Math 1AA3 Practice Test \#2

Drs. Hurd, Conlon and Baker

March 6, 2012

1. Only the Casio FX-991 calculator is permitted. Please answer all questions in the booklet provided. Please write in pen, not pencil.
2. You may use the following facts without proof:

$$
\lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{ll}
0 & \text { if }|r|<1 \\
1 & \text { if } r=1 \\
\infty & \text { if } r>1 \\
\text { DIV } & \text { if } r \leq-1
\end{array} \quad \lim _{n \rightarrow \infty} \frac{1}{n^{k}}= \begin{cases}0 & \text { if } k>0 \\
1 & \text { if } k=0 \\
\infty & \text { if } k<0\end{cases}\right.
$$

1. For each of the following statements, say whether it is true or false. For those that are false, give a reason or a counterexample.
(a) The sequence $\left(a_{n}\right) \longrightarrow 0$ if and only if the series $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) If $\left\{a_{n}\right\}$ is divergent, then $\left\{\left|a_{n}\right|\right\}$ is divergent.
(c) If $\lim _{n \longrightarrow \infty}\left|a_{n}\right|$ exists, then $\lim _{n \longrightarrow \infty} a_{n}$ exists.
(d) If $\lim _{n \longrightarrow \infty} a_{n}=L$, then the telescoping series $\sum_{n=1}^{\infty}\left(a_{n+1}-a_{n}\right)$ converges and has $\operatorname{sum} L-a_{1}$.
(e) If $\sum_{n=1}^{\infty} a_{n}$ is a convergent series with positive terms, then $\sum_{n=1}^{\infty} \sqrt{a_{n}}$ must also converge.
2. (a) Give the definition of "the sequence $\left\{a_{n}\right\}$ of real numbers tends to infinity".
(b) Prove that $\lim _{n \rightarrow \infty} \ln (\sqrt{n})=\infty$ according to this definition.
3. Let p be any positive integer. Consider the sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ with $b_{n}=n^{p} e^{-n}$.
(a) Show that $\lim _{n \rightarrow \infty} b_{n}=0$.
(b) For $p=2$, use the integral test to show that $\sum b_{n}$ converges.
(c) For $p=2$, use the limit comparison test to show that $\sum b_{n}$ converges.
(d) How many terms would be needed to estimate $\sum n^{10} e^{-n}$ to within a tolerance of ± 1.
4. Determine whether the series $\sum_{n=1}^{\infty} \frac{n}{\ln n}$ converges or diverges. In the case that the series converges, find its sum.
5. (a) Using the Integral test, determine the values of p for which the following series is convergent.

$$
\sum_{n=1}^{\infty} \frac{\ln n}{n^{p}}
$$

(b) Consider the series with $p=4$. How many terms of this series must we add to approximate the sum with error less than 0.001 ? You may assume that $\ln x \leq x-1$ for $x>0$.
6. Consider the series $\sum_{n=1} \frac{(-1)^{n}}{\ln (n+1)}$.
(a) Show that this series converges.
(b) If the sum of the series is denoted s, find both an upper and lower bound on the remainder $R_{99}=s-s_{99}$. Is the sign of R_{99} positive or negative?
(c) What is the smallest number N such that $0 \leq R_{N} \leq 10^{-1}$?
7. Consider the family of curves $\left\{y^{2}=x+C\right\}$ (a different curve for each value of C).
(a) Find a single differential equation to which all the above curves are solutions.
(b) Find a differential equation satisfied by the orthogonal trajectories. (Hint: perpendicular lines have negative reciprocal slopes.)
(c) Solve this differential equation to determine all orthogonal trajectories to $\left\{y^{2}=\right.$ $x+C\}$.
8. The hormone concentration in the bloodstream $h(t)$ has been modelled by a differential equation

$$
\frac{d h}{d t}=-\frac{R}{V}\left(\frac{h}{k+h}\right)
$$

where R, V, k are parameters.
(a) Solve this differential equation to find the relationship between h and t.
(b) Solve the initial value problem with $h(0)=h_{0}$.
(c) What is the long time behaviour of $h(t)$?

END OF TEST

