Math 3C03

M. Min-Oo

Short Answers to Assignment \#4

1. Show that

$$
\int_{0}^{1}\left(J_{n}(\alpha r)\right)^{2} r d r=\frac{1}{2}\left(J_{n+1}(\alpha)\right)^{2}
$$

where α is any root (zero) of the Bessel function J_{n}
I did that in class and you can find the notes on the course web page. Besides you can find a more general formula on page 610 in the textbook
2. Find the electric potential outside a spherical capacitor, consisting of two hemispheres of radius 1 m , joined along the equator by a thin insulating strip, if the upper hemisphere is kept at +110 V and the lower hemisphere at -110 V .

The potential in the exterior is given by:

$$
u(r, z=\cos \theta)=\sum_{l=0}^{\infty} B_{l} r^{-l-1} P_{l}(z)
$$

The Dirichlet boundary conditions $u(1, z)=+110$ for $0<z \leq 1$ and $u(1, z)=-110$ for $-1 \leq z<0$ are satisfied if we choose

$$
B_{l}=110 \frac{2 l+1}{2}\left(\int_{0}^{1} P_{l}(z) d z-\int_{-1}^{0} P_{l}(z) d z\right)
$$

Obviously all the even $B_{2 k}$'s are zero and for odd l we can use the formula that I derived in class:

$$
\int_{0}^{1} P_{2 k-1}(x) d x=\binom{\frac{1}{2}}{k} \quad \text { to get } \quad B_{2 k-1}=110(4 k-1)\binom{\frac{1}{2}}{k}
$$

The first few B_{l} 's are given by: $B_{1}=165, B_{3}=-\frac{385}{4}$, etc.
3. Show that

$$
u(x, y)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{y}{y^{2}+(x-\xi)^{2}} f(\xi) d \xi \quad \text { Poisson Formula }
$$

solves Laplace equation $\Delta u=0$ in the upper half plane $y>0$ with boundary values $u(x, 0)=f(x)$.
The Green's function vanishing on the boundary for the upper half-plane in \mathbb{R}^{2} is given by

$$
G(p, q)=\frac{1}{2 \pi}(\log (|p-q|)-\log (|p+\tilde{q}|))
$$

where for $q=(x, y) \mapsto \tilde{q}=(x,-y)$ is the reflection across the boundary. With $\nu=(0,-1)^{T}, q=$ (x, y) and $p=(\xi, 0)$ (on the boundary) $\frac{\partial G}{\partial \nu}$ is computed to be:

$$
<\nabla G, \nu>=\frac{1}{2 \pi}\left(\frac{<(p-q), \nu>}{|p-q|^{2}}-\frac{<(p-\tilde{q}), \nu>}{|p-\tilde{q}|^{2}}\right)=\frac{1}{\pi}\left(\frac{y}{y^{2}+(x-\xi)^{2}}\right)
$$

Now apply Green's formula.
4. Find a radially symmetric solution $u(r, t)$ of the two-dimensional wave equation

$$
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}=\nabla^{2} u
$$

on the unit disk: $r^{2}=x^{2}+y^{2} \leq 1$, satisfying the boundary condition: $u(1, t)=0$ for all $t \geq 0$ and initial conditions:

$$
u(r, 0)=1-r^{2}, \quad \frac{\partial}{\partial t} u(r, 0)=0
$$

We are looking for a function $u(r, t)$ solving the equation

$$
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}
$$

Separation of variables: $u(r, t)=y(r) h(t)$ gives rise to the two equations:

$$
\ddot{h}(t)=-\omega^{2} h(t) \quad \text { and } \quad y^{\prime \prime}(r)+\frac{1}{r} y^{\prime}(r)=-\frac{\omega^{2}}{c^{2}} y(r)
$$

where ω is a constant to be determined by the boundary values. The first equation is a simple harmonic oscillator and if we change the independent variable in the second equation from r to $x=\frac{\omega}{c} r$, then we obtain Bessel's equation with $\nu=0$:

$$
y^{\prime \prime}(x)+\frac{1}{x} y^{\prime}(x)+y(r)=0
$$

whose solution is the Bessel function $J_{0}(x)=J_{0}\left(\frac{\omega}{c} r\right)$. In order to satisfy the boundary condition $u(1, t)=0$ for all t, we require that $\omega_{k}=c \alpha_{k}$, where $\alpha_{1}, \alpha_{2}, \ldots$, are the positive zeros of J_{0}.
Hence the general solution of the wave equation on a circular drum is a linear combination of the normal modes:

$$
\sum_{k=1}^{\infty}\left(a_{k} \cos c \alpha_{k} t+b_{k} \sin c \alpha_{k} t\right) J_{0}\left(\alpha_{k} r\right)
$$

