This assignment is due at the start of class on Monday January 30, 2012.

1. Stewart (7th Ed) Exercise 7.8 \#64 (p. 528),
2. (a) Is the integral $\int_{-1}^{1} \frac{d x}{x}$ convergent or divergent?
(b) Compute the limit $\lim _{t \rightarrow 0^{+}}\left[\int_{-1}^{-t} \frac{d x}{x}+\int_{t}^{1} \frac{d x}{x}\right]$.
(c) Compute the limit $\lim _{t \rightarrow 0^{+}}\left[\int_{-1}^{-t} \frac{d x}{x}+\int_{\alpha t}^{1} \frac{d x}{x}\right]$ as a function of α for $\alpha>0$.
(d) What can you say about the value of the expression $\infty-\infty$?
3. Consider the "infinite" lamina R of uniform density that lies between the lines $x=0$ and $x=1$, above the x-axis, and beneath the graph of the function $y=-\ln x$.
(a) For $t \in(0,1)$, find the centre of mass (i.e., centroid) of a lamina of uniform density that lies between the lines $x=t$ and $x=1$, above the x-axis, and beneath the graph of the function $y=-\ln x$.
(b) By taking the limit as $t \longrightarrow 0^{+}$of your answer to part (a), compute the centre of mass of the lamina R. Is it contained within R ?
4. Let C_{x} and C_{y} be two infinitely long solid cylinders of equal diameter s whose axes coincide with the x - and y-axis respectively. Consider the boundary of the intersection of these two cylinders. The domical vault (shown in the diagram) is the "top half" of this boundary, i.e., the boundary of the intersection of C_{x} and C_{y} that is above the $x y$-plane. The base of the vault is a square with side length s.

(a) Derive and evaluate an integral for the surface area of the vault (excluding the square base) in terms of s.
(b) Find the volume V of the vault in terms of s. How does $d V / d s$ relate to the surface area you found in part (i)? Explain why this relationship should be expected.

Hint for (a) and (b): Consider horizontal cross-sections of the vault.
5. You are placed in an empty cylindrical tank constructed from two pipes, a small one with radius 1 m and a larger one with radius $2 m$. The end door of the tank is a vertical circular disk with a circular hole removed as pictured. The tank is then submerged at the bottom of a $7 m$ deep still lake, oriented as shown. Compute the total hydrostatic force required to push open the end of
 the tank.
6. Stewart (7th Ed) Exercise 9.2 \#20 (p. 593),
7. Stewart (7th Ed) Exercise 9.3 \#40 (p. 601),
8. Stewart (7th Ed) Problems Plus p. 633 \#2.

