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Abstract

Motivated by the interplay between structural and reduced form credit models,
and in particular the rating class model of Jarrow, Lando and Turnbull, we propose
to model the firm value process as a time-changed Brownian motion. We are lead
to consider modifying the classic first passage problem for stochastic processes to
capitalize on this time change structure. We demonstrate that the distribution func-
tions of such “first passage times of the second kind” are efficiently computable in a
wide range of useful examples, and thus this notion of first passage can be used to
define the time of default in generalized structural credit models. General formulas
for credit derivatives are then proven, and shown to be easily computable. Finally,
we show that by treating many firm value processes as dependent time changes of in-
dependent Brownian motions, one can obtain multifirm credit models with rich and
plausible dynamics and enjoying the possibility of efficient valuation of portfolio
credit derivatives.
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1 Introduction
The structural approach to credit modelling, beginning with the works of Merton [Merton, 1974]
and Black and Cox [Black & Cox, 1976], treats debt and equity as contingent claims
(analogous to barrier options) on the firm’s asset value process. While this unification
of debt with equity is conceptually satisfying, the approach often leads to inconsistencies
with intuition and observation, such as the zero short-spread property (a consequence of
the predictable nature of the default time) and time inconsistency in Merton type models.
Furthermore, it leads to technical difficulties when pushed to provide realistic correlations
between different firms’ defaults and with other market observables. Formulas in struc-
tural models tend to be either tractable but inflexible (when the firm value is taken to be
geometric Brownian motion), or flexible but computationally intractable (when the firm
value process is anything else).

Reduced-form (or “intensity-based”) modelling, introduced by Jarrow and Turnbull
[Jarrow & Turnbull, 1995], has been highly successful in providing remedies for these
problematic aspects. It treats default as locally unpredictable, with an instantaneous haz-
ard rate, but does away with the connection between default and the firm’s asset value
process.

Subsequent developments, such as the JLT model of Jarrow, Lando and Turnbull
[Jarrow et al., 1997] and its extensions [Lando, 1998, Arvanitis et al., 1999],
[Hurd & Kuznetsov, 2007], have to some extent bridged the gap between reduced form
and structural models by positing a continuous time Markov chain to replace the firm
value process as a determinant of credit quality, while retaining the concept of hazard rate
in the form of dynamically varying Markov transition rates. The time of default is the
first-hitting time of the default state, an absorbing state of the Markov chain. So-called
hybrid models [Madan & Unal, 2000] (see also [Carr & Wu, 2005]) seek to tighten the
connection with structural models by allowing the hazard rate to depend on the firm’s
equity value (stock price).

The purpose of the present paper is to propose and explore a particular mathematical
structure, called a time-changed Brownian motion (TCBM), that can be used for consis-
tent modelling of a firm’s asset value process and its time of default as a first passage
time. We aim to retain flexibility (to be able to match a wide range of possible credit
spread curves), computational tractability (to permit efficient option valuation), and log-
ical consistency with the paper of Black and Cox (by treating default as a first passage
time for the firm value to hit a default threshold).

Many authors have used time-changed Brownian motions as models of log stock re-
turns (a notable review paper is [Geman et al., 2001]). When the time change is an inde-
pendent Lévy process (Lévy subordinator), one obtains well known models such as the
variance gamma (VG) model and the normal inverse Gaussian (NIG) model. Barndorff-
Nielsen and Shephard [Barndorff-Nielsen & Shephard, 2001] have introduced time change
models where the time change is an integrated mean-reverting jump process, while impor-
tant stochastic volatility models such as Heston’s model [Heston, 1993] arise from time
changes that are integrated mean-reverting diffusions.

Following on the heels of these stock price models, it was natural to extend struc-
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tural credit models by using time-changed geometric Brownian motions and other jump-
diffusion processes to model the firm value (see [Zhou, 2001, Ruf & Scherer, 2006]).
While this idea in principle cures some of the deficiencies of the classic Black-Cox model
by adding flexibility and the possibility of unpredictable defaults, there is a huge price
to pay in the difficulties of computing first passage distributions. Theoretical first pas-
sage results based on fluctuation theory [Bingham, 1975] and Wiener-Hopf factorization
[Bertoin, 1996] are known, but exact formulas are rare. Kou and Wang [Kou & Wang, 2003]
manage to solve the first passage problem for a specific class of jump-diffusion process,
and Chen and Kou [Chen & Kou, 2005] use those results to extend the Black-Cox firm
value model and the Leland-Toft model [Leland & Toft, 1996] for the optimal capital
structure of the firm.

