Local Structure of
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ABSTRACT. We show that small neighborhoods of points in a
Riemannian manifold equipped with an orthonormal coframe
are diffeomorphic to products of euclidean balls and nilmani-
folds. The size of these neighborhoods is uniformly bounded
in terms of the dimension of the manifold and the exterior
derivative of the coframe.

In this paper we prove that a Riemannian manifold M equipped with an
orthonormal coframe w : TM — R™ locally looks like a product of a (closed)
nilmanifold and a euclidean ball, if considered on a suitable scale. Every point
in M has a neighborhood diffeomorphic, in fact almost affinely isometric to such
a product, and containing a distance ball whose radius is bounded from below
in terms of the size ||dw|| of the exterior derivative of w and the dimension n of
M. In particular, if M is closed, connected and has small diameter, then M is
diffeomorphic to a nilmanifold and we obtain the main result in [Gh]. Results
similar to our theorem have been obtained by K. Fukaya [F1] from a different
point of view. This paper was completed while the first and third authors were
staying at and supported by the Forschungsinstitut fiir Mathematik at ETH
Zirich. We would like to thank Professor J. Moser and the Forschungsinstitut
for their support and hospitality.

1. Statement of results.

1.1. Let M denote an n—dimensional C*° manifold and w : TM — R"™ a
coframe. This means that w is an R®-valued one—form that maps each tangent
space T, M isomorphically onto R®. Let X;,...,X, be the frame dual to w, D
the flat connection on TM defined by DX; = 0 (i = 1,...,n) and exp = exp”
the exponential map of D. The geodesics of D are the integral curves of linear
combinations of the vector fields X; with constant coefficients. Let g = g, =

>t w'®uw' denote the Riemannian metric induced by w, making Xi,...,X,
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orthonormal. Let k = ||dw]||co, Where || - ||oo is the sup norm induced by g. For a
submanifold N C M with normal bundle v and p > 0 let

vo = {X €| IX] < p}
and exp' = expP|  the normal exponential map.

Theorem 1.2. There is a positive constant e(n) depending only on n and
a function § : R — R satisfying lim;—,06(t) = 0 such that the following is true.
Suppose €1 > 0 and 0 < ke; < e(n). If p € M and if exp is defined on the
ball B(0,10e1) C T, M, then there exists a radius R such that 107"e; < R < e,
and such that the distance ball B(p,R) C M contains a nilmanifold N™ > p. N
is embedded in M with trivial normal bundle v and the normal exponential map
expt of N maps vog diffeomorphically onto a neighborhood of B(p,R). There is a
product Maurer—Cartan coframe wg on vagr ~ N x Dag and a matriz a € SO(n)
such that |lexpiwo —w - alloo < 8(ke1) on expt(var).

Here D,p denotes the open ball of radius 2R in R* (k+m = n) and
B(p,R) = {q¢ € M | dist(p,q) < R}. We recall that a nilmanifold is a com-
pact quotient I'\ G of a simply connected nilpotent Lie group G by a discrete
subgroup I'. /A Maurer—Cartan coframe on a smooth manifold M is a smooth
coframe w : TM — R" whose component 1-forms w?,... w" satisfy the Maurer—
Cartan equations dw® + §cfjw* Awi = 0 (s = 1,...,n) where the c§; are con-
stants. The product Maurer—Cartan form wy in the theorem consists of a coframe
o : N =T\ G — R™ whose pullback to G is left invariant, and the one—forms
dz',...,dz* on Dyr. We note that no compactness arguments in the style of [F1]
are used in the proof of 1.2. As a consequence, the constants ¢(n) and functions
6(t) in 1.2 and 1.3 are effective. However, no explicit bounds will be given in
this paper.

1.2.1. If M is compact and the diameter d = diam(M,g,,) satisfies kd <
107"¢(n), then 1.2 implies that m = n and M is diffeomorphic to the nilmanifold
I'\ G = N. This special case of 1.2 was obtained previously in [Gh] and will be
used in the proof.