The initial condition $\frac{\partial}{\partial t} u(r, 0)=0$ forces all the b_{k} 's to vanish. The other initial condition $u(r, 0)=$ $1-r^{2}$ fixes the coefficients a_{k} by the Fourier-Bessel series: $1-r^{2} \sim \sum_{k=1}^{\infty} a_{k} J_{0}\left(\alpha_{k} r\right) . a_{k}$ is given by:

$$
a_{k}=\frac{2}{J_{1}^{2}\left(\alpha_{k}\right)} \int_{0}^{1}\left(1-r^{2}\right) J_{0}\left(\alpha_{k} r\right) r d r
$$

Using integration by parts and well-known formulas for Bessel functions (or more conveniently by using Wolfram alpha), we can evaluate the integral and finally get the explicit formula: $a_{k}=$ $\frac{8}{\alpha_{k}^{3} J_{1}\left(\alpha_{k}\right)}$ and hence the solution is:

$$
u(r, t)=8 \sum_{k=1}^{\infty} \frac{J_{0}\left(\alpha_{k} r\right)}{\alpha_{k}^{3} J_{1}\left(\alpha_{k}\right)} \cos \left(c \alpha_{k} t\right)
$$

5. Do problem 21.18 on page 771 in the textbook.

The interior and exterior temperatures are given respectively by:

$$
T_{1}(r, \theta)=\sum_{l=0}^{\infty} A_{l} r^{l} P_{l}(\cos \theta) \quad \text { and } \quad T_{2}(r, \theta)=T_{\infty}+\sum_{l=0}^{\infty} B_{l} r^{-l-1} P_{l}(\cos \theta)
$$

The boundary conditions on the sphere at $r=a$:

$$
T_{1}(a, \theta)=T_{2}(a, \theta) \quad \text { and } \quad k_{1} \frac{\partial T_{1}}{\partial r}-k_{2} \frac{\partial T_{2}}{\partial r}=\frac{1}{a} \sum_{l=0}^{\infty} q_{l} P_{l}(\cos \theta)
$$

imposes the following equations for the coefficients:

$$
A_{0}=\frac{B_{0}}{a}+T_{\infty} \quad A_{l} a^{l}=B_{l} a^{-l-1}
$$

and

$$
k_{1} l A_{l} a^{l}+k_{2}(l+1) B_{l} a^{-i-1}=q_{l}
$$

which can now be solved to yield the solutions:

$$
T_{1}(r, \theta)=T_{\infty}+\sum_{l=0}^{\infty} \frac{q_{l}}{k_{1} l+k_{2}(l+1)}\left(\frac{r}{a}\right)^{l} P_{l}(\cos \theta)
$$

and

$$
T_{2}(r, \theta)=T_{\infty}+\sum_{l=0}^{\infty} \frac{q_{l}}{k_{1} l+k_{2}(l+1)}\left(\frac{a}{r}\right)^{l} P_{l}(\cos \theta)
$$

The temperature at the centre of the sphere is $T_{\infty}+\frac{q_{0}}{k_{2}}$
6. (bonus question) Prove the following formulas for Bessel functions (of the first kind):

$$
\begin{aligned}
\frac{d}{d x}\left(x^{n} J_{n}(x)\right) & =x^{n} J_{n-1}(x) \\
\frac{d}{d x}\left(x^{-n} J_{n}(x)\right) & =-x^{-n} J_{n+1}(x)
\end{aligned}
$$

and hence show that the zeros of the Bessel functions interlace, i.e. show that between any two consecutive positive zeros of $J_{n}(x)$, there is exactly one zero of $J_{n+1}(x)$.
The formulas are proved in the textbook (page 611). To prove the interlacing properties of the zeros, use Rolle's theorem which says that between any two zeros of a function there is at least one zero of the derivative.