It was observed in [Hurd & Kuznetsov, 2007] that many computations in the JLT rat-
ing class framework, including evaluation of portfolio credit derivatives, are facilitated by
treating credit migration processes as time-changed Markov chains. Since time-changed
Markov chains can be viewed as discrete approximations to continuum-valued structural
models, this last observation motivates our aim a careful analysis of first passage times
for time-changed diffusions.

Therefore, in this paper, we propose to use time-changed Brownian motions to model
the firm value process. To avoid the difficulties that arise in computing the associated
first passage distribution and in analogy to the time-changed Markov chain models where
the default state is an absorbing state, we are then lead to propose a specific variation of
first passage time applicable to time-changed Brownian motions, but not to general jump
diffusions. This variation, which we call the first passage time of the second kind, is de-
signed to be decomposable by iterated conditional expectation, and thus can be computed
much more efficiently in cases of interest. This concept is not new, having been used for
example by Baxter [Baxter, 2006] in his computations of basket credit derivatives, but to
our knowledge its modelling implications have not yet been fully explored.

Our purpose here is threefold. First we explore the mathematical structure of first
passage times for time-changed Brownian motion, and provide a set of natural solvable
examples that can be used in finance. By comparison of these examples with a range of
existing stock price models, we thereby demonstrate the broad applicability of our frame-
work to equity and credit modelling. Our second aim is to focus on structural models
of credit where the firm value process is a general time-changed Brownian motion and
the time of default is a first passage time of the second kind. We prove pricing formulas
for defaultable zero coupon bonds and other credit derivatives, with and without stochas-
tic recovery. This discussion demonstrates that time-changed Brownian motion can be
the basis of single firm credit models consistent with the principles of no arbitrage, and
with tractable valuation formulas for all important derivatives. Finally, we demonstrate
how the single firm model can be extended to the joint default dynamics of many firms.
Under a restrictive assumption on the correlation structure, analogous to the one-factor
default correlation structure in copula models, we demonstrate the efficiency of valuation
formulas for portfolio credit derivatives.

To avoid obscuring our most important results by focussing on a too-specific appli-
cation, we postpone statistical work on the modelling framework to subsequent papers.
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While we are hopeful that positive verification of the modelling assumptions on asset price
datasets will ultimately show the viability of our framework, such a verification must pro-
ceed one application at a time, and would take us too far in the present paper. This will
be the purpose of a series of future works, beginning with our paper [Hurd, 2007] on the
joint modelling of credit and equity derivatives.

In outline, the paper proceeds as follows. Section 2 introduces the probabilistic setting
and the definition and basic properties of TCBMs. The first passage problem for TCBMs
is addressed in Section 3. Since the standard first passage problem for TCBMs exhibits
no simplification over first passage problem for general jump-diffusions, we introduce
an alternative notion, called the first passage time of the second kind, that capitalizes on
the time change structure. It is this notion that is used in all subsequent developments.
Sections 4 and 5 introduce the main categories of time changes, namely the Lévy subor-
dinators and the integrated mean-reverting jump-diffusions. These two families are in a
sense complementary, and together provide a rich and tractable family of TCBMs. Sec-
tion 6 introduces the simplest structural credit models based on TCBMs, and runs through
the valuation of some basic credit derivatives. Section 7 provides a brief numerical ex-
ploration of the single firm model. The multifirm extension is addressed in Section 8. We
find that computational tractability strongly suggests that while the time change processes
for different firms may (indeed should) be correlated, the underlying Brownian motions
must be taken independent firm by firm.

2 Time-changed Brownian motion
Let (Ω,F , P ) be a probability space that supports a Brownian motion W and a non-
decreasing process G with G0 = 0, called the time-change. P may be thought of as either
the physical or risk-neutral measure. Let Xt = x + Wt + βt be the Brownian motion
starting at x having constant drift β. We henceforth restrict the scope by assuming

Assumption 1. X and G are independent processes under P .

This assumption is mostly for simplicity: the more general case where X,G are de-
pendent processes is of interest in finance. An important result proved by [Carr & Wu, 2005]
allows us to extend out results to this case. A time-changed Brownian motion (TCBM) is
defined to be a process of the form

(2.1) Lt = XGt , t ≥ 0.

Identification of the components of such a TCBM leads to two subfiltrations of the natural
filtration Ft (which we assume satisfies the “usual conditions”):

Lt = σ{Ls : s ≤ t},
Gt = σ{Gs : s ≤ t}.(2.2)

We also consider the Brownian filtration Wt = σ{Ws : s ≤ t}.

