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1. Introduction. In [EF1] and [EF2], the first two authors combined in-
tegral identities with estimates for solutions of the Riccati equation to show
nonexistence of L? eigenforms of the Laplacian (on functions and differential
forms) on certain complete noncompact manifolds of nonnegative sectional cur-
vature. In this note we remark that the identity used to prove vanishing of L2
harmonic forms away from the middle degree also holds for vector-bundle-valued
forms and can be applied to prove nonexistence theorems for harmonic maps and
Yang-Mills fields. In fact, both the identity and the applications were considered
previously by H. Karcher and J. C. Wood [KW], following work of H. C. Sealey
[S]- We simply want to point out that the geometric hypotheses that are needed
are the same as in [EF2], and more easily stated than in [KW] or [S]. Our main
result is:

Theorem A. Let M be a complete noncompact n-manifold, E a Rieman-
nian vector bundle on M equipped with a metric-compatible connection. Fiz
0 < p < n/2. Assume there ezists a C' vector field X on M such that:

(i) |X| < ®or and |VX]| is bounded on M, where v denotes distance to a
compact set S C M and [[°1/®(t)dt = oo;
(if) 2p|VX| < div X pointwise on M.

Then there are no L? harmonic forms in O, Q E.

The main interest of this result is that there are several geometric situations
where the existence of a vector field with properties (i) and (ii) can be verified;
note also that these conditions are stable with respect to C'!-small perturbations
of the metric (keeping X fixed). In particular, we obtain a geometric theorem
for manifolds of nonnegative curvature.

Recall that if M is a complete noncompact manifold of nonnegative cur-
vature, a basic theorem of Cheeger and Gromoll [CG] asserts the existence of
a compact totally convex (in particular, totally geodesic) submanifold S of M
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without boundary, whose normal bundle is diffeomorphic to M. The diffeomor-
phism is in general not given by the exponential map. S reduces to a point if M
has positive curvature, or if M has a pole.

Theorem B. Let M be a complete noncompact n-manifold with nonneg-
ative sectional curvature; assume M has a soul S whose exponential map is a
diffeomorphism, of dimension s < n—1.

(i) Fiz an integer 0 < p < n/2. If the sectional curvature in directions normal
to S satisfies

c(l—e¢)
r2

0<K< r(z) =d(z,9),
where ¢ € ((2p—1)/(n— s —1),1), then there are no L? harmonic forms in
QP E. In particular:

(ii)) Assumen >3, n—s>3. Then ifc € (1/(n—s—1),1), there are no non
constant harmonic maps v : M — N with finite energy, for arbitrary targets
N.

(iii) Assumen > 5, n—s > 5, and ¢ € (3/(n—s—1),1). Then for arbitrary
compact Lie groups G and principal G-bundles P — M, any connection on
P satisfying the Yang-Mills equations whose curvature form F € Q%, ® ad P

satisfies [y, |F|* (z) dz < o, is flat.

Part (iii) generalizes the well-known fact that there are no nontrivial Yang-
Mills fields in R with finite action for n > 5 (in contrast with R*, where the
problem is conformally invariant and one obtains finite-action fields by pullback
from S*); see e.g., [JT].

Remarks.

1. If N has nonpositive sectional curvature, there are no harmonic maps with
finite energy from M to N, where M is any complete noncompact manifold
with nonnegative Ricci curvature. This was proved by R. Schoen and S. T.
Yau via the Bochner identity for harmonic maps ([SY]).

2. The result (ii) is false if n = 2; for example, there are many holomorphic
(hence harmonic) maps C — S2 with finite energy.

