MATH 3C03

Short Answers to Test \# 1

\# 1. State whether the following statements are TRUE or FALSE (no explanations needed)
(i) Every square matrix is diagonalisable.

FALSE
(iii) For any matrix A, all the non-zero eigenvalues of $A A^{T}$ and $A^{T} A$ are the same.
(iv) All eigenvalues of a Hermitian matrix are real numbers.
(v) For any square matrix $A, \operatorname{det}\left(e^{A}\right) \neq 0$
(vi) $x=\infty$ is a regular singular point of Hermite's eqn. $y^{\prime \prime}(x)-2 x y^{\prime}(x)+2 \lambda y(x)=0 . \quad$ FALSE
(vii) There is a quadratic polynomial $x(t)$ satisfying $\left(1-t^{2}\right) \ddot{x}(t)-2 t \dot{x}(t)+12 x(t)=0 \quad$ FALSE
\# 2. Find the characteristic frequencies and the normal modes of the coupled harmonic oscillators:

$$
\begin{aligned}
& \ddot{x}_{1}=-x_{1}-4\left(x_{1}-x_{2}\right) \\
& \ddot{x}_{2}=-x_{2}-4\left(x_{2}-x_{1}\right)
\end{aligned}
$$

Answer: The slow characteristic frequency is $\omega_{1}=\sqrt{1}=1$ with normal mode (eigenfunction) $(1,1)^{T}$ and the fast characteristic frequency $\omega_{2}=\sqrt{9}=3$ with normal mode with (eigenfunction) $(+1,-1)^{T}$
\# 3 (i) Find the Fourier series of the odd rectangular wave function $\operatorname{sgn}(x)=\frac{x}{|x|},-\pi \leq x \leq+\pi$, periodically extended with period 2π.
(ii) Use this series to show that

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}=\frac{\pi^{2}}{8}
$$

Answer: The step function $f(x)=\operatorname{sgn}(x)=\frac{x}{|x|},-\pi<x \leq \pi$, periodically extended, is odd with Fourier sine series:

$$
\operatorname{sign}(x) \approx \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin ((2 k-1) x)}{2 k-1}
$$

Parseval's identity shows that

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}=\frac{\pi^{2}}{8}
$$

\# 4. Find the Fourier transform of the function:

$$
f(t)=e^{-|t|} \quad-\infty<t<+\infty
$$

and verify that Parseval's identity (Plancherel's Theorem) holds in this case.
$\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-|t|} e^{-i \omega t} d t=\frac{1}{\sqrt{2 \pi}}\left(\int_{-\infty}^{0} e^{(1-i \omega) t} d t+\int_{0}^{+\infty} e^{(-1-i \omega) t} d t\right)=\frac{1}{\sqrt{2 \pi}}\left(\frac{1}{1-i \omega}+\frac{1}{1+i \omega}\right)=\sqrt{\frac{2}{\pi}} \frac{1}{1+\omega^{2}}$
$\int_{-\infty}^{+\infty}|f(t)|^{2}=2 \int_{0}^{+\infty} e^{-2 t} d t=1=\int_{-\infty}^{+\infty}|f(\omega)|^{2} d \omega=\frac{4}{\pi} \int_{0}^{+\infty} \frac{d \omega}{\left(1+\omega^{2}\right)^{2}}$ since putting $\omega=\tan \theta$ gives:
$\int_{0}^{+\infty} \frac{d \omega}{\left(1+\omega^{2}\right)^{2}}=\int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta=\frac{\pi}{4}$
\# 5. Compute

$$
\int_{-\infty}^{+\infty} \frac{\sin ^{2}(\omega)}{\omega^{2}} d \omega
$$

by using Fourier transforms
The Fourier transform of the rectangular wave function $\operatorname{rect}(t)$ of height 1 from $-1 \leq t \leq+1$ is $\sqrt{\frac{2}{\pi}} \operatorname{sinc}(\omega)$, so by Parseval's identity:

$$
\int_{-\infty}^{+\infty} \frac{\sin ^{2}(\omega)}{\omega^{2}} d \omega=\pi
$$

\# 6 (bonus). Find a polynomial solution of the differential equation:

$$
\left(1-t^{2}\right) \ddot{x}(t)-2 t \dot{x}(t)+12 x(t)=0
$$

Answer: $P_{3}(t)=\frac{1}{2}\left(5 t^{3}-3 t\right)$