4



In subsequent sections we give two important classes of examples of TCBMs, but for
the remainder of this and the next section we consider the general case. We begin by
defining characteristic functions Φ and log-characteristic functions Ψ = log Φ for any
0 ≤ s ≤ t and u ∈ D, D a domain in C:

ΦX
s (u, t) = E[eiu(Xt−Xs)|Ws] = ei(βu+iu

2/2)(t−s),

ΦG
s (u, t) = E[eiu(Gt−Gs)|Gs],

ΦL
s (u, t) = E[eiu(Lt−Ls)|Ls].(2.3)

These are to be understood as processes in the variable s. A simple calculation gives an
essential formula

ΦL
s (u, t) = E[E[eiu(XGt−XGs |Fs ∨ Gt]|Fs]

= E[ΦX
Gs

(u,Gt)|Fs] = ΦG
s (βu− iu2/2, t).(2.4)

As we shall see, “solvable models” arise when ΦG
s and hence ΦL

s are explicit deterministic
functions of an underlying set of Markovian variables. Characteristic functions and log-
characteristic functions lead to formulas for moments m(k) = E[Lkt ] and cumulants c(k)

for k = 1, 2, . . . .
An important algebraic aspect of TCBM is their natural composition rules. If G,H

are two independent time changes then G +H , G×H and G ◦H are also TCBMs, and
we have useful results such as ΦG+H

s = ΦG
s × ΦH

s and ΦG◦H
s = E[ΦG

Hs
(u,H(t))|Fs].

3 First passage distributions
In this section, we define two distinct notions of first passage time for a TCBM starting at
a point x ≥ 0 to hit zero.

Definition 1. For any TCBM Lt = XGt

1. The first passage time of the first kind is the L-stopping time

(3.1) t(1) = inf{t|Lt ≤ 0}.

The corresponding stopped TCBM process is L(1)
t = Lt∧t(1) . Note that in general

L
(1)

t(1)
≤ 0, with the inequality possible at a time when G jumps.

2. The first passage time of the second kind is the F-stopping time

(3.2) t(2) = inf{t|Gt ≥ t∗},

where t∗ = inf{t|Xt ≤ 0}. The corresponding stopped TCBM process is L(2)
t =

XGt∧t∗ . Note that L(2)

t(2)
= 0.
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Remarks 2. 1. We view t(2) as an approximation of the usual first passage time t(1)

with t(1) ≥ t(2). When G is a continuous process, the two definitions coincide.
We can summarize the general situation by the phrase “the first passage time of
the time-change of a process is greater than or equal to the time change of the first
passage time of that process”.

2. In general, t(2) is not anL-stopping time. For more details, see [Geman et al., 2001]
who discuss the problem of inferring the time change G from observing the history
of L.

3. When the time change is a pure jump process with unpredictable jumps, both stop-
ping times are totally inaccessible. In general, they can be written as the minimum
of a predictable stopping time and a totally inaccessible stopping time.

4. We can extend the second kind of first passage time to processes formed with
composite time changes. For example, if G,H are independent time changes and
Kt = X(G◦H)t = LHt , we can define

t(3) = inf{t : Ht ≥ t(2)}, t(2) = inf{t : Gt ≥ t∗}, t∗ = inf{t|Xt ≤ 0},

and similarly higher order first passage times.

The precise distinction between L(1) and L(2) prior to the stopping time t(i) can be
understood as follows. Conditioned on occurrence of a jump of size ∆Gt := Gt+ −
Gt− > 0 at time t, and supposing β = 0 for simplicity, the distribution of ∆L

(1)
t is

a Gaussian distribution of mean zero and variance ∆Gt, with a lower truncation point
enforcing ∆L

(1)
t > −L(1)

t− . On the other hand the conditional distribution of ∆L
(2)
t is the

distribution of a Brownian motion at time ∆Gt conditioned to stay above −L(2)

t− for s ∈
[0,∆Gt]. From this observation one can gain a clear qualitative picture of the differences
between L(1) and L(2); in particular, one sees that the two distributions are almost identical
except when L(1)

t− /
√

∆Gt & 2.
Computation of the distributional properties of t(1) for a general TCBM is a difficult

problem, with explicit solutions available only in a sparse set of examples. General prop-
erties have been established via fluctuation methods [Bingham, 1975] and Wiener-Hopf
factorization [Bertoin, 1996]. For this reason, we instead focus our efforts on t(2). We
begin by evaluating “structure” functions for drifting Brownian motion L = X itself
(Gt = t), for which the definitions of t(1) and t(2) coincide. The following well known
formulas for Brownian motion are important for subsequent developments:

Proposition 1. For any x > 0 let Lt = Xt = x+Wt + βt. Then

1. The cumulative distribution function P (t, x, β) := P [t(1) ≤ t] for the first passage
time of drifting Brownian motion is

(3.3) P (t, x, β) = N

(
−x− βt√

t

)
+ e−2βxN

(
−x+ βt√

t

)
.
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For any u ∈ C with Im(u) > −β2/2, the characteristic function of t(1),
Φ(u, x, β) := E[eiut

(1)
], is

(3.4) Φ(u, x, β) =

∫ ∞

0

eiut
(
∂P (t, x, β)

∂t

)
dt = exp[−(β +

√
β2 − 2iu)x].

