Math 3GP3
 Assignment \#4

Due: Tuesday, November 12th, 2013

1. The flat Euclidean metric on \mathbb{C}^{2} can be written as $d s^{2}=d z^{1} d \bar{z}^{1}+d z^{2} d \bar{z}^{2}$. Write

$$
z^{1}=r \cos \left(\frac{\theta}{2}\right) \exp \left(\frac{i}{2}(\phi+\psi)\right) \quad z^{2}=r \sin \left(\frac{\theta}{2}\right) \exp \left(\frac{i}{2}(\phi-\psi)\right)
$$

and show that the metric on the unit sphere S^{3} with $r=1$ is given by $d s^{2}=\left(e^{1}\right)^{2}+\left(e^{2}\right)^{2}+\left(e^{3}\right)^{2}$, where

$$
e^{1}+i e^{2}=\frac{1}{2} e^{i \psi}(d \theta-i \sin \theta d \phi) \quad e^{3}=\frac{1}{2}(d \psi+\cos \theta d \phi)
$$

Calculate the curvature tensor in this basis.
2. Using some computer software, or otherwise, plot graphically a number of solutions $a(t)$ of Friedmann's equations for various values of Λ and κ (all 3 possible signs):

$$
\dot{a}^{2}=\frac{\Lambda}{3} a^{2}-\kappa+\frac{C}{a}
$$

where $C=\frac{8 \pi}{3} \rho a^{3}$ is a constant (assuming $p=0$ (dust case)).
3. In a Robertson-Walker model $d s^{2}=-d t^{2}+a(t)^{2} d \sigma_{\kappa}^{2}$ of the universe, assume $p=0$ (pure dust with density $\rho>0$, no pressure) in Friedmann's equations so that ρa^{3} is a constant.
Let $H=\frac{\dot{a}}{a}$ (Hubble constant), $q=-\frac{\ddot{a}}{a H^{2}}$ (deceleration), $J=\frac{1}{a H^{3}} \frac{d^{3} a}{d t^{3}}$ (jerk), $S=\frac{1}{a H^{4}} \frac{d^{4} a}{d t^{4}}$ (snap), $\rho_{\text {crit }}=\frac{3 H^{2}}{8 \pi}, \delta=\frac{\rho}{2 \rho_{\text {crit }}}$ (density parameter), $\Lambda=$ cosmological constant, $\kappa=$ spatial curvature.
Establish the following identities:
(i) $\Lambda=3 H^{2}(\delta-q)$
(ii) $\kappa=a^{2} H^{2}(3 \delta-q-1)$
(iii) $J=3 \delta-q$
(iv) $S=-2(\delta+J)-\delta J$

