
Math 3D03
Short solutions to assignment #2

1. Evaluate the following definite (real-valued) integrals:

(i)

∫ 2π

0
(sin θ)n dθ forn ∈ N. What happens when n→∞ ?

(ii)

∫ ∞
−∞

eax

1 + ex
dx for 0 < a < 1

(iii)

∫ ∞
0

dx

1 + xn
where n ≥ 2 is an integer

(i) The integral is obviously zero for odd n, since sin(θ) = − sin(2π− θ). For even n, we have using
the binomial formula:∫ 2π

0
(sin θ)2n dθ =

∮
|z|=1

(
z − z−1

2i

)2n
dz

iz
=

1

(2i)n

∮
|z|=1

z2n

iz
(1− z−2)2ndz

=
1

22ni2n+1

2n∑
k=0

∮
|z|=1

(−1)k
(

2n

k

)
z2n−2k−1 dz =

2π

22n
(2n)!

(n!)2

As n → ∞ , the integral goes to zero. This can be seen, for example, by using Stirling’s formula:

limN→∞
√

2πN
(
N
e

)N 1
N ! = 1 or by looking at the graph of the function (sin θ)2n for large n .

(ii) Use a long horizontal strip [−R,+R] × [0, 2π] above the x−axis as your contour The integral
on the two vertical lines → 0, as R → ∞ since the integrand is bounded from above in amplitude
by eaR

eR
(on the right vertical line) and by e−aR (on the left vertical) and 0 < a < 1. On the upper

horizontal line the integral is a phase shift by eia2π of the integral on the x− axis (in the opposite

direction). There is exactly one simple pole at iπ within the strip with residue = eiaπ

eiπ
= −eiaπ.

Therefore (1− ei2aπ)
∫∞
−∞

eaxdx
1+ex = −2πieiaπ and hence the answer is∫ ∞

−∞

eaxdx

1 + ex
=

π

sin(aπ)

(iii) This is problem 24.18 in the textbook but here is how you can do it as I showed you in class:∮
C

1
1+zndz, where the contour C is the 2π

n −sector (of radius R →∞) in the first quadrant. There

is a single simple pole at ei
π
n inside C with residue = 1

ne
−i (n−1)π

n = − 1
ne

iπ
n . The integral along the

ray z = rei
2π
n is a phase shift by ei

2π
n of the integral on the x−axis (in the opposite direction). The

integral on the circular arc tends to zero as R →∞, since n ≥ 2. Therefore (1− ei
2π
n )
∫∞
0

dx
1+xn =

−2πi
n e

iπ
n and hence ∫ ∞

0

dx

1 + xn
dx =

π

n
csc(

π

n
)

.
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2. Do problems 24.20 and 24.21 on page 869 in the text book.

Problem 24.20. Use a key hole contour around the origin with a cut along the positive real axis.
There is exactly one simple pole at z = exp(iπ) with residue = iπ exp(−i3π4 ).
Both circular integrals (around the little circle around zero and the big circle around ∞) go to 0
when you let the radii go to zero and ∞ respectively. The integral along the cut (the positive real
axis) undergoes a phase shift when it comes back from ∞:∫ 0

∞

log(x) + 2πi

exp(i3π2 )x
3
4 (1 + x)

dx = −i
∫ ∞
0

log(x)

x
3
4 (1 + x)

dx+ 2π

∫ ∞
0

dx

x
3
4 (1 + x)

Hence

(1− i)
∫ ∞
0

log(x)

x
3
4 (1 + x)

dx+ 2π

∫ ∞
0

dx

x
3
4 (1 + x)

= −2π2 exp(−i3π
4

) = π2
√

2(1 + i)

Therefore: ∫ ∞
0

log(x)

x
3
4 (1 + x)

dx = −π2
√

2

∫ ∞
0

dx

x
3
4 (1 + x)

