MATH 3C03

TEST \# 2
Short Answers
\# 1. (6 marks) Find the normalized eigenstates and eigenvalues of the 2-dimensional timeindependent Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=E \psi
$$

in a square $[0, \pi] \times[0, \pi] \subset \mathbb{R}^{2}$ with boundary conditions that ψ vanishes on all sides of the square.
Eigenvalues $=\frac{\hbar^{2}}{2 m}\left(n_{1}^{2}+n_{2}^{2}\right)$, where n_{1}, n_{2} are integers with normalised eigenstates $\psi=\frac{2}{\pi} \sin \left(n_{1} x\right) \sin \left(n_{2} y\right)$ \# 2 (12 marks).
(i) Expand $f(x)=x(1-x) ;-1 \leq x \leq+1$ in terms of Legendre polynomials. Hint: $P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$
(ii) Solve Laplace's equation:

$$
\Delta u(x, y, z)=-\nabla^{2} u(x, y, z)=0
$$

in the interior of the unit ball $x^{2}+y^{2}+z^{2} \leq 1$ in \mathbb{R}^{3}, with boundary conditions: $u(x, y, z)=z(1-z)$ on the unit sphere $x^{2}+y^{2}+z^{2}=1$.
(i) $x(1-x)=-\frac{1}{3} P_{0}(x)+P_{1}(x)-\frac{2}{3} P_{2}(x)$ (ii) $u(r, \theta, \phi)=-\frac{1}{3}+r P_{1}(\cos \theta)-\frac{2}{3} r^{2} P_{2}(\cos \theta)$
\# 3 (6 marks). Use the recursion formula:

$$
(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)
$$

and the normalization $\int_{-1}^{+1}\left(P_{n}(x)\right)^{2} d x=\frac{2}{2 n+1}$ for Legendre polynomials to compute the following integral:

$$
\int_{-1}^{+1} x P_{4}(x) P_{5}(x) d x
$$

Answer $\frac{10}{99}$
\# 4 (6 marks). Use the generating function

$$
\exp \left(\frac{x}{2}\left(h-h^{-1}\right)\right)=\sum_{n=-\infty}^{\infty} J_{n}(x) h^{n}
$$

to show the following addition formula for integral Bessel functions:

$$
J_{n}(x+y)=\sum_{k=-\infty}^{\infty} J_{k}(x) J_{n-k}(y)
$$

$$
\sum_{n=-\infty}^{\infty} J_{n}(x+y) h^{n}=\exp \left(\frac{x+y}{2}\left(h-h^{-1}\right)\right)=\exp \left(\frac{x}{2}\left(h-h^{-1}\right)\right) \exp \left(\frac{y}{2}\left(h-h^{-1}\right)\right)
$$

$$
=\left(\sum_{n=-\infty}^{\infty} J_{k}(x) h^{k}\right)\left(\sum_{n=-\infty}^{\infty} J_{l}(y) h^{l}\right) . \text { Now equate coefficients. }
$$

\# 5 (3 marks bonus). Find the normalized wave function with the lowest non-zero energy of the two-dimensional time-independent Schrödinger operator

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi
$$

acting on functions defined on the unit disk $x^{2}+y^{2} \leq 1$ satisfying Dirichlet boundary conditions: $\psi=0$ on the unit circle.
Answer: $\psi(r, \theta)=\frac{1}{\sqrt{\pi}} \frac{1}{J_{1}\left(\alpha_{1}\right)} J_{0}\left(\alpha_{1} r\right)$ where α_{0} is the first zero of the Bessel function J_{0}