2. The conditional distribution function P (l, t, x, β) := E[1{t(1)>t}1{Lt≥l}] is given by

(3.5) P (t, l, x, β) = N

(
x− l + βt√

t

)
− e−2βxN

(
−x− l + βt√

t

)
for l ≥ 0 while the conditional characteristic function of Lt
Φ(u, t, x, β) := E[1{t(1)>t}e

iuLt ], is

(3.6) Φ(t, u, x, β) = eiu(x+βt)−u
2t/2P (t, 0, x, β + iu).

Here N is the complex analytic extension of the CDF of the standard normal random
variable defined by the contour integral

(3.7) N(z) =

∫ ∞

−z

1√
2π
e−x

2/2dx .

Proof: All but the last expression are standard results, so we sketch only the derivation
of (3.6). From (3.5) we have

Φ(u, t, x, β) =

∫ ∞

0

eiul
(
−∂P (l, t, x, β)

∂l

)
dl

=

∫ ∞

0

eiul
1√
2πt

[
e−(l−x−βt)2/2t − e−2βx−(l−βt+x)2/2t

]
dl.

One can compute these integrals by completing the square in each exponent and using the
definition of N . Recombining the terms then leads to the result. ut

These limited results reflect the difficulty in attaining insight into the first passage
problem for general TCBMs, but show that Brownian motion itself is well understood. As
we shall now see, the elegant properties of Brownian motion prove useful in the theory of
the second kind of passage problem, for which the structure functions of t(2) are efficiently
computable via an intermediate conditioning. Thus, for example:

P (2)(t, x) := P [t(2) ≤ t] = E[P [t∗ ≤ Gt|G∞]] =

∫ ∞

0

P (y, x, β)ρt(y)dy,

P (2)(l, t, x) := E[1{t(2)>t}1{Lt≥l}]

= E[E[1{XGt>l}1{mins≤Gt
Xs>0}|G∞]] =

∫ ∞

0

P (l, y, x, β)ρt(y)dy,(3.8)
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where ρt is the density of Gt and the functions P are given by (3.3) and (3.5). In cases
of interest where the log characteristic function ΨG(u, t) of the time change Gt is given
in closed form, this formula can be made even more explicit with a modest amount of
Fourier analysis.

Proposition 2. For any x > 0 let Lt = XGt be a TCBM.

1. For t ≥ 0 suppose that ε̄ = sup{ε ∈ R : ΨG(−iε, t) < ∞} > 0. Then for any
ε ∈ (0, ε̄), the cumulative distribution function for t(2), the first passage time of the
second kind, is

(3.9) P (2)(t, x) =
1

2π

∫ ∞

−∞

1

ε+ iu
e−x[β+

√
β2+2(ε+iu)]eΨ

G(u−iε,t)du.

2. For any l > 0, the conditional probability density function of Lt is

(3.10) −∂P
(2)(l, t, x)

∂l
=

∫ ∞

−∞
e−iul

(
eiux − e−(2β+iu)x

)
eΨ

G(βu+iu2/2,t)du,

while for any u ∈ R the conditional characteristic function is

(3.11) Φ(2)(u, t, x) = 2π
(
eiux − e−(2β+iu)x

)
eΨ

G(βu+iu2/2,t).

Proof: We prove (3.9) and (3.10) and leave the remaining formulas to the reader. For
any 0 < ε < ε̄ and u ∈ R,

eΨ
G(u−iε,t) =

∫ ∞

0

eiuyeεyρt(y)dy

is an absolutely convergent integral. Hence by the Fourier Inversion Theorem,

ρt(y) =
1

2π

∫ ∞

−∞
e−iuye−εyeΨ

G(u−iε,t)du, y ≥ 0.

By the Fubini Theorem, plugging this formula into (3.8) and reversing the order of inte-
gration leads to

P (2)(t, x) =
1

2π

∫ ∞

−∞
eΨ

G(u−iε,t)
[∫ ∞

0

e−(ε+iu)yP (y, x, β)dy

]
du.

Finally, integration by parts in y and the use of (3.4) leads to formula (3.9).
By the dominated convergence theorem applied to the l derivative of (3.5),

−∂P
(2)(l, t, x)

∂l
=

∫ ∞

0

1√
2πy

[
e−(l−βy−x)2/2y − e−2βx−(l−βy+x)2/2y

]
ρt(y)dy.