= π
√

2

Problem 24.21. Use a large semicircle of radius R in the upper half plane and the real line with a
small semicircular dent of radius ε around the origin. Log is well-defined there. There is a simple

pole at z = i inside ythe contour with residue (log(i))2

2i = iπ
2

8 . The integrals on the semicircular
pieces go to zero when R→∞ and ε→ 0. On the left part of the real axis, the log is phase-shifted:
(log(xeiπ))2 = (log x)2 + 2iπ log x− π2, so we get:

2

∫ ∞
0

(log(x))2

1 + x2
dx+ 2πi

∫ ∞
0

log(x)

1 + x2
dx− π2

∫ ∞
0

dx

1 + x2
= −π

3

4

Equating real and imaginary parts we get:∫ ∞
0

(log(x))2

1 + x2
dx =

π3

8

∫ ∞
0

log(x)

1 + x2
dx = 0

3. Sum the following infinite series:

(a)

∞∑
n=1

1

n2 + 9
(b)

∞∑
n=1

(−1)n+1

n4
(c)

∞∑
n=−∞

n2

n4 − π4

(a)
∑∞

n=1
1

n2+9
= −1

2

(
sum of residues

(
π cot(πz)dz

z2+9
;±3i

)
+ 1

9

)
= π

6 coth(3π)− 1
18

(b)
∑∞

n=1
(−1)n+1

n4 = −1
2Res

(
π csc(πz)dz

z4
; 0
)

= 1
2
(−1)32(23−1)π4

4! B4 = 7π4

720

(c)
∑∞

n=−∞
n2

n4−π4 = sum of residues
(
π cot(πz)z2dz

z4−π4 ;±π,±iπ
)

= 1
2(coth(π2)− cot(π2))

2



4. How many zeros of the polynomial z4 − 5z + 1 lie in the annulus 1 ≤ |z| ≤ 2?

| − 5z + 1| ≤ 5|z| + 1 = 11 < 16 = |z4| on the outer circle |z| = 2 and z4 has a quadruple zero at
z = 0. On the other hand, | − 5z + 1| ≥ 5|z| − 1 = 4 > 1 = |z4| on the inner circle |z| = 1 and
−5z + 1 has exactly one zero at z = 1

5 inside the inner circle.

Therefore there are 3 roots of the given quartic inside the given annulus.

5.

(i) Suppose that f(z) is a non-constant analytic function defined for all z ∈ C . Show that for
every R > 0 and for every M > 0 there exists a z such that |z| > R and |f(z)| > M .

(ii) Suppose that f(z) is a non-constant polynomial. Show that for every M > 0 there exists an
R > 0 , such that |f(z)| > M for all |z| > R .

(iii) Show that there exists an M > 0 , such that for every R > 0 , there exists a z satisfying |z| > R
and |ez| ≤M .

(i) Arguing by contradiction, let us assume that there exists R > 0 and M > 0 such that f(z) ≤M
for every |z| > R. Let a ∈ C. By the Cauchy integral formula : f ′(a) = 1

2πi

∮
C

f(z)
(z−a)2dz, where

we choose C to be a circle of very large radius r (say r = 100(R + |a|)). The integral is bounded
from above in absolute value by the product of the length of that circle and the maximum absolute
value of the integrand which is ≤ 2πrM

r2
= 2πM

r and so |f ′(a)| ≤ M
r for any r sufficiently large.

This proves that f ′(a) = 0 for any a and hence f is a constant function.

(ii) By factoring out the top coefficient, we may assume that p(z) = zn + q(z), where q(z) is a

polynomial of degree ≤ n− 1 (n ≥ 1). Since limz→∞
q(z)
zn = 0, we see that for |z| sufficiently large

|q(z)| < 0.1|zn| and so |p(z)| ≥ 0.9|z|n ≥ 0.9Rn for |z| ≥ R.
So for any given M > 0, we can find R such that |p(z)| > M for every z with |z| > R.

(iii) For every R > 0, z = 2iR satisfies |z| > R and |ez| ≤ 1 .
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