3. For manifolds with pole of nonnegative curvature, quadratic decay of the
sectional curvatures is ‘generic’ in the following sense: decay faster than
quadratic implies flatness ([GW]), and it is easy to construct rotationally
symmetric examples with quadratic decay of the radial sectional curvatures.
For example, the radial sectional curvatures of the metric in R® ds? =
dr? + g%(r) dw? with

r

Q(T)=(—1+T—2W§
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satisfying 0 < K < k/r? provided 0 < a < k/3. As remarked above, small
perturbations of this example provide non symmetric manifolds satisfying
the hypotheses of Theorem A. On the other hand, the result is sensitive
to the value of the constant in the quadratic decay condition in (i). As
described in [EF2], there are examples (due to DaGang Yang) of 4-manifolds
with pole of K > 0, whose radial sectional curvatures satisfy

and which carry nontrivial harmonic two-forms. From this it is easy to see
that Theorem B (i) does not hold if we replace ¢(1 —c) by 3.

4. The Riemannian product of a manifold with a pole of nonnegative curvature
and a compact manifold of nonnegative curvature satisfies the assumptions
of Theorem B. Conversely, as shown in Corollary 2.3 of [EF2], a curvature
decay condition as above implies the manifold splits locally (i.e., the univer-
sal cover is a product of a compact manifold and a manifold with pole). The
conclusion of the theorem, however, is not invariant under infinite coverings.

5. The results corresponding to Theorem B in negative curvature follow from
the work of H. Donnelly and F. Xavier [DX]. We state them here for com-
pleteness: let M™ be simply connected, with sectional curvatures —1 <
K< -1+4e Ifn>4and 0<e<1-—4/(n—1)2 there are no non constant
harmonic maps with finite energy defined on M (this is also true in hyper-
bolic 3-space, by Sealey’s results [S]). If n > 6 and 0 < ¢ < 1—16/(n—1)2,
M supports no non flat Yang-Mills connections with curvature form in L2
(again, the case of hyperbolic 5-space is contained in [S]).

Condition (ii) in theorem A simplifies when X is a conformal vector field.
In the following theorem, no curvature assumptions are required.

Theorem C. Let M = R™ endowed with a complete metric g = e*'g
conformally related to the Euclidean metric go. Let E be a vector bundle over M
with Riemannian metric and connection. Assume there exists a point pg € R™
such that the Euclidean spheres with center py have nonnegative mean curvature
with respect to the metric g. Then there are no L? harmonic forms in ®* @ E
for p # n/2. In particular, if n > 3 there are no non constant harmonic maps
v: M — N with finite energy, for arbitrary targets N; and if n # 4 there are
no non flat Yang-Mills connections with curvature form in L?, for any principal
bundle over M.
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2. The Basic Identity. We begin by recalling the identity in (2.5) of [KW]
and (1.2) of [EF2]; for completeness we include a short proof closer to that of
[EF2].

Let M be a Riemannian manifold and £ — M a vector bundle with a Rie-
mannian metric on its fibers and a metric-compatible connection V. Combined
with the Levi-Civita connection on M, V defines a connection (still denoted V)
and an exterior derivative on E-valued differential forms u € O}, ® E. For a vec-
tor field X and 1-form ¥ € Q},, we extend the exterior product and contraction
to QF, ® E by:

IN(wRe)=(IAw)Qe,
ix(w®e) = (ixw)®e.
With these definitions, ix is the adjoint of left exterior multiplication by 9, if ¥
is dual to X (as in Q%,). It then follows easily from

du=dv®e+ (-1’ wAVe (u=w®e€Q,®F)

that for u € Q%; ® E, we have as for ordinary p-forms:

du = 2(19,- AVx,)u,

for an arbitrary local orthonormal frame {X;} with co-frame {¢;}. Denoting by
§: 08 ®E — Q' ® F the adjoint of d, we also have:

bu = — ZiXi Vx,u ({X;} orthonormal).
i

Since we need to keep track of boundary terms, we verify this fact. Let Z be
the vector field on M defined by (Z,X) = (u,ixv) for all vector fields X; here

u€ Mt ®F andv € Q21" ® E are given arbitrarily. Choosing {X;} orthonormal
so that Vx, X;(p) = 0 at a fixed point p € M, we compute:

divZ = (Vx,Z,X:) = _ Xi(Z,X;)
= Z{(inu,ixi’v) + ('U,,in’ixi'v)}

= Z {<'l9i A VX,.U/,”) + <'u,,iXiVX¢’U)}

= (du,v) — (u,6v),
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where the fourth equality follows from
iny’u, = inyu - ivxyu,

for arbitrary X, Y and u. Thus for any bounded open set D C M with smooth
boundary 8D, we have