The standard Gaussian integral

1√
2πy

e−a
2/2y =

∫ ∞

−∞
e−iua−u

2y/2du
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allows us to expand the integrand above, and use of the Fubini theorem to interchange the
order of integration leads to

−∂P
(2)(l, t, x)

∂l
=

∫ ∞

−∞
e−iul

[
eiux − e−(2β+iu)x

] [∫ ∞

0

ei(βu+iu
2/2)yρt(y)dy

]
du.

The inner integral equals eΨG(βu+iu2/2,t), leading to the desired formula (3.10). ut

We pause here to give some typical formulas for structure functions of composite time
change processes. Let G,H be independent time changes leading to processes Lt = XGt ,
Kt = LHt = X(G◦H)t , K̃t = XHt+Gt . Then the default probability function for t(2) =
inf{s|Hs +Gs > t∗} can be efficiently computed by

(3.12) P (2)(t, x) =
1

2π

∫ ∞

−∞

1

ε+ iu
e−x[β+

√
β2+2(ε+iu)]eΨ

G(u−iε,t)+ΨH(u−iε,t)du.

Other structure functions can be managed in a similar way.

4 Lévy subordinated Brownian motions
The first important class of TCBMs arises by taking G to be a Lévy time change, in
other words a Lévy subordinator. Lévy processes are the general class of continuous
time stochastic processes with stationary and independent increments. In addition to their
interest in the theory of stochastic processes, they have found important uses in mathe-
matical finance, where they are used as models for log-stock price processes. Much of the
analysis connected with a Lévy process Lt is based on its characteristic triple (b̃, c̃, ρ)h,
in terms of which its log characteristic function takes the form

(4.1) ΨL(u, t) := logE[eiuLt ] = t

[
ib̃u− c̃2u2/2 +

∫
R\0

[eiuy − 1− iuyh(y)]ρ(y)dy

]
.

Here ρ is a measure on R\0. For ease of exposition in what follows, we set the truncation
function h(y) to zero, which is permissible by adopting the restrictive condition that |x|∧1
should be ρ-integrable. Our main results extend to the general case where |x|2 ∧ 1 is ρ-
integrable. See [Cont & Tankov, 2004, Cherny & Shiryaev, 2002] for general discussions
of Lévy processes.

The following result is given as Exercise 3.33 in [Cherny & Shiryaev, 2002], and iden-
tifies the type of process that can be expressed as a Lévy-subordinated Brownian motion
(LSBM) Lt := XGt:

Theorem 3. Supposing L0 = x, the following are equivalent statements:

1. L is a Lévy process with characteristic triple (b̃, c̃, ρ)0 where b̃, c̃ ≥ 0. The density
ρ(y) is nowhere zero on R and can be written in the form

(4.2) ρ(y) =

∫ ∞

0

1√
2πz

e−(y−βz)2/zν(z)dz
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for β = b̃/c̃ and some measure ν on (0,∞). (In case c̃ = 0, then b̃ must be zero,
and ρ(

√
z) must be a completely monotone function on (0,∞).)

2. Lt := XGt for Brownian motion X with drift β ∈ R and G a Lévy subordinator
with characteristic triple (b, 0, ν)0, b ≥ 0, and ν a measure on (0,∞).

Here are some examples of such processes that have been used as models of logarith-
mic stock returns:

1. The exponential model with parameters (a, b, c) arises by taking G to be the in-
creasing process with drift b ≥ 0 and jump measure ν(z) = ce−az, c, a > 0 on
(0,∞). The log characteristic function of Gt is

ΨG(u, t) := logE[eiuGt ] = t[ibu+ iuc/(a− iu)].

The resulting time-changed process Lt := XGt has triple (βb, b, ρ)0 with

ρ(y) =
c√

β2 + 2a
e−(
√
β2+2a+β)(y)+−(

√
β2+2a−β)(y)− ,

where (y)+ = max(0, y), (y)− = (−y)+. This forms a four dimensional subclass
of the six-dimensional family of exponential jump diffusions applied to finance in
[Kou & Wang, 2003].

2. The VG model [Madan & Seneta, 1990] arises by taking G to be a gamma process
with drift defined by the characteristic triple (b, 0, ν)0 with b ≥ 0 (usually b is
taken to be 0) and jump measure ν(z) = ce−az/z, c, a > 0 on (0,∞). The log
characteristic function of Gt, t = 1 is

ΨG(u, t) := logE[eiuGt ] = t[ibu− c log(1− iu/a)].

