, use the limit comparison test to show that $\sum b_n$ converges.
 - (d) How many terms would be needed to estimate $\sum n^{10}e^{-n}$ to within a tolerance of ± 1 .
- 4. Determine whether the series $\sum_{n=1}^{\infty} \frac{n}{\ln n}$ converges or diverges. In the case that the series converges, find its sum.

5. (a) Using the Integral test, determine the values of p for which the following series is convergent.

$$\sum_{n=1}^{\infty} \frac{\ln n}{n^p}$$

- (b) Consider the series with p=4. How many terms of this series must we add to approximate the sum with error less than 0.001? You may assume that $\ln x \le x-1$ for x>0.
- 6. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$.
 - (a) Show that this series converges.
 - (b) If the sum of the series is denoted s, find both an upper and lower bound on the remainder $R_{99} = s s_{99}$. Is the sign of R_{99} positive or negative?
 - (c) What is the smallest number N such that $0 \le R_N \le 10^{-1}$?
- 7. Consider the family of curves $\{y^2 = x + C\}$ (a different curve for each value of C).
 - (a) Find a single differential equation to which all the above curves are solutions.
 - (b) Find a differential equation satisfied by the orthogonal trajectories. (Hint: perpendicular lines have negative reciprocal slopes.)
 - (c) Solve this differential equation to determine all orthogonal trajectories to $\{y^2 = x + C\}$.
- 8. The hormone concentration in the bloodstream h(t) has been modelled by a differential equation

$$\frac{dh}{dt} = -\frac{R}{V} \left(\frac{h}{k+h} \right)$$

where R, V, k are parameters.

- (a) Solve this differential equation to find the relationship between h and t.
- (b) Solve the initial value problem with $h(0) = h_0$.
- (c) What is the long time behaviour of h(t)?