
Math 3C03
M. Min-Oo

Short Answers to Assignment #4

1. Show that ∫ 1

0
(Jn(αr))2 r dr =

1

2
(Jn+1(α))2

where α is any root (zero) of the Bessel function Jn

I did that in class and you can find the notes on the course web page. Besides you can find a more
general formula on page 610 in the textbook

2. Find the electric potential outside a spherical capacitor, consisting of two hemispheres of
radius 1m, joined along the equator by a thin insulating strip, if the upper hemisphere is kept at
+110V and the lower hemisphere at −110V .

The potential in the exterior is given by:

u(r, z = cos θ) =
∞∑
l=0

Blr
−l−1Pl(z)

The Dirichlet boundary conditions u(1, z) = +110 for 0 < z ≤ 1 and u(1, z) = −110 for −1 ≤ z < 0
are satisfied if we choose

Bl = 110
2l + 1

2

(∫ 1

0
Pl(z) dz −

∫ 0

−1
Pl(z) dz

)
Obviously all the even B2k’s are zero and for odd l we can use the formula that I derived in class:∫ 1

0
P2k−1(x) dx =

(1
2

k

)
to get B2k−1 = 110(4k − 1)

(1
2

k

)
The first few Bl’s are given by: B1 = 165, B3 = −385

4 , etc.

3. Show that

u(x, y) =
1

π

∫ +∞

−∞

y

y2 + (x− ξ)2
f(ξ) dξ Poisson Formula

solves Laplace equation ∆u = 0 in the upper half plane y > 0 with boundary values u(x, 0) = f(x).

The Green’s function vanishing on the boundary for the upper half-plane in R2 is given by

G(p, q) =
1

2π
(log(|p− q|)− log(|p+ q̃|))

where for q = (x, y) 7→ q̃ = (x,−y) is the reflection across the boundary. With ν = (0,−1)T , q =
(x, y) and p = (ξ, 0) (on the boundary) ∂G

∂ν is computed to be:

1



< ∇G, ν >=
1

2π

(
< (p− q) , ν >
|p− q|2

− < (p− q̃) , ν >
|p− q̃|2

)
=

1

π

(
y

y2 + (x− ξ)2

)
Now apply Green’s formula.

4. Find a radially symmetric solution u(r, t) of the two-dimensional wave equation

1

c2
∂2u

∂t2
= ∇2u

on the unit disk: r2 = x2 + y2 ≤ 1, satisfying the boundary condition: u(1, t) = 0 for all t ≥ 0 and
initial conditions:

u(r, 0) = 1− r2, ∂

∂t
u(r, 0) = 0

We are looking for a function u(r, t) solving the equation

1

c2
∂2u

∂t2
=
∂2u

∂r2
+

1

r

∂u

∂r

Separation of variables: u(r, t) = y(r)h(t) gives rise to the two equations:

ḧ(t) = −ω2h(t) and y ′′(r) +
1

r
y ′(r) = −ω

2

c2
y(r)

where ω is a constant to be determined by the boundary values. The first equation is a simple
harmonic oscillator and if we change the independent variable in the second equation from r to
x = ω

c r, then we obtain Bessel’s equation with ν = 0:

y ′′(x) +
1

x
y ′(x) + y(r) = 0

whose solution is the Bessel function J0(x) = J0(
ω
c r). In order to satisfy the boundary condition

u(1, t) = 0 for all t, we require that ωk = c αk, where α1, α2, . . . , are the positive zeros of J0.

Hence the general solution of the wave equation on a circular drum is a linear combination of the
normal modes:

∞∑
k=1

(ak cos cαkt+ bk sin cαkt) J0(αkr)

The initial condition ∂
∂tu(r, 0) = 0 forces all the bk’s to vanish. The other initial condition u(r, 0) =

1 − r2 fixes the coefficients ak by the Fourier-Bessel series: 1 − r2 ∼
∑∞

k=1 ak J0(αkr). ak is given
by:

ak =
2

J2
1 (αk)

∫ 1

0
(1− r2) J0(αkr) r dr

Using integration by parts and well-known formulas for Bessel functions (or more conveniently

by using Wolfram alpha), we can evaluate the integral and finally get the explicit formula: ak =
8

α3
k J1(αk)

and hence the solution is:

u(r, t) = 8

∞∑
k=1

J0(αkr)

α3
k J1(αk)

cos(cαkt)
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5. Do problem 21.18 on page 771 in the textbook.

The interior and exterior temperatures are given respectively by:

T1(r, θ) =
∞∑
l=0

Al r
lPl(cos θ) and T2(r, θ) = T∞ +

∞∑
l=0

Bl r
−l−1Pl(cos θ)

The boundary conditions on the sphere at r = a:

T1(a, θ) = T2(a, θ) and k1
∂T1
∂r
− k2

∂T2
∂r

=
1

a

∞∑
l=0

ql Pl(cos θ)

imposes the following equations for the coefficients:

A0 =
B0

a
+ T∞ Ala

l = Bla
−l−1

and
k1lAla

l + k2(l + 1)Bla
−i−1 = ql

which can now be solved to yield the solutions:

T1(r, θ) = T∞ +
∞∑
l=0

ql
k1l + k2(l + 1)

(r
a

)l
Pl(cos θ)

and

T2(r, θ) = T∞ +
∞∑
l=0

ql
k1l + k2(l + 1)

(a
r

)l
Pl(cos θ)

The temperature at the centre of the sphere is T∞ + q0
k2

6. (bonus question) Prove the following formulas for Bessel functions (of the first kind):

d

dx
(xn Jn(x)) = xn Jn−1(x)

d

dx

(
x−n Jn(x)

)
= −x−n Jn+1(x)

and hence show that the zeros of the Bessel functions interlace, i.e. show that between any two
consecutive positive zeros of Jn(x), there is exactly one zero of Jn+1(x).

The formulas are proved in the textbook (page 611). To prove the interlacing properties of the zeros,
use Rolle’s theorem which says that between any two zeros of a function there is at least one zero
of the derivative.
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