The resulting time-changed process has triple (βb, b, ρ)0 with

ρ(y) =
c

|y|
e−(
√
β2+2a+β)(y)+−(

√
β2+2a−β)(y)− .

3. The normal inverse Gaussian model (NIG) with parameters β̃, γ̃ [Barndorff-Nielsen, 1997]
arises when Gt is the first passage time for a Brownian motion with drift β̃ > 0 to
exceed the level γt. Then

ΨG(u, t) = −γ̃t(β̃ +

√
β̃2 − 2iu)

and the resulting time-changed process has log-characteristic function

ΨL(u, t) = ixµ− tγ̃[β̃ +

√
β̃2 + u2 − 2iβ̃u].
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In these and certain other financially relevant Lévy models, the log-characteristic func-
tion of G is explicit, leading as we will see shortly to efficient numerical computations
that involve intensive use of the Fast Fourier Transform. The log-characteristic function,
viewed as the cumulant generating function, also facilitates calibration. We can iden-
tify the moments m(k) := ELkt , k = 1, 2, . . . of a LSBM Lt, or more conveniently, its
cumulants c(k):

c(1) := m(1) = t(βb+ βm(1)
ν ),

c(2) := m(2) − (m(1))2 = t(b+m(1)
ν + β2m(2)

ν ),

c(3) := m(3) − 3m(2)(m(1))2 + 2(m(1))3

= t(3βm(2)
ν + β3m(3)

ν ),

c(4) := m(4) − 4m(3)m(1) + 3(m(2))2 + 12m(2)(m(1))2 − 12(m(1))4

= t(3m(2)
ν + 6β2m(3)

ν + β4m(4)
ν ).

Here, m(k)
ν denotes the kth moment of the Lévy measure of the time change Gt.

5 Affine TCBMs
For our second important class of time changes, Gt has differentiable paths, and the
corresponding TCBMs are diffusions (processes with continuous paths) which exhibit
“stochastic volatility”. We focus here on a class we call ATCBMs (“affine” TCBMs), for
which G is taken in the class of positive mean-reverting CIR-jump processes introduced
by [Duffie & Singleton, 1999]:

Gt = G
(1)
t +G

(2)
t =

∫ t

0

(λ(1)
s + λ(2)

s )ds,

dλ
(1)
t = (a− bλ(1))dt+

√
2cλ

(1)
t dW

(1)
t , a, b, c > 0,

dλ
(2)
t = −b̃λ(2)dt+ dJt.(5.1)

Here J is taken identical to the exponential Lévy subordinator with parameters (ã, 0, c̃)
defined in example 1 of the previous section.

The essential computations for characteristic functions

Φ(i)(u, t;λ) := E[eiuG
(i)
t |λ(i)

0 = λ], i = 1, 2

of such affine time changes are described in many papers. The following formulas are
proved in the appendix of [Hurd & Kuznetsov, 2007]:

Proposition 4. The characteristic functions Φ(i) := ΦG(i)
, i = 1, 2, both have the expo-

nential affine form

(5.2) Φ(i)(u, t;λ) = e−φ
(i)(u,t)−λψ(i)(u,t).

The functions φ(i) and ψ(i) are explicit:
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1. ψ(1)(u, t) = −ψ2 +
(
1 + c

γ
ψ1 (eγt − 1)

)−1

ψ2,

φ(1)(u, t) = −aψ1t+ a
c
log

(
1 + c

γ
ψ1 (eγt − 1)

)
,

(5.3)

with constants ψ1, ψ2 and γ given by
γ =

√
b2 − 4iuc,

ψ1 = b+γ
2c
,

ψ2 = b−γ
2c
.

(5.4)

2. ψ(2)(u, t) =
(
−iu
b̃

)
e−b̃t + −iu

b̃
,

φ(2)(u, t) = c̃t− ãc̃
ãb̃−iu log

(
(ãb̃−iu)eb̃t+iu

ãb̃

)
.

(5.5)

Combining this result with the results of Section 3 leads to closed-form, or “close-
to-closed-form” solutions for the structure functions of the associated first-passage time
t(2).

The ATCBM model with time change G(1) is equivalent to the Heston stochastic
volatility model for stock returns [Heston, 1993], with zero correlation (hence zero lever-
age effect). Stock price models with time change G(2), and extensions thereof, were
introduced in [Barndorff-Nielsen & Shephard, 2001]. It is also worth remarking that the
class of LSBM processes can be achieved using the limits of G(2)-type time changes as
the mean-reversion rate is taken to infinity. Thus it is clear from the examples of the past
two sections that the class of TCBM models with time change written as a sum of these
three types is rich enough to describe a wide range of asset classes in finance. We now
focus on the application to structural models of credit risk.

