Math 3D03
Short solutions to assignment #2

1. Evaluate the following definite (real-valued) integrals:
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(i) The integral is obviously zero for odd n, since sin(f) = — sin(27 — ). For even n, we have using

the binomial formula:
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As n — oo, the integral goes to zero. This can be seen, for example, by using Stirling’s formula:

limpy oo V2T N (%)N % = 1 or by looking at the graph of the function (sin )" for large n .

(ii) Use a long horizontal strip [—R, +R] x [0,27] above the x—axis as your contour The integral
on thg two vertical lines — 0, as R — oo since the integrand is bounded from above in amplitude
by e:—R (on the right vertical line) and by e~%f (on the left vertical) and 0 < a < 1. On the upper

horizontal line the integral is a phase shift by > of the integral on the x— axis (in the opposite
direction). There is exactly one simple pole at im within the strip with residue = 6;: = —elom,
Therefore (1 — e2T) [ fjgf = —27ie’™ and hence the answer is
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(iii) This is problem 24.18 in the textbook but here is how you can do it as I showed you in class:

fc 1Jr%alz, where the contour C is the 2%—sector (of radius R — o0) in the first quadrant. There
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is a single simple pole at ¢'n inside C with residue = —e = —%ei%. The integral along the

ray z = rein is a phase shift by et of the integral on the z—axis (in the opposite direction). The
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2. Do problems 24.20 and 24.21 on page 869 in the text book.

Problem 24.20. Use a key hole contour around the origin with a cut along the positive real axis.
There is exactly one simple pole at z = exp(im) with residue = im exp(—i%’r).

Both circular integrals (around the little circle around zero and the big circle around o) go to 0
when you let the radii go to zero and oo respectively. The integral along the cut (the positive real

axis) undergoes a phase shift when it comes back from oo:
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Therefore:

/OO 7509(:1:) de = —%V/2 /OO —_ dz =mV?2
0 zi(l+ux) 0 zi(l+ux)

Problem 24.21. Use a large semicircle of radius R in the upper half plane and the real line with a
small semicircular dent of radius € around the origin. Log is well-defined there. There is a simple
pole at z = 7 inside ythe contour with residue w = i’rgi. The integrals on the semicircular
pieces go to zero when R — oo and € — 0. On the left part of the real axis, the log is phase-shifted:

(log(zei™))? = (log x)? + 2imlog x — 72, so we get:

00 2 00 00 3
2/ 7(10g(x)) dx + 27Ti/ Lg(x) dx — 7T2/ dz -
0 0 0

1+ 2 1+ 22 1+ 2 4

Equating real and imaginary parts we get:
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3. Sum the following infinite series:

=1 2 (1)t > n?
(@ > s ) > i (© 2 g
n=1 n=1 n=—00
(a) >, n++9 =—1 (sum of residues (%z;)dz; :|:32'> + %) = T coth(3m) — &%

o0 —nnHt 7 csc(mz)dz —1)32(23-1)74 -
(b) >ontq % = —3Res <%;0) — %%34 =

(€) >0 Tﬂ"firzl = sum of residues (%ﬁ?}f%; +, im) = 1(coth(n?) — cot(r?))



4. How many zeros of the polynomial z* — 5z + 1 lie in the annulus 1 < |z| < 27

| =52+ 1] <5|z| +1 =11 < 16 = |2*| on the outer circle |z| = 2 and z* has a quadruple zero at
z = 0. On the other hand, | — 5z + 1| > 5|z| — 1 = 4 > 1 = |2*| on the inner circle |z| = 1 and
1

—5z + 1 has exactly one zero at z = 5 inside the inner circle.

Therefore there are 3 roots of the given quartic inside the given annulus.

D.

(i)  Suppose that f(z) is a non-constant analytic function defined for all z € C. Show that for
every R > 0 and for every M > 0 there exists a z such that |z| > R and |f(z)| > M .

(ii) Suppose that f(z) is a non-constant polynomial. Show that for every M > 0 there exists an
R > 0, such that |f(z)] > M for all |z| > R.

(iii) Show that there exists an M > 0, such that for every R > 0, there exists a z satisfying |z| > R
and |e*| < M .

(i) Arguing by contradiction, let us assume that there exists R > 0 and M > 0 such that f(z) < M
for every |z| > R. Let a € C. By the Cauchy integral formula : f’(a) = 5 fo /(z) dz, where
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we choose C' to be a circle of very large radius r (say r = 100(R + |a|)). The integral is bounded
from above in absolute value by the product of the length of that circle and the maximum absolute
value of the integrand which is < 2777”%2 = @ and so |f'(a)| < % for any r sufficiently large.

This proves that f’(a) = 0 for any a and hence f is a constant function.

(ii) By factoring out the top coefficient, we may assume that p(z) = 2" + ¢(z), where ¢(z) is a
polynomial of degree < n — 1 (n > 1). Since lim,_, % = 0, we see that for |z| sufficiently large
lg(2)] < 0.1|z"| and so |p(z)| > 0.9]z]" > 0.9R™ for |z| > R.

So for any given M > 0, we can find R such that |p(z)| > M for every z with |z| > R.

(iii) For every R > 0, z = 2iR satisfies |z| > R and |e*| < 1.