/];(du,v)=/D(u,év)+/aD(u,i,,v),

where v denotes the unit outward normal vector field of D. We now consider Lie
derivatives with respect to a vector field X. We may extend the Lie derivative
Lx in Qﬁ,, and the connection V on E to a first order differential operator Lx
on 3, ® E defined by:

Lxu(X1,...,Xp) = Vx (w(X1,...,.Xp)) = D _u(X1,...,[X, Xi),..., Xp).

It follows from [X,X;] = Vx X; — Vx, X that on Q}, ® E:
(1) Lxu=Vxu+p(VX)u,

where VX : Qf, ® E — Qf,®F is the linear endomorphism extending the
transformation
(VX)Z =VzX

on vector fields. Explicitly,

(2) [(VX)u](X1,..., Xp) = %Zu(Xl,...,(VX)X,-,...,X,,).

i

It is verified in p. 170 of [KW] that with this definition one has

v
Lxu= a‘ﬂ:"dt:o,

where ¢, is the flow of X. To extend the identity Lx = dix +ixd to Q3, ® E,
we observe that since

Lx(w®e) = (Lxw)®e+w® Vxe,
we have foru =w®e € O, ®E:

d(ixu) = d(ixw®e) = dixw e+ (—1)P"1(ixw) A Ve
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and
ix(du) = ix (dw®e+ (—1)Pw A Ve)
= (ixdw) ® e+ (—1)P(ixw) A Ve + (-1)’w ® Vxe,
80
3) (dix +ixd)u = (Lxw)®e+w®Vxe = Lxu,

which easily implies the same formula for arbitrary u € 2, ® E. Combining (1)
and (3) we obtain the formula

(dixu,v) + {(du, X* Av) = (Vxu,v) + p((VX)u,v),

which holds pointwise on M. Integrating on D € M, we obtain:

(4) /D p{(VX)u,v) = /D (ixu,60) + /D (du, X* Av) — /D (V xu,0)

+ / (’ix’u,i,ﬂ)).
oD

Setting u = v, integration by parts yields:
(5) / [p((VX)u,u) ~ Ldiv X)'|u|2] - / (i, 6u) + / (du, X* Au)
D 2 D D

+ [ tewion) - Jx ]

This immediately implies the following lemma (cf. Prop 2.5 of [KW]):

Lemma 1. Letu € Q4 ® E be harmonic (that is, du = 0 = éu). Then
for any smooth bounded domain D € M and smooth vector field X we have:

/D {20((V X ), ) — (div X) fu} = /aD {2(ixu i) - (X,0)Ju }.

Remark. For any T € End(TM) and its extension to Q%,, the function
(Tw,w) depends only on the symmetric part of T, defined by

(T*X,Y) = %{(TX,Y) +(X,TY)).
This follows from the fact that

(6) Tw = 1Z(Txi,xj)ﬂj Nix,w
i!j
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({X;} orthonormal, with co-frame {¥;}; our definition differs from that of [EF2]
by a factor of 1/p, included so that the identity on TM extends to the identity
on Qf,). Thus

1 . .
(Tw,w) = ;Z(TXi,Xj)(zXewﬂij)
i,J

1 . .
=23 (T X, X ) ix,w,ix,w) = (T°w,w),
ihj

since (ix,w,ix,w) is symmetric in ¢ and j. This clearly extends to the action on
VW ®F.

