Math 3C03
 M. Min-Oo
 Assignment \#5

Due: Thursday, November 21st, 2013 in class at the beginning of the lecture

1. Solve the heat equation

$$
\frac{\partial}{\partial t} u(x, t)=\frac{1}{\kappa^{2}} \frac{\partial^{2}}{\partial x^{2}} u(x, t)
$$

on the real line \mathbb{R} with initial condition:

$$
u(x, 0)= \begin{cases}1 & \text { for }|x| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

2. (i) Find the (Dirichlet) Green's function for the quadrant $Q=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \geq 0, x_{2} \geq 0\right\}$ in \mathbb{R}^{2}
(ii) Solve the Dirichlet problem:

$$
\Delta u=0 \text { in } Q \text { with } u(x, 0)=f(x), u(0, y)=g(y) \text { on } \partial Q
$$

3. Do problem 21.28 on page 773 in the textbook.
4. Do problem 19.8 on page $672-673$ in the textbook.
5. Do problem 22.26 on page 800 in the textbook.
6. (bonus question) Consider two independent quantum harmonic oscillators with annihilation/creation operators $A_{1}, A_{2}, A_{1}^{\dagger}, A_{2}^{\dagger}$, satisfying the commutation relations:

$$
\left[A_{i}, A_{j}\right]=\left[A_{i}^{\dagger}, A_{j}^{\dagger}\right]=0,\left[A_{i}, A_{j}^{\dagger}\right]=\hbar \delta_{i j} \quad i, j=1,2
$$

with vacuum state $|0\rangle$ satisfying $A_{1}|0\rangle=A_{2}|0\rangle=0$ and with normalized eigenstates:

$$
\left|n_{1}, n_{2}\right\rangle=\frac{1}{\sqrt{n_{1}!n_{2}!}}\left(A_{1}^{\dagger}\right)^{n_{1}}\left(A_{2}^{\dagger}\right)^{n_{2}}|0\rangle
$$

containing n_{1} excitations of the first harmonic oscillator and n_{2} of the second.
Define the operators:

$$
J_{+}=A_{1}^{\dagger} A_{2}, J_{-}=A_{2}^{\dagger} A_{1}, J_{0}=\frac{1}{2}\left(A_{1}^{\dagger} A_{1}-A_{2}^{\dagger} A_{2}\right), N=A_{1}^{\dagger} A_{1}+A_{2}^{\dagger} A_{2}
$$

(i) Compute the commutation relations between the operators: $J_{ \pm}, J_{0}, N$
(ii) Compute $J_{ \pm}\left|n_{1}, n_{2}\right\rangle, J_{0}\left|n_{1}, n_{2}\right\rangle$ and express the result in terms of the half integral quantum numbers $j=\frac{1}{2}\left(n_{1}+n_{2}\right)$, $m=\frac{1}{2}\left(n_{1}-n_{2}\right)$