6 Structural Credit Models
The credit modelling paradigm of Black and Cox [Black & Cox, 1976] assumes that de-
fault of a firm is triggered as the debtholders exercise a “safety covenant” when the value
of the firm falls to a specified level. It makes sense therefore to assume that the time of
default is the time of first passage of the firm value process Vt below a specified lower
threshold function K(t). In our setup, we assume

Assumptions 1. 1. There is a vector Zt = [r̃t, λ
(1)
t , λ

(2)
t ] of independent processes

with λ(i) chosen as in Section 5. r̃ is a CIR process with characteristic function
Φr̃(u, t) given in the form (5.3).

12



2. The process Lt = log(Vt/K(t)) = XGt , Xt = x+Wt+βt, called the “log-leverage
ratio”, is a TCBM. The time change is given by

(6.1) Gt = bt+G
(1)
t +G

(2)
t +G

(3)
t , b ≥ 0.

Here G(i)
t =

∫ t

0
λ

(i)
s ds, i = 1, 2 are defined as in Section 5 with characteristic

functions Φ(i)(u, t;λ(i)) while G(3) is a Lévy subordinator G(3)
t with characteris-

tics (0, 0, ν)0 and characteristic function Φ(3)(u, t).

3. The time of default is t(2), the first passage time of the second kind.

4. The spot interest rate is rt = r̃t + m1λ
(1)
t + m2λ

(2)
t for non-negative coefficients

m1,m2.

5. A constant recovery fraction R < 1 under the recovery of treasury mechanism is
paid on defaultable bonds at the time of default. (This is for simplicity only: as in
[Hurd & Kuznetsov, 2007] we can allow Rt to be a general affine process.)

Note that the usual structural approach for jump diffusions is based on the first passage
time of the first kind, and leads to technical difficulties: our innovation is to consider
instead the second kind of first passage time. The following proposition gives formulas
for default probabilities and default-free and defaultable zero coupon bond prices.

Proposition 5. Let the initial credit state of the firm be specified by initial values L0 = x

and Z0 = [r̃0, λ
(1)
0 , λ

(2)
0 ].

1. The probability that default occurs before t > 0 is given by

P [t(2) ≤ t] =
1

2π

∫ ∞

−∞

e(ε+iu)bt

ε+ iu
e−x[β+

√
β2+2(ε+iu)]

×Φ(1)(u− iε, t;λ
(1)
0 )Φ(2)(u− iε, t;λ

(2)
0 )Φ(3)(u− iε, t)du.(6.2)

2. The time 0 price B(T ) of default-free zero coupon bond with maturity T is

(6.3) B(T ) = Φr̃(i, T ; r̃0)Φ
(1)(im1, T ;λ

(1)
0 )Φ(2)(im2, T ;λ

(2)
0 ).

3. The time 0 price B̄(T ) of defaultable zero coupon bond with maturity T , under
constant fractional recovery of treasury is given by

B̄(T ) = B(T ) + (R− 1)
Φr̃(i, T ; r̃0)

2π

∫ ∞

−∞

e(ε+iu)bT

ε+ iu
e−x[β+

√
β2+2(ε+iu)]

×Φ(1)(u− i(ε−m1), T ;λ
(1)
0 )Φ(2)(u− i(ε−m2), T ;λ

(2)
0 )Φ(3)(u− iε, T )du.(6.4)

The above pricing formulas are explicit functions of the initial values L0, Z0; as time
develops, prices are deterministic functions of the processes Lt and Zt. We adopt the point
of view that Z contains information about the drivers of general credit markets, while L
reflects firm specific information.
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7 Numerical results
The structural credit modelling framework of the previous section is designed with a great
deal of flexibility in mind, and it would take us far afield to seek a fully calibrated model.
Instead, in this section we strip out much of the complexity, and merely exhibit a simple
set of model parametrizations that generate plausible credit spread curves and derivative
prices, thereby demonstrating the computational efficiency.

In Figure 1, we compare the thirty year zero recovery yield spread and default proba-
bility density curves under the four parametrizations of the exponential jump model shown
in Table 1, for a pure geometric Brownian motion (Model A) and three pure jump pro-
cesses. All versions of the model are specified so that Lt has fixed annualized variance
0.09 (i.e. the firm value has σ = 30% volatility) and mean log rate of return −σ2/2. We
observe that the yield spreads equalize as maturity increases, but show the completely
different short time behaviour expected from the presence of jumps.

Figure 2 shows the thirty year zero recovery yield spreads in Model B for four firms
which differ in their initial distance-to-default values L0 = 0.3, 0.6, 1.0, 2.0.