Proof of Theorem A. Let S(R) = {z € M | r(z) = R}. For some
sequence R; — oo we must have:

| i —o
S :

i

otherwise we would have ®(R) fs( R) |u|? bounded below as R — oo, which con-

tradicts u € L? given the assumption on ®. Since |VX| is bounded and u € L?,
Lemma 1 implies:

/ [2p{(VX)*u,u) — (div X)|u*] =o0.
M

But hypothesis (ii) of Theorem A implies the integrand is nonpositive on M,
hence vanishes identically. This implies u = 0 (again by (ii)). O

3. Applications. In this section we prove Theorems B and C.

Proof of Theorem B.

(i) We apply Theorem A to the vector field X = V(r2/2). Denote the eigen-
values of (VX) = Hessian(r2/2) by:

M A< Al S S A =1
Recall (see [EF1, Lemma 1.1]) that under the assumption

c(l—c)
r2

0<KK on M-S,
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(i)

(iii)

we have on M — S:
(M AM=Ad=2=0 ifs=dimS>0,c<A41 < A1 <A =1.

This implies

n n—1
2P/\n—Z/\j = (2p—1)—2)\j <0 if(n—s—1)c>2p—1.

Thus X satisfies the hypotheses of Theorem A, and the conclusion of part
(i) follows.

Assume 1/(n—s—1) < ¢ < 1. Then any u € L*(Q}, ® E) which is har-
monic vanishes identically on M. In particular, let v : M — N be a har-
monic map. Then u = dv € 2}, ® E (where E = v*TN), and v has finite
energy if and only if u € L2. We have du = 0 (since u is the differential of a
map) and du = édv = - _,(Vx, dv)X; = 0 by the harmonic map equation.
Hence if v has finite energy, u vanishes identically (and v is constant).
Assume 3/(n—s—1) < ¢ < 1. Then any u € L%(Q%, ® E) which is har-
monic vanishes identically on M. Let P — M be a principal G-bundle (G
a compact Lie group). The curvature of a principal connection on P is a
2-form F' with values in the associated Lie algebra bundle E = P x G, de-
fined by the adjoint representation Ad : G — End§G. The critical points
of the functional f,, |F |? (x) dz satisfying the Yang-Mills equations dF = 0,
8F = 0. The fact that F = 0 if it is in L? follows immediately from part
(1). O

Proof of Theorem C. Let (M,g) be as in Theorem C. For a conformal

vector field X on M, define DX = (VX)*. We have:

(8)

%(divX)g = Lxg =2DX.

Using (6), we see that pointwise on M:

_divX . 2 _divX
(DX)u,u) = = Z;sziul = — = ul*.

It is straightforward to check using (8) that for any vector field Z on M we have

DZ =e*(DoZ + Z(v)go).
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Taking the trace with respect to the metric g, we get that
9) divgZ = divgy Z +nZ(v).

The vector field X = V4, (r?/2) where r(z) is the Euclidean distance from z to
Ppo is a conformal vector field in (R™,go). Hence X is a conformal vector field on
(M,g). (9) implies divgX = n((1+r)dv/dr), hence we obtain from Lemma 1:

2 0 ols
Jo (1) (e ) Wl = [ e lirs el

where Bg denotes the Euclidean ball of radius R centered at pg. The boundary
integral is bounded above by

(10) @p+ DR [ 0 uffe "
8Br
where we have expressed everything in terms of the Euclidean metric go. Since
/ e“2”|u|§e"” dvolg, < oo,

the boundary term (10) must converge to zero for some sequence R; — oo.

The mean curvature h,, of r =171y with respect to the metric g is
e~%(1/r¢ + Ov/0r); thus under the hypotheses of Theorem C, (1+ (r)dv/dr) > 0
on M, and we conclude:

2p Ov 2 _
/M (F - 1) n (1 + T?)_r_) |u|g dvoly = 0.

Thus the integrand must vanish identically. Since 14 (r)0v/0r is positive
for small r, by unique continuation for harmonic forms, u must vanish iden-
tically. o
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