1.3. Let M™ be a Riemannian manifold and P its bundle of orthonormal
frames. Then P carries a coframe w = ¥ + a where a : TP — so(n) is the Levi-
Civita connection form and ¢ : TP — R™ the canonical one—form. Consider
the standard euclidean scalar product on R™ and the negative of the Cartan-
Killing form on so(n). Then the Riemannian metric g, on P induced by w
is the standard (Sasaki) metric making the projection P — M a Riemannian
submersion. The structure equations for di and da together with 1.2 imply the
following stronger version of a result originally announced by J. Bemelmans and
the third author in 1985 ([B-R]).
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Corollary 1.3.1. There exist a positive constant e(n) and a function § :
R — R satisfying lim;_,06(t) = 0 such that the following is true. If M is a
complete Riemannian manifold with sectional curvature |K| <1 and ife, < e(n),
then every distance ball B C P of radius €1 admits an equidimensional imbedding
¢: B — RFxT'\ G where T'\ G is a nilmanifold, such that ||¢p*wo — wl|loo < 6(¢1)
for a quotient wy of some left invariant coframe on RF x G.

More precise statements on the structure of P and M can be made. This
will be the subject of a forthcoming article.

Remark 1.3.2. According to the Hirsch immersion theorem (see [H], [G2]),
for any coframe w on an open manifold M™ there exists a curve w; (0 <t <1)
of coframes on M such that wg = w and w; = dy : M — R™. In particular, w
solves the abelian Maurer—Cartan equation dw; = 0. By contrast, 1.2 assumes
smallness of dw and yields a nilpotent Maurer—Cartan form w; close to w. Also,
1.2 applies to closed manifolds (1.2.1) for which the immersion theorem fails.

The nilmanifold N in 1.2 depends on the choice of p as well as €;. Interesting
examples are obtained by collapsing ([F2]).

Example 1.4 (see [G1]). Let I'\ G be a nilmanifold. Thus G is a simply
connected nilpotent Lie group and I' < G a lattice. Let g be an inner product
on the Lie algebra G of G. Then g induces a left invariant Riemannian metric on
G that descends to a metric on I'\ G which we also denote by g. Let G = Q) >
G > .. > G = {0} denote the descending central series and let Uy denote
the orthogonal complement of G*+D in G®) | so that G*) = U, @ G*+1). Then
we have a decomposition G = Uy U; & --- ® U, into orthogonal subspaces.
Since [¢(®,gW)] C GE+i+1) one gets

(1.4.1) wulc @ Uk

k>z+]+1

Choose numbers Ag,...,Ar_; such that A;y;41 < A;A; and multiply g by A; on U
to obtain a new inner product gx. Consider left invariant coframes wy orthogonal
with respect to Gx. Since ||dwy|| = » is the norm of the Lie bracket on G, 1.4.1
implies. that k) < const as A — 0. Depending on the choice of A, (I'\ G,gx)
converges in the Hausdorff sense to a point or a lower dimensional nilmanifold.
Let G = GO > G > ... > G =1 denote the descending central series of
G. For X small enough there are £; such that xye; < e(n) and the nilmanifold
N of 1.2 is any one of the quotients G® /G NT (0 < i < ), depending on the
choice of ;.



1308 P. GHaNAAT, M. MIN-Oo0, & E. A. RuH

2. The proof.

2.1. We use the notation introduced in 1.1. A simple scaling argument
shows that one can assume k < e5(n) where e; is an arbitrary small constant
whose size will be fixed later in the proof and depends only on n. In fact, if £;
is chosen such that ke; < £(n), consider the coframe wy = Aw (A > 0) on M.

Denoting quantities defined using wy by a subscript A, one checks k) = ¥ and

for distance balls with respect to gx, Ba(p,p) = B(p,§). Let €] = Ae;. Then
elkr = e1k < g(n) and By(p,e}) = B(p,e1). If 1.2 is proven with the additional
hypothesis £ < e2(n), we can choose A large and apply 1.2 to wy. But then 1.2
follows for w itself (with a rescaled wy).

2.2. The exponential map exp = expf,’ at p € M satisfies the estimate
(IGh])

(2.2.1) (2—el=) Y || < ||d exp, Y| < el ||y

for z in its domain and Y € T, T, M ~ T, M. Therefore, by choosing e(n) small
exp will be nearly a local isometry on B(0,10e1). Let @, § and D denote the

pullbacks of w, g and D to B(0,10¢;) under exp. The components of @ of @
satisfy ([Gh)])

(2.2.2) @ (z) — dat|| < (2 —ellel) ™ (erllel 1)

for z € B(0,10¢1), where the z* are linear coordinates on T, M such that dz* = &*

at the origin and the norm is taken with respect to the euclidean metric g(p) on
T,M.

