1

Name:	
Student Number:	

29/20

STAT 3J04 PROBABILITY AND STATISTICS FOR ENGINEERING In-Class Quiz #1

October 17, 2006

- 1. A contractor is submitting bids to two jobs A and B. The probability that he will win job A is P(A) = 0.25 and that for job B is P(B) = 0.33.
- (a) Assuming that winning job A and winning job B are independent events, what is the probability that the contractor will get at least a job?
- (b) What is the probability that the contractor got job A if he has won at least one job?
- (c) If he is also submitting a bid for job C with probability of winning it P(C) = 0.25, what is the probability that he will get at least one job? Again assume statistical independence among A, B and C. What is the probability that the contractor will not get any job at all?

Solution:

(a)
$$P(\text{contractor will win at least a job)}$$

$$= P(A \cup B)$$

$$= P(A) + P(B) - P(A \cap B)$$

$$= 0.25 + 0.33 - 0.25 \times 0.33 = 0.4975$$

$$= 0.25 + 0.33 - 0.25 \times 0.33 = 0.4975$$
(b) $P(A \mid A \cup B) = \frac{P(A \cap (A \cup B))}{P(A \cup B)} = \frac{P(A)}{P(A \cup B)} = \frac{0.25}{0.4975} = 0.503$
(c) $P(\text{contractor will win at least a job)}$

$$= P(A \cup B \cup C)$$

$$= 1 - P(A \cup B \cup C)$$

$$= 1 - P(A \cup B \cup C)$$

$$= 1 - P(A \cup B \cup C)$$

= 1- P (contractor will get at least one job) = 1-0.623 = 0.377

= (1-0.25)(1-0.33)(1-0.25) = 0.623P (contractor will not get any job)

ત્રે સ

2

2. In a building construction project, the completion of the building requires the successive completion of a series of activities. Define

E = excavation completed on time; and P(E) = 0.8

F =foundation completed on time; and P(F) = 0.7

S =superstructure completed on time; and P(S) = 0.9

Assume statistical independence among these events.

- (1) Define the event "project completed on time" in terms of E, F and S. Compute the probability of on-time completion.
- (2) Define, in terms of E, F, S and their complements, the following event:

G = excavation will be on time and at least one of the other two operations will not be on time

Calculate P(G)

(3) Define the event:

H = only one of the three operations will be on time.

Solution:

(i) project completed on Time = ENFNS

$$P(project completed m Time) = P(EnFnS)$$

$$= P(E) \cdot P(F) \cdot P(S)$$

$$= 0.8 \times 0.7 \times 0.9 = 0.504$$
(2) $G = En(FUS)$

$$P(FUS) = P(F) + P(S) - P(F) \cdot P(S)$$

$$= 0.3 + 0.1 - 0.3 \times 0.1 = 0.37$$

$$P(G) = P(E) \cdot P(FUS)$$

$$= 0.8 \times 0.37 = 0.296$$

3. The cross-sections of the rivers at A, B, and C are shown below. The flood levels at A and B, above mean flow level, are as follows:

Flood level at A (ft)	Probability
0	0.25
2	0.25
4	0.25
6	0.25

Flood level at B (ft)	Probability
0	0.20
2	0.20
4	0.20
6	0.20
8	0.20

Assume that the flow velocities at A, B, and C are the same. What is the probability that the flood at C will be higher than 6 ft above the mean level? Assume statistical independence between flood levels at A and B.

Solution:

QA, QB, and Qc denote the flow rate in streams A, B, and C, respectively. From continuity, QA + QB = QCthus b. ha. NA + b. hB. NB = b. hc. Nc Since NA = NB = Nc, we have hathB = hc P (the flood at C will be higher than 6 feet) = P(hc > 6ft) = P(hA + hB > 6ft)hathe probability of occurrence

 $P(hA=0) \cdot P(hB=8) = 0.25 \times 0.20 = 0.05$ 0.25 x 0.20 = a 05 2 0.25 X 0.20 = 0.05 0.2+ x 0.20 =0.05 4 10 0.25 x 0.20 =0.05 12 466666 0.25 X 0.20 =0.05 8 0.25 x 0, 20 =005 10 0.25 X 0. 20 = 0.05 12 D.25 X 0. 20 =0.05 0.25 X 0.20 7' (he>6ft) = 10 x 0.05 = 0.50