Model A Model B Model C Model D
L0 1.5 1.5 1.5 1.5
a 1 11.59 111.6 1111.6
b 0.09 0 0 0
c 0 1 10 100
β -0.5 -0.5 -0.5 -0.5
σ2 0.09 0.09 0.09 0.09

Table 1: Parameter values for the exponentially subordinated Brownian motion model.

8 Structural Models for Many Firms
An outstanding difficulty in credit risk is finding a modelling framework that extends
naturally and efficiently to a large number of firms, while allowing for a rich default
dependence structure. The present setup of time-changed Brownian motions turns out to
be just such a framework. ConsiderM firms, where for each j = 1, 2, . . . ,M , the jth firm
is governed by its firm value process V j

t , default trigger threshold Kj(t) and log-leverage
ratio process

Ljt = log V j
t /K

j(t) = Xj

H̃j
t

,

Xj
t = xj +W j

t + βjt.(8.1)

Here, for the jth firm we take parameters xj, βj ≥ 0, and a possibly firm dependent time
change H̃j

t .
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Assumptions 2. The joint dynamics of multifirm defaults is determined by the first pas-
sage to zero of the log-leverage ratio processes Ljt . The time change processes H̃j are
given jointly in the form

(8.2) H̃j
t = bjt+ αjGt +Hj

t

with bj, αj ≥ 0 and time changes G,Hj having the form given by (6.1). Finally, we
assume that G,X1, . . . , XM , H1, . . . , HM are mutually independent processes.

In models of this type, the maximal correlation structure is obtained by setting the
firm-specific time changes Hj

t to zero. However, since the underlying Brownian motions
W j are independent, maximal correlation does not mean the defaults are fully correlated.
This setting can be interpreted as a generalized Bernoulli mixing model, in the sense of
[Bluhm et al., 2003] and [McNeil et al., 2005], where the mixing random variable is Gt.
That is, the default states of all firms at time t are conditionally independent Bernoulli
random variables, conditioned on the value of Gt. Define the conditional probability that
tj ≤ t conditioned on Gt = y:

(8.3) P j(xj, t, y) := E[1{tj≤t}|Gt = y] =

∫ ∞

0

F (xj, βj, bjt+ αjy + z)dρjt(z)

where ρjt is the PDF of Hj
t . The following formula extends (3.9), and is proved exactly

the same way: for any 0 < ε < ε̄j and y ∈ R

(8.4) P j(x, t, y) =
1

2π

∫ ∞

−∞

1

ε+ iu
e(ε+iu)(b

jt+αjy)e−x[β
j+
√

(βj)2+2(ε+iu)]etΨHj (u−iε)du.

Now, for any subset σ ⊂ {1, 2, . . . ,M}, the unconditional probability that the firms
in default at time t are precisely the firms in σ is given by

P [tj ≤ t, j ∈ σ; tj > t, j /∈ σ] =∫ ∞

0

∏
j∈σ

P j(xj, t, y)
∏
j /∈σ

(1− P j(xj, t, y))ρt(y),(8.5)

where ρt is the distribution function of Gt.
There are by now well-known techniques that under the assumption of conditionally

dependent defaults, reduce the computation of CDO tranches to intensive computation
of the conditional default probabilities P j(xj, t, y). [Hurd & Zhang, 2007] explores the
promising use of these techniques for computing CDO pricing in our multi-firm dynamic
credit framework.

9 Conclusions
We have studied the first passage problem for a class of jump diffusions that are important
for financial modelling, namely the Lévy subordinated Brownian motions. It was seen that
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the first passage time of the second kind presents some key advantages over the classic
definition of first passage time, particularly computational tractability and the extension
to multi-dimensional processes.

Based on these good properties, we defined a pure first passage structural model of
default, and obtained computable formulas for the basic credit instruments, namely bonds
and CDSs. The resultant formulas resolve a fundamental deficiency of the classic Black-
Cox formula, namely the zero short spread property, and provides needed flexibility to
match details of yield spreads.

Finally, we outlined an extension to many firms in which dependence stems from
systemic components to the time change, while the underlying Brownian motions are
independent and firm specific. The resulting multifirm framework has many of the advan-
tageous properties that have been observed in related work of [Hurd & Kuznetsov, 2006],
in particular, a conditional independence structure that enables semianalytic computa-
tions of large scale basket portfolio products such as CDOs. A detailed investigation of
this model’s uses in portfolio credit VaR and CDO pricing is the subject of future work.
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Figure 1: Thirty year yield spread and default PDF curves for 4 versions of the exponen-
tially subordinated Brownian motion credit risk model.
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Figure 2: Thirty year yield spread for Model B with four different values L0 =
0.3, 0.6, 1.0, 2.0.
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