2.3. For p < 10e; let '), = exp~!(p) N B(0,p) C T, M. For 3p < 10¢; each
z € ', defines an imbedding v, : B(0,p) — B(0,3p) characterized by 7,(0) = =
and expo~y, = exp. Since vi@ = @, 2.2 implies that v, is Cl-close to the
translation by x. We also note that -, leaves the line Rz invariant and acts by
translation on that line.

Let 1, xz2 € B(0,p). Then exp(z1) = exp(xz) if and only if there exists
x € I's, such that v,(x1) = x2. In fact, let U C T,M be a neighborhood of
2 such that exp restricted to U is an imbedding. Define v near z; by v =

(exp|U)_1oexp and extend v to a map v : B(0,p) — B(0,3p) by mapping
geodesics of D starting at z; to corresponding geodesics starting at z,. Here
we are using the fact that by 2.2 the exponential map expD of the pullback
connection D has derivative close to the identity and therefore large injectivity

radius. Let x = v(0) € B(0,3p). Since expo~y = exp, it follows that v = ~,.
Note that x almost coincides with zs — z;.
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2.4. In the rest of the proof, §; (¢ = 1,2,3,...) will denote functions R — R*
such that lim;_,06;(t) = 0. For a subset V C T, M and r > 0 let V(r) denote the
euclidean r—neighborhood V(r) = {z € T,M | dist(z,V) < r}. In several places
we will omit the phrase “if 5(n) is chosen small enough.”

Lemma 2.5. There is a p such that 107 "e; < g < €1 and a subspace
V C T, M such that

(1) Pp g V((Sl(KJEl)),
(2) Yz € VN B(0,p) : dist(z,T',) < §.

The notation in (1) is explained in 2.4, and dist denotes the eucloidean distance
in T, M. Eventually, R = £ will be chosen for the radius R in 1.2.

Proof. We first show that there exist p and V such that (1)’ and (2) hold
where (1)’ T, C V(%).

To see this, let pg = 107"9¢;. If T'p; = {0}, choose V = {0} and p = po.
Otherwise pick z, € 'y, not equal to zero, let V; = span{z:} and p; = 10po.
Define I = {k € Z | v, (0) € B(0,p;) for all £ between 0 and k} and define the
orbit Oy = {+* (0) | k € I} C T, NVi(po). Clearly O satisfies dist(z,0;) <
p1/9 for all z € Vi. If '), C Vi(po), then (1) and (2) hold for V = V; and
p = p1. Otherwise choose zo € Ty, outside Vi(po), define Vo = span{zi,z2}
and p; = 10p;. Define I, = {(k1,k2) € ZXZ | v +£2(0) € B(0,p2) for all
{1 between O and k; and all 5 between 0 and kg}. Define the orbit O, =
{’Yx1’7z2 (k1,k2) € Iz} C I'p, NVa(p1). Then dist(z,02) < p2/9 for all
eV If I",J2 C Va(p1), then (1)’ and (2) hold for V = V5 and p = py. Otherwise
choose z3 € ', outside Va(p;), define V3 = span{z;,z2,x3} and p3 = 10p; and
continue. Since dim(V;) = ¢ the procedure terminates after m < n steps. Set
V =V, and p = pp,.

Note that m = 0 means that exp has large injectivity radius and corresponds
to the case N™ = {p} of the theorem. If m = n, M is compact with small
diameter and 1.2.1 can be applied. Finally, we claim that V' and p obtained above
satisfy (1). If not, we could use the almost—translations v,, z € O,, repeatedly
to produce an element in I', outside V(-l%). The argument actually shows that

xt|| < 8a(key) - ||z|| for the V+—component z+ of any element z € T',,. m|
P

2.6. After rotating the coframe w by a constant matrix a € SO(n) we may
assume that V = span{Xi(p),...,Xm(p)}. Recall that linear coordinates are
chosen on T, M such that X;(p) = 9/ Bzci|0. In the following we construct a closed

almost integral manifold N™ of the subbundle of TM spanned by Xi,...,X,.
N™ will turn out to be a nilmanifold.
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2.7. Let p: T,M — [0,1] be smooth and such that =1 on B(0,£), p =0
outisde B(0,p) and ||du|| < %. Let ¢* = z™%¢ (s = 1,...,k) denote the last &k
coordinate functions on T, M, where k = n —m. Define for z € B(0,p)

D nla)e’(a)
Y ue)

where the sums are taken over all ' € B(0,p) such that exp(z’) = exp(z). By
definition of f*, there exists a smooth function f° on the open subset U, :=
expB(0,p) € M such that f*oexp = f*. We estimate

fo(x) =

(2.7.1) |77 (2) - ¢ ()] < max|¢*(2') — ¢°()] < Bu(er).

Let X; denote the lift of X; to B(0,10¢;) under exp. In order to compute the
directional derivatives of f* with respect to X; we write ' = vz in the definition

of f* (see 2.3) and extend the sum over the corresponding «y ’s. Since v, X; = X,
one obtains

(Xif*)(@) = (O ue) X (Z p(yz)e® (yz)
- fi(= Zu ) X (Y ulv))
= (X u@) S Fa @) - () — (@)
+ (Tula) ™ ) (K" @) - 67) +67++.

By (2.2.2) we have |Xju| = |du(X;)| < 2 if e(n) is chosen small enough. Let

A(X,p) denote the number of points =’ inside B(0,p). Then, using (2.7.1) and
(2.2.2),

I(Xzfs)(:li) (5m+8| < 61(&81)14((?: /)2)+63(K,81)

Since AA@%% < ¢(n), we obtain on B(0,p)

z 1
(2.7.2) ldf® — d.’l)m+8|| < ;64(/‘&61) + 65(ker).

Since p > 107"¢; and & < e2(n) (see 2.1), the right-hand side of (2.7.2) will
be small if €(n) was chosen small enough. As a result, f* is C'-close to the
coordinate function ™+ .
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2.8. Define N C M by N = {q € U, | f*(q) = f*(p) for s = 1,....,k}.
By 2.7, N is an m-dimensional submanifold of U, without boundary, equal to
exp(IN) where

N ={z € B(0,p) | f*(z) = f*(0) for s = 1,....k}.

The vector fields Xi,...,X,, are almost tangent to N because of 2.7. N is
diffeomorphic to the open m-ball. Therefore, N is connected. N is compact.

In fact, if p; € N is a sequence in N, we can choose z; € B (0,5) such that
exp(z;) = p;. Then the sequence {z;} has a convergent subsequence. Clearly
N has trivial normal bundle. Let ¢« : N — M denote the inclusion. N has
diameter bounded above by £ with respect to the induced metric t*g. The
metric t*g coincides with the Riemannian metric induced by the coframe 7 :
TN — R™, ' = *w* (i = 1,...,m). Since dn® = * dw?, ) satisfies the hypothesis
diam(gy) - |ldnllec < €3(n) of the main result in [Gh] (compare 1.2.1). It follows

that N is a nilmanifold and there is a Maurer—-Cartan coframe 79 C°—close to 7
on N.

2.9. It remains to prove the statements concerning the normal exponential
map exp’ of N. exp™ is obtained by integrating parallel vector fields orthogonal
to N. Since exp, is defined on B(0,10%), exp™ is defined on v, = {Xev||z||l <
p}. Standard Jacobi field estimates (compare [Gh]) show that exp’ has maximal
rank on v, and maps vy,/9 onto a neighborhood of B (p,s).

We show that exp™ is injective on V.1p/9- If not, then there exist points z1,
z2 € N such that dist(z1,0) < £ and dist(z1,72) < £ and D-geodesics ¢; and c;
starting at x; and x5, respectively, of g-length less that %’3 and orthogonal to N,
whose endpoints y; and yo satisfy exp(y1) = exp(yz). Since dist(y1,y2) < 533,
there exists € I's 4,79 such that v,(y1) = y2. 7. preserves w and therefore
maps ¢, into a geodesic ¢} joining some point i € NN B(0,6.58) to y2. The
curve ¢ is orthogonal to N at xj. However, since N is C'—close to a subspace V
and @ is C%-close to dz, the normal exponential map expf\—, of N with respect to
D has injectivity radius greater than 2.15. It follows that #} = z3 and ¢} = cs.
This proves the injectivity of expt on Va.1p/9-

For 1.2 we choose R = g. The trivialization ® : N x Dyp — vap is given
by sections X}, 1,...,X} of v C%—close to Xp41,...,X,. The product Maurer—
Cartan form wg on N x Dyp can be described as wy = w1 @ 75 dx where 7; and
mo are the projections from N x Dog onto the factors N and Dsg, respectively.
It is not difficult to see that ® maps wy into a coframe C%-close to the pullback

of w-a onto vyr under the normal exponential map exp’. Recall that w was
rotated by a € SO(n) in 2.6. This finishes the proof of the theorem. O
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